/* libFLAC - Free Lossless Audio Coder library * Copyright (C) 2000,2001 Josh Coalson * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include #include /* for malloc() */ #include "FLAC/stream_decoder.h" #include "private/bitbuffer.h" #include "private/crc.h" #include "private/fixed.h" #include "private/lpc.h" typedef struct FLAC__StreamDecoderPrivate { FLAC__StreamDecoderReadStatus (*read_callback)(const FLAC__StreamDecoder *decoder, byte buffer[], unsigned *bytes, void *client_data); FLAC__StreamDecoderWriteStatus (*write_callback)(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const int32 *buffer[], void *client_data); void (*metadata_callback)(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetaData *metadata, void *client_data); void (*error_callback)(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data); void *client_data; FLAC__BitBuffer input; int32 *output[FLAC__MAX_CHANNELS]; int32 *residual[FLAC__MAX_CHANNELS]; unsigned output_capacity; uint32 last_frame_number; uint64 samples_decoded; bool has_stream_header; FLAC__StreamMetaData stream_header; FLAC__Frame frame; } FLAC__StreamDecoderPrivate; static byte ID3V2_TAG_[3] = { 'I', 'D', '3' }; static bool stream_decoder_allocate_output_(FLAC__StreamDecoder *decoder, unsigned size); static bool stream_decoder_find_metadata_(FLAC__StreamDecoder *decoder); static bool stream_decoder_read_metadata_(FLAC__StreamDecoder *decoder); static bool stream_decoder_skip_id3v2_tag_(FLAC__StreamDecoder *decoder); static bool stream_decoder_frame_sync_(FLAC__StreamDecoder *decoder); static bool stream_decoder_read_frame_(FLAC__StreamDecoder *decoder, bool *got_a_frame); static bool stream_decoder_read_frame_header_(FLAC__StreamDecoder *decoder); static bool stream_decoder_read_subframe_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps); static bool stream_decoder_read_subframe_constant_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps); static bool stream_decoder_read_subframe_fixed_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order); static bool stream_decoder_read_subframe_lpc_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order); static bool stream_decoder_read_subframe_verbatim_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps); static bool stream_decoder_read_residual_partitioned_rice_(FLAC__StreamDecoder *decoder, unsigned predictor_order, unsigned partition_order, int32 *residual); static bool stream_decoder_read_zero_padding_(FLAC__StreamDecoder *decoder); static bool read_callback_(byte buffer[], unsigned *bytes, void *client_data); const char *FLAC__StreamDecoderStateString[] = { "FLAC__STREAM_DECODER_SEARCH_FOR_METADATA", "FLAC__STREAM_DECODER_READ_METADATA", "FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC", "FLAC__STREAM_DECODER_READ_FRAME", "FLAC__STREAM_DECODER_RESYNC_IN_HEADER", "FLAC__STREAM_DECODER_END_OF_STREAM", "FLAC__STREAM_DECODER_ABORTED", "FLAC__STREAM_DECODER_UNPARSEABLE_STREAM", "FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR", "FLAC__STREAM_DECODER_UNINITIALIZED" }; const char *FLAC__StreamDecoderReadStatusString[] = { "FLAC__STREAM_DECODER_READ_CONTINUE", "FLAC__STREAM_DECODER_READ_END_OF_STREAM", "FLAC__STREAM_DECODER_READ_ABORT" }; const char *FLAC__StreamDecoderWriteStatusString[] = { "FLAC__STREAM_DECODER_WRITE_CONTINUE", "FLAC__STREAM_DECODER_WRITE_ABORT" }; const char *FLAC__StreamDecoderErrorStatusString[] = { "FLAC__STREAM_DECODER_ERROR_LOST_SYNC" }; FLAC__StreamDecoder *FLAC__stream_decoder_get_new_instance() { FLAC__StreamDecoder *decoder = (FLAC__StreamDecoder*)malloc(sizeof(FLAC__StreamDecoder)); if(decoder != 0) { decoder->state = FLAC__STREAM_DECODER_UNINITIALIZED; decoder->guts = 0; } return decoder; } void FLAC__stream_decoder_free_instance(FLAC__StreamDecoder *decoder) { free(decoder); } FLAC__StreamDecoderState FLAC__stream_decoder_init( FLAC__StreamDecoder *decoder, FLAC__StreamDecoderReadStatus (*read_callback)(const FLAC__StreamDecoder *decoder, byte buffer[], unsigned *bytes, void *client_data), FLAC__StreamDecoderWriteStatus (*write_callback)(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const int32 *buffer[], void *client_data), void (*metadata_callback)(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetaData *metadata, void *client_data), void (*error_callback)(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data), void *client_data ) { unsigned i; assert(sizeof(int) >= 4); /* we want to die right away if this is not true */ assert(decoder != 0); assert(read_callback != 0); assert(write_callback != 0); assert(metadata_callback != 0); assert(error_callback != 0); assert(decoder->state == FLAC__STREAM_DECODER_UNINITIALIZED); assert(decoder->guts == 0); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_METADATA; decoder->guts = (FLAC__StreamDecoderPrivate*)malloc(sizeof(FLAC__StreamDecoderPrivate)); if(decoder->guts == 0) return decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; decoder->guts->read_callback = read_callback; decoder->guts->write_callback = write_callback; decoder->guts->metadata_callback = metadata_callback; decoder->guts->error_callback = error_callback; decoder->guts->client_data = client_data; FLAC__bitbuffer_init(&decoder->guts->input); for(i = 0; i < FLAC__MAX_CHANNELS; i++) { decoder->guts->output[i] = 0; decoder->guts->residual[i] = 0; } decoder->guts->output_capacity = 0; decoder->guts->last_frame_number = 0; decoder->guts->samples_decoded = 0; decoder->guts->has_stream_header = false; return decoder->state; } void FLAC__stream_decoder_finish(FLAC__StreamDecoder *decoder) { unsigned i; assert(decoder != 0); if(decoder->state == FLAC__STREAM_DECODER_UNINITIALIZED) return; if(decoder->guts != 0) { FLAC__bitbuffer_free(&decoder->guts->input); for(i = 0; i < FLAC__MAX_CHANNELS; i++) { if(decoder->guts->output[i] != 0) { free(decoder->guts->output[i]); decoder->guts->output[i] = 0; } if(decoder->guts->residual[i] != 0) { free(decoder->guts->residual[i]); decoder->guts->residual[i] = 0; } } free(decoder->guts); decoder->guts = 0; } decoder->state = FLAC__STREAM_DECODER_UNINITIALIZED; } bool FLAC__stream_decoder_flush(FLAC__StreamDecoder *decoder) { assert(decoder != 0); if(!FLAC__bitbuffer_clear(&decoder->guts->input)) { decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } return true; } bool FLAC__stream_decoder_reset(FLAC__StreamDecoder *decoder) { assert(decoder != 0); if(!FLAC__stream_decoder_flush(decoder)) { decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_METADATA; return true; } bool FLAC__stream_decoder_process_whole_stream(FLAC__StreamDecoder *decoder) { bool dummy; assert(decoder != 0); if(decoder->state == FLAC__STREAM_DECODER_END_OF_STREAM) return true; assert(decoder->state == FLAC__STREAM_DECODER_SEARCH_FOR_METADATA); if(!FLAC__stream_decoder_reset(decoder)) { decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } while(1) { switch(decoder->state) { case FLAC__STREAM_DECODER_SEARCH_FOR_METADATA: if(!stream_decoder_find_metadata_(decoder)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_METADATA: if(!stream_decoder_read_metadata_(decoder)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC: if(!stream_decoder_frame_sync_(decoder)) return true; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_FRAME: if(!stream_decoder_read_frame_(decoder, &dummy)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_END_OF_STREAM: return true; default: assert(0); } } } bool FLAC__stream_decoder_process_metadata(FLAC__StreamDecoder *decoder) { assert(decoder != 0); if(decoder->state == FLAC__STREAM_DECODER_END_OF_STREAM) return true; assert(decoder->state == FLAC__STREAM_DECODER_SEARCH_FOR_METADATA); if(!FLAC__stream_decoder_reset(decoder)) { decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } while(1) { switch(decoder->state) { case FLAC__STREAM_DECODER_SEARCH_FOR_METADATA: if(!stream_decoder_find_metadata_(decoder)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_METADATA: if(!stream_decoder_read_metadata_(decoder)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC: return true; break; case FLAC__STREAM_DECODER_END_OF_STREAM: return true; default: assert(0); } } } bool FLAC__stream_decoder_process_one_frame(FLAC__StreamDecoder *decoder) { bool got_a_frame; assert(decoder != 0); if(decoder->state == FLAC__STREAM_DECODER_END_OF_STREAM) return true; assert(decoder->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC); while(1) { switch(decoder->state) { case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC: if(!stream_decoder_frame_sync_(decoder)) return true; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_FRAME: if(!stream_decoder_read_frame_(decoder, &got_a_frame)) return false; /* above function sets the status for us */ if(got_a_frame) return true; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_END_OF_STREAM: return true; default: assert(0); } } } bool FLAC__stream_decoder_process_remaining_frames(FLAC__StreamDecoder *decoder) { bool dummy; assert(decoder != 0); if(decoder->state == FLAC__STREAM_DECODER_END_OF_STREAM) return true; assert(decoder->state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC); while(1) { switch(decoder->state) { case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC: if(!stream_decoder_frame_sync_(decoder)) return true; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_READ_FRAME: if(!stream_decoder_read_frame_(decoder, &dummy)) return false; /* above function sets the status for us */ break; case FLAC__STREAM_DECODER_END_OF_STREAM: return true; default: assert(0); } } } unsigned FLAC__stream_decoder_input_bytes_unconsumed(FLAC__StreamDecoder *decoder) { assert(decoder != 0); return decoder->guts->input.bytes - decoder->guts->input.consumed_bytes; } bool stream_decoder_allocate_output_(FLAC__StreamDecoder *decoder, unsigned size) { unsigned i; int32 *tmp; if(size <= decoder->guts->output_capacity) return true; /* @@@ should change to use realloc() */ for(i = 0; i < FLAC__MAX_CHANNELS; i++) { if(decoder->guts->output[i] != 0) { free(decoder->guts->output[i]); decoder->guts->output[i] = 0; } if(decoder->guts->residual[i] != 0) { free(decoder->guts->residual[i]); decoder->guts->residual[i] = 0; } } for(i = 0; i < decoder->guts->frame.header.channels; i++) { tmp = (int32*)malloc(sizeof(int32)*size); if(tmp == 0) { decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } decoder->guts->output[i] = tmp; tmp = (int32*)malloc(sizeof(int32)*size); if(tmp == 0) { decoder->state = FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR; return false; } decoder->guts->residual[i] = tmp; } decoder->guts->output_capacity = size; return true; } bool stream_decoder_find_metadata_(FLAC__StreamDecoder *decoder) { uint32 x; unsigned i, id; bool first = 1; assert(decoder->guts->input.consumed_bits == 0); /* make sure we're byte aligned */ for(i = id = 0; i < 4; ) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(x == FLAC__STREAM_SYNC_STRING[i]) { first = 1; i++; id = 0; continue; } if(x == ID3V2_TAG_[id]) { id++; i = 0; if(id == 3) { if(!stream_decoder_skip_id3v2_tag_(decoder)) return false; /* the read_callback_ sets the state for us */ } continue; } if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */ unsigned y; if(!FLAC__bitbuffer_peek_bit(&decoder->guts->input, &y, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(!y) { /* MAGIC NUMBER for the last sync bit */ decoder->state = FLAC__STREAM_DECODER_READ_FRAME; return true; } } i = 0; if(first) { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); first = 0; } } decoder->state = FLAC__STREAM_DECODER_READ_METADATA; return true; } bool stream_decoder_read_metadata_(FLAC__StreamDecoder *decoder) { uint32 i, x, last_block, type, length; assert(decoder->guts->input.consumed_bits == 0); /* make sure we're byte aligned */ if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &last_block, FLAC__STREAM_METADATA_IS_LAST_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &type, FLAC__STREAM_METADATA_TYPE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &length, FLAC__STREAM_METADATA_LENGTH_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(type == FLAC__METADATA_TYPE_ENCODING) { unsigned used_bits = 0; decoder->guts->stream_header.type = type; decoder->guts->stream_header.is_last = last_block; decoder->guts->stream_header.length = length; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_ENCODING_MIN_BLOCK_SIZE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ decoder->guts->stream_header.data.encoding.min_blocksize = x; used_bits += FLAC__STREAM_METADATA_ENCODING_MIN_BLOCK_SIZE_LEN; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_ENCODING_MAX_BLOCK_SIZE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ decoder->guts->stream_header.data.encoding.max_blocksize = x; used_bits += FLAC__STREAM_METADATA_ENCODING_MAX_BLOCK_SIZE_LEN; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_ENCODING_MIN_FRAME_SIZE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ decoder->guts->stream_header.data.encoding.min_framesize = x; used_bits += FLAC__STREAM_METADATA_ENCODING_MIN_FRAME_SIZE_LEN; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_ENCODING_MAX_FRAME_SIZE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ decoder->guts->stream_header.data.encoding.max_framesize = x; used_bits += FLAC__STREAM_METADATA_ENCODING_MAX_FRAME_SIZE_LEN; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_ENCODING_SAMPLE_RATE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ decoder->guts->stream_header.data.encoding.sample_rate = x; used_bits += FLAC__STREAM_METADATA_ENCODING_SAMPLE_RATE_LEN; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_ENCODING_CHANNELS_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ decoder->guts->stream_header.data.encoding.channels = x+1; used_bits += FLAC__STREAM_METADATA_ENCODING_CHANNELS_LEN; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__STREAM_METADATA_ENCODING_BITS_PER_SAMPLE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ decoder->guts->stream_header.data.encoding.bits_per_sample = x+1; used_bits += FLAC__STREAM_METADATA_ENCODING_BITS_PER_SAMPLE_LEN; if(!FLAC__bitbuffer_read_raw_uint64(&decoder->guts->input, &decoder->guts->stream_header.data.encoding.total_samples, FLAC__STREAM_METADATA_ENCODING_TOTAL_SAMPLES_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ used_bits += FLAC__STREAM_METADATA_ENCODING_TOTAL_SAMPLES_LEN; for(i = 0; i < 16; i++) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ decoder->guts->stream_header.data.encoding.md5sum[i] = (byte)x; } used_bits += 128; /* skip the rest of the block */ assert(used_bits % 8 == 0); length -= (used_bits / 8); for(i = 0; i < length; i++) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ } decoder->guts->has_stream_header = true; decoder->guts->metadata_callback(decoder, &decoder->guts->stream_header, decoder->guts->client_data); } else { /* skip other metadata blocks */ for(i = 0; i < length; i++) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ } } if(last_block) decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } bool stream_decoder_skip_id3v2_tag_(FLAC__StreamDecoder *decoder) { uint32 x; unsigned i, skip; /* skip the version and flags bytes */ if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 24, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ /* get the size (in bytes) to skip */ skip = 0; for(i = 0; i < 4; i++) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ skip <<= 7; skip |= (x & 0x7f); } /* skip the rest of the tag */ for(i = 0; i < skip; i++) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ } return true; } bool stream_decoder_frame_sync_(FLAC__StreamDecoder *decoder) { uint32 x; bool first = 1; /* If we know the total number of samples in the stream, stop if we've read that many. */ /* This will stop us, for example, from wasting time trying to sync on an ID3V1 tag. */ if(decoder->guts->has_stream_header && decoder->guts->stream_header.data.encoding.total_samples) { if(decoder->guts->samples_decoded >= decoder->guts->stream_header.data.encoding.total_samples) { decoder->state = FLAC__STREAM_DECODER_END_OF_STREAM; return true; } } /* make sure we're byte aligned */ if(decoder->guts->input.consumed_bits != 0) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8-decoder->guts->input.consumed_bits, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ } while(1) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(x == 0xff) { /* MAGIC NUMBER for the first 8 frame sync bits */ unsigned y; if(!FLAC__bitbuffer_peek_bit(&decoder->guts->input, &y, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(!y) { /* MAGIC NUMBER for the last sync bit */ decoder->state = FLAC__STREAM_DECODER_READ_FRAME; return true; } } if(first) { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); first = 0; } } return true; } bool stream_decoder_read_frame_(FLAC__StreamDecoder *decoder, bool *got_a_frame) { unsigned channel; unsigned i; int32 mid, side, left, right; *got_a_frame = false; if(!stream_decoder_read_frame_header_(decoder)) return false; if(decoder->state != FLAC__STREAM_DECODER_READ_FRAME) { if(decoder->state == FLAC__STREAM_DECODER_RESYNC_IN_HEADER) decoder->state = FLAC__STREAM_DECODER_READ_FRAME; else decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } if(!stream_decoder_allocate_output_(decoder, decoder->guts->frame.header.blocksize)) return false; for(channel = 0; channel < decoder->guts->frame.header.channels; channel++) { /* * first figure the correct bits-per-sample of the subframe */ unsigned bps = decoder->guts->frame.header.bits_per_sample; switch(decoder->guts->frame.header.channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: /* no adjustment needed */ break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: if(channel == 1) bps++; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: if(channel == 0) bps++; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: if(channel == 1) bps++; break; default: assert(0); } /* * now read it */ if(!stream_decoder_read_subframe_(decoder, channel, bps)) return false; if(decoder->state != FLAC__STREAM_DECODER_READ_FRAME) { decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } } if(!stream_decoder_read_zero_padding_(decoder)) return false; /* Undo any special channel coding */ switch(decoder->guts->frame.header.channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: /* do nothing */ break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: assert(decoder->guts->frame.header.channels == 2); for(i = 0; i < decoder->guts->frame.header.blocksize; i++) decoder->guts->output[1][i] = decoder->guts->output[0][i] - decoder->guts->output[1][i]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: assert(decoder->guts->frame.header.channels == 2); for(i = 0; i < decoder->guts->frame.header.blocksize; i++) decoder->guts->output[0][i] += decoder->guts->output[1][i]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: assert(decoder->guts->frame.header.channels == 2); for(i = 0; i < decoder->guts->frame.header.blocksize; i++) { mid = decoder->guts->output[0][i]; side = decoder->guts->output[1][i]; mid <<= 1; if(side & 1) /* i.e. if 'side' is odd... */ mid++; left = mid + side; right = mid - side; decoder->guts->output[0][i] = left >> 1; decoder->guts->output[1][i] = right >> 1; } break; default: assert(0); break; } *got_a_frame = true; /* put the latest values into the public section of the decoder instance */ decoder->channels = decoder->guts->frame.header.channels; decoder->channel_assignment = decoder->guts->frame.header.channel_assignment; decoder->bits_per_sample = decoder->guts->frame.header.bits_per_sample; decoder->sample_rate = decoder->guts->frame.header.sample_rate; decoder->blocksize = decoder->guts->frame.header.blocksize; decoder->guts->samples_decoded += decoder->guts->frame.header.blocksize; /* write it */ if(decoder->guts->write_callback(decoder, &decoder->guts->frame, decoder->guts->output, decoder->guts->client_data) != FLAC__STREAM_DECODER_WRITE_CONTINUE) return false; decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } bool stream_decoder_read_frame_header_(FLAC__StreamDecoder *decoder) { uint32 x; uint64 xx; unsigned i, blocksize_hint = 0, sample_rate_hint = 0; byte crc, raw_header[15]; /* MAGIC NUMBER based on the maximum frame header size, including CRC */ unsigned raw_header_len; bool is_unparseable = false; assert(decoder->guts->input.consumed_bits == 0); /* make sure we're byte aligned */ /* init the raw header with the first 8 bits of the sync code */ raw_header[0] = 0xff; /* MAGIC NUMBER for the first 8 frame sync bits */ raw_header_len = 1; /* * read in the raw header as bytes so we can CRC it, and parse it on the way */ for(i = 0; i < 2; i++) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ else if(x == 0xff) { /* MAGIC NUMBER for the first part of the sync code */ /* if we get here it means our original sync was erroneous since the sync code cannot appear in the header */ uint32 y; if(!FLAC__bitbuffer_peek_bit(&decoder->guts->input, &y, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(!y) { /* MAGIC NUMBER for the last sync bit */ decoder->state = FLAC__STREAM_DECODER_RESYNC_IN_HEADER; return true; } else { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } } raw_header[raw_header_len++] = (byte)x; } assert(!(raw_header[1] & 0x80)); /* last sync bit should be confirmed zero before we get here */ switch(x = raw_header[1] >> 4) { case 0: if(decoder->guts->has_stream_header && decoder->guts->stream_header.data.encoding.min_blocksize == decoder->guts->stream_header.data.encoding.max_blocksize) /* i.e. it's a fixed-blocksize stream */ decoder->guts->frame.header.blocksize = decoder->guts->stream_header.data.encoding.min_blocksize; else is_unparseable = true; break; case 1: decoder->guts->frame.header.blocksize = 192; break; case 2: case 3: case 4: case 5: decoder->guts->frame.header.blocksize = 576 << (x-2); break; case 6: case 7: blocksize_hint = x; break; default: assert(0); break; } switch(x = raw_header[1] & 0x0f) { case 0: if(decoder->guts->has_stream_header) decoder->guts->frame.header.sample_rate = decoder->guts->stream_header.data.encoding.sample_rate; else is_unparseable = true; break; case 1: case 2: case 3: is_unparseable = true; break; case 4: decoder->guts->frame.header.sample_rate = 8000; break; case 5: decoder->guts->frame.header.sample_rate = 16000; break; case 6: decoder->guts->frame.header.sample_rate = 22050; break; case 7: decoder->guts->frame.header.sample_rate = 24000; break; case 8: decoder->guts->frame.header.sample_rate = 32000; break; case 9: decoder->guts->frame.header.sample_rate = 44100; break; case 10: decoder->guts->frame.header.sample_rate = 48000; break; case 11: decoder->guts->frame.header.sample_rate = 96000; break; case 12: case 13: case 14: sample_rate_hint = x; break; case 15: decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; default: assert(0); } x = (unsigned)(raw_header[2] >> 4); if(x & 8) { decoder->guts->frame.header.channels = 2; switch(x & 7) { case 0: decoder->guts->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE; break; case 1: decoder->guts->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE; break; case 2: decoder->guts->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE; break; default: is_unparseable = true; break; } } else { decoder->guts->frame.header.channels = (unsigned)x + 1; decoder->guts->frame.header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; } switch(x = (unsigned)(raw_header[2] & 0x0e) >> 1) { case 0: if(decoder->guts->has_stream_header) decoder->guts->frame.header.bits_per_sample = decoder->guts->stream_header.data.encoding.bits_per_sample; else is_unparseable = true; break; case 1: decoder->guts->frame.header.bits_per_sample = 8; break; case 2: decoder->guts->frame.header.bits_per_sample = 12; break; case 4: decoder->guts->frame.header.bits_per_sample = 16; break; case 5: decoder->guts->frame.header.bits_per_sample = 20; break; case 6: decoder->guts->frame.header.bits_per_sample = 24; break; case 3: case 7: is_unparseable = true; break; default: assert(0); break; } if(raw_header[2] & 0x01) { /* this should be a zero padding bit */ decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } if(blocksize_hint) { if(!FLAC__bitbuffer_read_utf8_uint64(&decoder->guts->input, &xx, read_callback_, decoder, raw_header, &raw_header_len)) return false; /* the read_callback_ sets the state for us */ if(xx == 0xffffffffffffffff) { if(raw_header[raw_header_len-1] == 0xff) { /* MAGIC NUMBER for sync code */ uint32 y; if(!FLAC__bitbuffer_peek_bit(&decoder->guts->input, &y, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(!y) { /* MAGIC NUMBER for the last sync bit */ decoder->state = FLAC__STREAM_DECODER_RESYNC_IN_HEADER; return true; } else { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } } else { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } } if(decoder->guts->has_stream_header && decoder->guts->stream_header.data.encoding.min_blocksize == decoder->guts->stream_header.data.encoding.max_blocksize) /* i.e. it's a fixed-blocksize stream */ decoder->guts->frame.header.number.sample_number = (uint64)decoder->guts->last_frame_number * (int64)decoder->guts->stream_header.data.encoding.min_blocksize + xx; else decoder->guts->frame.header.number.sample_number = xx; } else { if(!FLAC__bitbuffer_read_utf8_uint32(&decoder->guts->input, &x, read_callback_, decoder, raw_header, &raw_header_len)) return false; /* the read_callback_ sets the state for us */ if(x == 0xffffffff) { if(raw_header[raw_header_len-1] == 0xff) { /* MAGIC NUMBER for sync code */ uint32 y; if(!FLAC__bitbuffer_peek_bit(&decoder->guts->input, &y, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(!y) { /* MAGIC NUMBER for the last sync bit */ decoder->state = FLAC__STREAM_DECODER_RESYNC_IN_HEADER; return true; } else { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } } else { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } } decoder->guts->last_frame_number = x; if(decoder->guts->has_stream_header) { decoder->guts->frame.header.number.sample_number = (int64)decoder->guts->stream_header.data.encoding.min_blocksize * (int64)x; } else { is_unparseable = true; } } if(blocksize_hint) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ raw_header[raw_header_len++] = (byte)x; if(blocksize_hint == 7) { uint32 _x; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &_x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ raw_header[raw_header_len++] = (byte)_x; x = (x << 8) | _x; } decoder->guts->frame.header.blocksize = x+1; } if(sample_rate_hint) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ raw_header[raw_header_len++] = (byte)x; if(sample_rate_hint != 12) { uint32 _x; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &_x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ raw_header[raw_header_len++] = (byte)_x; x = (x << 8) | _x; } if(sample_rate_hint == 12) decoder->guts->frame.header.sample_rate = x*1000; else if(sample_rate_hint == 13) decoder->guts->frame.header.sample_rate = x; else decoder->guts->frame.header.sample_rate = x*10; } /* read the crc byte */ if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, 8, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ crc = (byte)x; if(FLAC__crc8(raw_header, raw_header_len) != crc) { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } if(is_unparseable) { decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM; return false; } return true; } bool stream_decoder_read_subframe_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps) { uint32 x; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &x, FLAC__SUBFRAME_TYPE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(x & 0x01 || x & 0x80) { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } else if(x == 0) { return stream_decoder_read_subframe_constant_(decoder, channel, bps); } else if(x == 2) { return stream_decoder_read_subframe_verbatim_(decoder, channel, bps); } else if(x < 16) { decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM; return false; } else if(x <= 24) { return stream_decoder_read_subframe_fixed_(decoder, channel, bps, (x>>1)&7); } else if(x < 64) { decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM; return false; } else { return stream_decoder_read_subframe_lpc_(decoder, channel, bps, ((x>>1)&31)+1); } } bool stream_decoder_read_subframe_constant_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps) { FLAC__Subframe_Constant *subframe = &decoder->guts->frame.subframes[channel].data.constant; int32 x; unsigned i; int32 *output = decoder->guts->output[channel]; decoder->guts->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_CONSTANT; if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &x, bps, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ subframe->value = x; /* decode the subframe */ for(i = 0; i < decoder->guts->frame.header.blocksize; i++) output[i] = x; return true; } bool stream_decoder_read_subframe_fixed_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order) { FLAC__Subframe_Fixed *subframe = &decoder->guts->frame.subframes[channel].data.fixed; int32 i32; uint32 u32; unsigned u; decoder->guts->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_FIXED; subframe->residual = decoder->guts->residual[channel]; subframe->order = order; /* read warm-up samples */ for(u = 0; u < order; u++) { if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &i32, bps, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ subframe->warmup[u] = i32; } /* read entropy coding method info */ if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__ENTROPY_CODING_METHOD_TYPE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ subframe->entropy_coding_method.type = u32; switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ subframe->entropy_coding_method.data.partitioned_rice.order = u32; break; default: decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM; return false; } /* read residual */ switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: if(!stream_decoder_read_residual_partitioned_rice_(decoder, order, subframe->entropy_coding_method.data.partitioned_rice.order, decoder->guts->residual[channel])) return false; break; default: assert(0); } /* decode the subframe */ memcpy(decoder->guts->output[channel], subframe->warmup, sizeof(int32) * order); FLAC__fixed_restore_signal(decoder->guts->residual[channel], decoder->guts->frame.header.blocksize-order, order, decoder->guts->output[channel]+order); return true; } bool stream_decoder_read_subframe_lpc_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps, const unsigned order) { FLAC__Subframe_LPC *subframe = &decoder->guts->frame.subframes[channel].data.lpc; int32 i32; uint32 u32; unsigned u; decoder->guts->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_LPC; subframe->residual = decoder->guts->residual[channel]; subframe->order = order; /* read warm-up samples */ for(u = 0; u < order; u++) { if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &i32, bps, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ subframe->warmup[u] = i32; } /* read qlp coeff precision */ if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(u32 == 15) { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; return true; } subframe->qlp_coeff_precision = u32+1; /* read qlp shift */ if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &i32, FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ subframe->quantization_level = i32; /* read quantized lp coefficiencts */ for(u = 0; u < order; u++) { if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &i32, subframe->qlp_coeff_precision, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ subframe->qlp_coeff[u] = i32; } /* read entropy coding method info */ if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__ENTROPY_CODING_METHOD_TYPE_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ subframe->entropy_coding_method.type = u32; switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &u32, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ subframe->entropy_coding_method.data.partitioned_rice.order = u32; break; default: decoder->state = FLAC__STREAM_DECODER_UNPARSEABLE_STREAM; return false; } /* read residual */ switch(subframe->entropy_coding_method.type) { case FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE: if(!stream_decoder_read_residual_partitioned_rice_(decoder, order, subframe->entropy_coding_method.data.partitioned_rice.order, decoder->guts->residual[channel])) return false; break; default: assert(0); } /* decode the subframe */ memcpy(decoder->guts->output[channel], subframe->warmup, sizeof(int32) * order); FLAC__lpc_restore_signal(decoder->guts->residual[channel], decoder->guts->frame.header.blocksize-order, subframe->qlp_coeff, order, subframe->quantization_level, decoder->guts->output[channel]+order); return true; } bool stream_decoder_read_subframe_verbatim_(FLAC__StreamDecoder *decoder, unsigned channel, unsigned bps) { FLAC__Subframe_Verbatim *subframe = &decoder->guts->frame.subframes[channel].data.verbatim; int32 x, *residual = decoder->guts->residual[channel]; unsigned i; decoder->guts->frame.subframes[channel].type = FLAC__SUBFRAME_TYPE_VERBATIM; subframe->data = residual; for(i = 0; i < decoder->guts->frame.header.blocksize; i++) { if(!FLAC__bitbuffer_read_raw_int32(&decoder->guts->input, &x, bps, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ residual[i] = x; } /* decode the subframe */ memcpy(decoder->guts->output[channel], subframe->data, sizeof(int32) * decoder->guts->frame.header.blocksize); return true; } bool stream_decoder_read_residual_partitioned_rice_(FLAC__StreamDecoder *decoder, unsigned predictor_order, unsigned partition_order, int32 *residual) { uint32 rice_parameter; int i; unsigned partition, sample, u; const unsigned partitions = 1u << partition_order; const unsigned partition_samples = partition_order > 0? decoder->guts->frame.header.blocksize >> partition_order : decoder->guts->frame.header.blocksize - predictor_order; sample = 0; for(partition = 0; partition < partitions; partition++) { if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ for(u = (partition_order == 0 || partition > 0)? 0 : predictor_order; u < partition_samples; u++, sample++) { if(!FLAC__bitbuffer_read_rice_signed(&decoder->guts->input, &i, rice_parameter, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ residual[sample] = i; } } return true; } bool stream_decoder_read_zero_padding_(FLAC__StreamDecoder *decoder) { if(decoder->guts->input.consumed_bits != 0) { uint32 zero = 0; if(!FLAC__bitbuffer_read_raw_uint32(&decoder->guts->input, &zero, 8-decoder->guts->input.consumed_bits, read_callback_, decoder)) return false; /* the read_callback_ sets the state for us */ if(zero != 0) { decoder->guts->error_callback(decoder, FLAC__STREAM_DECODER_ERROR_LOST_SYNC, decoder->guts->client_data); decoder->state = FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC; } } return true; } bool read_callback_(byte buffer[], unsigned *bytes, void *client_data) { FLAC__StreamDecoder *decoder = (FLAC__StreamDecoder *)client_data; FLAC__StreamDecoderReadStatus status; status = decoder->guts->read_callback(decoder, buffer, bytes, decoder->guts->client_data); if(status == FLAC__STREAM_DECODER_READ_END_OF_STREAM) decoder->state = FLAC__STREAM_DECODER_END_OF_STREAM; else if(status == FLAC__STREAM_DECODER_READ_ABORT) decoder->state = FLAC__STREAM_DECODER_ABORTED; return status == FLAC__STREAM_DECODER_READ_CONTINUE; }