/* libFLAC - Free Lossless Audio Coder library * Copyright (C) 2000,2001 Josh Coalson * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include #include "FLAC/format.h" #include "private/lpc.h" #ifndef M_LN2 /* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */ #define M_LN2 0.69314718055994530942 #endif void FLAC__lpc_compute_autocorrelation(const real data[], unsigned data_len, unsigned lag, real autoc[]) { real d; unsigned i; assert(lag > 0); assert(lag <= data_len); while(lag--) { for(i = lag, d = 0.0; i < data_len; i++) d += data[i] * data[i - lag]; autoc[lag] = d; } } void FLAC__lpc_compute_lp_coefficients(const real autoc[], unsigned max_order, real lp_coeff[][FLAC__MAX_LPC_ORDER], real error[]) { unsigned i, j; real r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER]; assert(0 < max_order); assert(max_order <= FLAC__MAX_LPC_ORDER); assert(autoc[0] != 0.0); err = autoc[0]; for(i = 0; i < max_order; i++) { /* Sum up this iteration's reflection coefficient. */ r =- autoc[i+1]; for(j = 0; j < i; j++) r -= lpc[j] * autoc[i-j]; ref[i] = (r/=err); /* Update LPC coefficients and total error. */ lpc[i]=r; for(j = 0; j < (i>>1); j++) { real tmp = lpc[j]; lpc[j] += r * lpc[i-1-j]; lpc[i-1-j] += r * tmp; } if(i & 1) lpc[j] += lpc[j] * r; err *= (1.0 - r * r); /* save this order */ for(j = 0; j <= i; j++) lp_coeff[i][j] = -lpc[j]; /* N.B. why do we have to negate here? */ error[i] = err; } } int FLAC__lpc_quantize_coefficients(const real lp_coeff[], unsigned order, unsigned precision, unsigned bits_per_sample, int32 qlp_coeff[], int *bits) { unsigned i; real d, rprecision = (real)precision, maxlog = -1e99, minlog = 1e99; assert(bits_per_sample > 0); assert(bits_per_sample <= sizeof(int32)*8); assert(precision >= FLAC__MIN_QLP_COEFF_PRECISION); assert(precision + bits_per_sample < sizeof(int32)*8); #ifdef NDEBUG (void)bits_per_sample; /* silence compiler warning about unused parameter */ #endif for(i = 0; i < order; i++) { if(lp_coeff[i] == 0.0) continue; d = log(fabs(lp_coeff[i])) / M_LN2; if(d > maxlog) maxlog = d; if(d < minlog) minlog = d; } if(maxlog < minlog) return 2; else if(maxlog - minlog >= (real)(precision+1)) return 1; else if((rprecision-1.0) - maxlog >= (real)(precision+1)) rprecision = (real)precision + maxlog + 1.0; *bits = (int)floor((rprecision-1.0) - maxlog); /* '-1' because bits can be negative and the sign bit costs 1 bit */ if(*bits > (int)precision || *bits <= -(int)precision) { fprintf(stderr, "@@@ FLAC__lpc_quantize_coefficients(): ERROR: *bits=%d, maxlog=%f, minlog=%f, precision=%u, rprecision=%f\n", *bits, maxlog, minlog, precision, rprecision); return 1; } if(*bits != 0) { /* just to avoid wasting time... */ for(i = 0; i < order; i++) qlp_coeff[i] = (int32)floor(lp_coeff[i] * (real)(1 << *bits)); } return 0; } void FLAC__lpc_compute_residual_from_qlp_coefficients(const int32 data[], unsigned data_len, const int32 qlp_coeff[], unsigned order, int lp_quantization, int32 residual[]) { #ifdef FLAC_OVERFLOW_DETECT int64 sumo; #endif unsigned i, j; int32 sum; const int32 *history; #ifdef FLAC_OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i 0); for(i = 0; i < data_len; i++) { #ifdef FLAC_OVERFLOW_DETECT sumo = 0; #endif sum = 0; history = data; for(j = 0; j < order; j++) { sum += qlp_coeff[j] * (*(--history)); #ifdef FLAC_OVERFLOW_DETECT sumo += (int64)qlp_coeff[j] * (int64)(*history); if(sumo > 2147483647ll || sumo < -2147483648ll) { fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo); } #endif } *(residual++) = *(data++) - (sum >> lp_quantization); } /* Here's a slower but clearer version: for(i = 0; i < data_len; i++) { sum = 0; for(j = 0; j < order; j++) sum += qlp_coeff[j] * data[i-j-1]; residual[i] = data[i] - (sum >> lp_quantization); } */ } void FLAC__lpc_restore_signal(const int32 residual[], unsigned data_len, const int32 qlp_coeff[], unsigned order, int lp_quantization, int32 data[]) { #ifdef FLAC_OVERFLOW_DETECT int64 sumo; #endif unsigned i, j; int32 sum; const int32 *history; #ifdef FLAC_OVERFLOW_DETECT_VERBOSE fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization); for(i=0;i 0); for(i = 0; i < data_len; i++) { #ifdef FLAC_OVERFLOW_DETECT sumo = 0; #endif sum = 0; history = data; for(j = 0; j < order; j++) { sum += qlp_coeff[j] * (*(--history)); #ifdef FLAC_OVERFLOW_DETECT sumo += (int64)qlp_coeff[j] * (int64)(*history); if(sumo > 2147483647ll || sumo < -2147483648ll) { fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo); } #endif } *(data++) = *(residual++) + (sum >> lp_quantization); } /* Here's a slower but clearer version: for(i = 0; i < data_len; i++) { sum = 0; for(j = 0; j < order; j++) sum += qlp_coeff[j] * data[i-j-1]; data[i] = residual[i] + (sum >> lp_quantization); } */ } real FLAC__lpc_compute_expected_bits_per_residual_sample(real lpc_error, unsigned total_samples) { real escale; assert(lpc_error >= 0.0); /* the error can never be negative */ assert(total_samples > 0); escale = 0.5 * M_LN2 * M_LN2 / (real)total_samples; if(lpc_error > 0.0) { real bps = 0.5 * log(escale * lpc_error) / M_LN2; if(bps >= 0.0) return bps; else return 0.0; } else { return 0.0; } } unsigned FLAC__lpc_compute_best_order(const real lpc_error[], unsigned max_order, unsigned total_samples, unsigned bits_per_signal_sample) { unsigned order, best_order; real best_bits, tmp_bits; assert(max_order > 0); best_order = 0; best_bits = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[0], total_samples) * (real)total_samples; for(order = 1; order < max_order; order++) { tmp_bits = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[order], total_samples) * (real)(total_samples - order) + (real)(order * bits_per_signal_sample); if(tmp_bits < best_bits) { best_order = order; best_bits = tmp_bits; } } return best_order+1; /* +1 since index of lpc_error[] is order-1 */ }