/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000,2001,2002 Josh Coalson * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include #include /* for malloc() */ #include /* for memcpy() */ #include "FLAC/assert.h" #include "FLAC/seek_table.h" #include "protected/stream_encoder.h" #include "private/bitbuffer.h" #include "private/bitmath.h" #include "private/crc.h" #include "private/cpu.h" #include "private/stream_encoder_framing.h" #include "private/fixed.h" #include "private/lpc.h" #include "private/md5.h" #include "private/memory.h" #ifdef min #undef min #endif #define min(x,y) ((x)<(y)?(x):(y)) #ifdef max #undef max #endif #define max(x,y) ((x)>(y)?(x):(y)) /*********************************************************************** * * Private class method prototypes * ***********************************************************************/ static FLAC__bool stream_encoder_resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_size); static FLAC__bool stream_encoder_process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame); static FLAC__bool stream_encoder_process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame); static FLAC__bool stream_encoder_process_subframe_(FLAC__StreamEncoder *encoder, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool verbatim_only, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__int32 integer_signal[], const FLAC__real real_signal[], FLAC__Subframe *subframe[2], FLAC__int32 *residual[2], unsigned *best_subframe, unsigned *best_bits); static FLAC__bool stream_encoder_add_subframe_(FLAC__StreamEncoder *encoder, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame); static unsigned stream_encoder_evaluate_constant_subframe_(const FLAC__int32 signal, unsigned subframe_bps, FLAC__Subframe *subframe); static unsigned stream_encoder_evaluate_fixed_subframe_(FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe); static unsigned stream_encoder_evaluate_lpc_subframe_(FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], const FLAC__real lp_coeff[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe); static unsigned stream_encoder_evaluate_verbatim_subframe_(const FLAC__int32 signal[], unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe); static unsigned stream_encoder_find_best_partition_order_(struct FLAC__StreamEncoderPrivate *private_, const FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, unsigned *best_partition_order, unsigned best_parameters[], unsigned best_raw_bits[]); static void stream_encoder_precompute_partition_info_sums_(const FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order); static void stream_encoder_precompute_partition_info_escapes_(const FLAC__int32 residual[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order); #ifdef DONT_ESTIMATE_RICE_BITS static FLAC__bool stream_encoder_set_partitioned_rice_(const FLAC__uint32 abs_residual[], const FLAC__int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, unsigned parameters[], unsigned *bits); static FLAC__bool stream_encoder_set_partitioned_rice_with_precompute_(const FLAC__int32 residual[], const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, unsigned parameters[], unsigned raw_bits[], unsigned *bits); #else static FLAC__bool stream_encoder_set_partitioned_rice_(const FLAC__uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, unsigned parameters[], unsigned *bits); static FLAC__bool stream_encoder_set_partitioned_rice_with_precompute_(const FLAC__uint32 abs_residual[], const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, unsigned parameters[], unsigned raw_bits[], unsigned *bits); #endif static unsigned stream_encoder_get_wasted_bits_(FLAC__int32 signal[], unsigned samples); /*********************************************************************** * * Private class data * ***********************************************************************/ typedef struct FLAC__StreamEncoderPrivate { unsigned input_capacity; /* current size (in samples) of the signal and residual buffers */ FLAC__int32 *integer_signal[FLAC__MAX_CHANNELS]; /* the integer version of the input signal */ FLAC__int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */ FLAC__real *real_signal[FLAC__MAX_CHANNELS]; /* the floating-point version of the input signal */ FLAC__real *real_signal_mid_side[2]; /* the floating-point version of the mid-side input signal (stereo only) */ unsigned subframe_bps[FLAC__MAX_CHANNELS]; /* the effective bits per sample of the input signal (stream bps - wasted bits) */ unsigned subframe_bps_mid_side[2]; /* the effective bits per sample of the mid-side input signal (stream bps - wasted bits + 0/1) */ FLAC__int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */ FLAC__int32 *residual_workspace_mid_side[2][2]; FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2]; FLAC__Subframe subframe_workspace_mid_side[2][2]; FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2]; FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2]; unsigned best_subframe[FLAC__MAX_CHANNELS]; /* index into the above workspaces */ unsigned best_subframe_mid_side[2]; unsigned best_subframe_bits[FLAC__MAX_CHANNELS]; /* size in bits of the best subframe for each channel */ unsigned best_subframe_bits_mid_side[2]; FLAC__uint32 *abs_residual; /* workspace where abs(candidate residual) is stored */ FLAC__uint64 *abs_residual_partition_sums; /* workspace where the sum of abs(candidate residual) for each partition is stored */ unsigned *raw_bits_per_partition; /* workspace where the sum of silog2(candidate residual) for each partition is stored */ FLAC__BitBuffer *frame; /* the current frame being worked on */ double loose_mid_side_stereo_frames_exact; /* exact number of frames the encoder will use before trying both independent and mid/side frames again */ unsigned loose_mid_side_stereo_frames; /* rounded number of frames the encoder will use before trying both independent and mid/side frames again */ unsigned loose_mid_side_stereo_frame_count; /* number of frames using the current channel assignment */ FLAC__ChannelAssignment last_channel_assignment; FLAC__StreamMetaData metadata; unsigned current_sample_number; unsigned current_frame_number; struct MD5Context md5context; FLAC__CPUInfo cpuinfo; unsigned (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], unsigned data_len, FLAC__real residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); void (*local_lpc_compute_autocorrelation)(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]); void (*local_lpc_compute_residual_from_qlp_coefficients)(const FLAC__int32 data[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); void (*local_lpc_compute_residual_from_qlp_coefficients_16bit)(const FLAC__int32 data[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]); FLAC__bool use_wide_by_block; /* use slow 64-bit versions of some functions because of the block size */ FLAC__bool use_wide_by_partition; /* use slow 64-bit versions of some functions because of the min partition order and blocksize */ FLAC__bool use_wide_by_order; /* use slow 64-bit versions of some functions because of the lpc order */ FLAC__bool precompute_partition_sums; /* our initial guess as to whether precomputing the partitions sums will be a speed improvement */ FLAC__StreamEncoderWriteStatus (*write_callback)(const FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data); void (*metadata_callback)(const FLAC__StreamEncoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data); void *client_data; /* unaligned (original) pointers to allocated data */ FLAC__int32 *integer_signal_unaligned[FLAC__MAX_CHANNELS]; FLAC__int32 *integer_signal_mid_side_unaligned[2]; FLAC__real *real_signal_unaligned[FLAC__MAX_CHANNELS]; FLAC__real *real_signal_mid_side_unaligned[2]; FLAC__int32 *residual_workspace_unaligned[FLAC__MAX_CHANNELS][2]; FLAC__int32 *residual_workspace_mid_side_unaligned[2][2]; FLAC__uint32 *abs_residual_unaligned; FLAC__uint64 *abs_residual_partition_sums_unaligned; unsigned *raw_bits_per_partition_unaligned; /* * These fields have been moved here from private function local * declarations merely to save stack space during encoding. */ FLAC__real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER]; /* from stream_encoder_process_subframe_() */ unsigned parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER], raw_bits[2][1 << FLAC__MAX_RICE_PARTITION_ORDER]; /* from stream_encoder_find_best_partition_order_() */ } FLAC__StreamEncoderPrivate; /*********************************************************************** * * Public static class data * ***********************************************************************/ const char *FLAC__StreamEncoderStateString[] = { "FLAC__STREAM_ENCODER_OK", "FLAC__STREAM_ENCODER_INVALID_CALLBACK", "FLAC__STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS", "FLAC__STREAM_ENCODER_INVALID_BITS_PER_SAMPLE", "FLAC__STREAM_ENCODER_INVALID_SAMPLE_RATE", "FLAC__STREAM_ENCODER_INVALID_BLOCK_SIZE", "FLAC__STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION", "FLAC__STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH", "FLAC__STREAM_ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH", "FLAC__STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE", "FLAC__STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER", "FLAC__STREAM_ENCODER_NOT_STREAMABLE", "FLAC__STREAM_ENCODER_FRAMING_ERROR", "FLAC__STREAM_ENCODER_INVALID_SEEK_TABLE", "FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING", "FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING", "FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR", "FLAC__STREAM_ENCODER_ALREADY_INITIALIZED", "FLAC__STREAM_ENCODER_UNINITIALIZED" }; const char *FLAC__StreamEncoderWriteStatusString[] = { "FLAC__STREAM_ENCODER_WRITE_OK", "FLAC__STREAM_ENCODER_WRITE_FATAL_ERROR" }; /*********************************************************************** * * Class constructor/destructor * ***********************************************************************/ FLAC__StreamEncoder *FLAC__stream_encoder_new() { FLAC__StreamEncoder *encoder; FLAC__ASSERT(sizeof(int) >= 4); /* we want to die right away if this is not true */ encoder = (FLAC__StreamEncoder*)malloc(sizeof(FLAC__StreamEncoder)); if(encoder == 0) { return 0; } encoder->protected_ = (FLAC__StreamEncoderProtected*)malloc(sizeof(FLAC__StreamEncoderProtected)); if(encoder->protected_ == 0) { free(encoder); return 0; } encoder->private_ = (FLAC__StreamEncoderPrivate*)malloc(sizeof(FLAC__StreamEncoderPrivate)); if(encoder->private_ == 0) { free(encoder->protected_); free(encoder); return 0; } encoder->private_->frame = FLAC__bitbuffer_new(); if(encoder->private_->frame == 0) { free(encoder->private_); free(encoder->protected_); free(encoder); return 0; } encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; encoder->protected_->streamable_subset = true; encoder->protected_->do_mid_side_stereo = false; encoder->protected_->loose_mid_side_stereo = false; encoder->protected_->channels = 2; encoder->protected_->bits_per_sample = 16; encoder->protected_->sample_rate = 44100; encoder->protected_->blocksize = 1152; encoder->protected_->max_lpc_order = 0; encoder->protected_->qlp_coeff_precision = 0; encoder->protected_->do_qlp_coeff_prec_search = false; encoder->protected_->do_exhaustive_model_search = false; encoder->protected_->do_escape_coding = false; encoder->protected_->min_residual_partition_order = 0; encoder->protected_->max_residual_partition_order = 0; encoder->protected_->rice_parameter_search_dist = 0; encoder->protected_->total_samples_estimate = 0; encoder->protected_->seek_table = 0; encoder->protected_->padding = -1; encoder->protected_->last_metadata_is_last = true; encoder->private_->write_callback = 0; encoder->private_->metadata_callback = 0; encoder->private_->client_data = 0; return encoder; } void FLAC__stream_encoder_delete(FLAC__StreamEncoder *encoder) { FLAC__ASSERT(encoder != 0); FLAC__ASSERT(encoder->protected_ != 0); FLAC__ASSERT(encoder->private_ != 0); FLAC__ASSERT(encoder->private_->frame != 0); FLAC__bitbuffer_delete(encoder->private_->frame); free(encoder->private_); free(encoder->protected_); free(encoder); } /*********************************************************************** * * Public class methods * ***********************************************************************/ FLAC__StreamEncoderState FLAC__stream_encoder_init(FLAC__StreamEncoder *encoder) { unsigned i; FLAC__StreamMetaData padding_block; FLAC__StreamMetaData seek_table_block; FLAC__ASSERT(encoder != 0); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return encoder->protected_->state = FLAC__STREAM_ENCODER_ALREADY_INITIALIZED; encoder->protected_->state = FLAC__STREAM_ENCODER_OK; if(0 == encoder->private_->write_callback || 0 == encoder->private_->metadata_callback) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_CALLBACK; if(encoder->protected_->channels == 0 || encoder->protected_->channels > FLAC__MAX_CHANNELS) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_NUMBER_OF_CHANNELS; if(encoder->protected_->do_mid_side_stereo && encoder->protected_->channels != 2) return encoder->protected_->state = FLAC__STREAM_ENCODER_MID_SIDE_CHANNELS_MISMATCH; if(encoder->protected_->loose_mid_side_stereo && !encoder->protected_->do_mid_side_stereo) return encoder->protected_->state = FLAC__STREAM_ENCODER_ILLEGAL_MID_SIDE_FORCE; if(encoder->protected_->bits_per_sample >= 32) encoder->protected_->do_mid_side_stereo = false; /* since we do 32-bit math, the side channel would have 33 bps and overflow */ if(encoder->protected_->bits_per_sample < FLAC__MIN_BITS_PER_SAMPLE || encoder->protected_->bits_per_sample > FLAC__REFERENCE_CODEC_MAX_BITS_PER_SAMPLE) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_BITS_PER_SAMPLE; if(!FLAC__format_is_valid_sample_rate(encoder->protected_->sample_rate)) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_SAMPLE_RATE; if(encoder->protected_->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->protected_->blocksize > FLAC__MAX_BLOCK_SIZE) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_BLOCK_SIZE; if(encoder->protected_->blocksize < encoder->protected_->max_lpc_order) return encoder->protected_->state = FLAC__STREAM_ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER; if(encoder->protected_->qlp_coeff_precision == 0) { if(encoder->protected_->bits_per_sample < 16) { /* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */ /* @@@ until then we'll make a guess */ encoder->protected_->qlp_coeff_precision = max(5, 2 + encoder->protected_->bits_per_sample / 2); } else if(encoder->protected_->bits_per_sample == 16) { if(encoder->protected_->blocksize <= 192) encoder->protected_->qlp_coeff_precision = 7; else if(encoder->protected_->blocksize <= 384) encoder->protected_->qlp_coeff_precision = 8; else if(encoder->protected_->blocksize <= 576) encoder->protected_->qlp_coeff_precision = 9; else if(encoder->protected_->blocksize <= 1152) encoder->protected_->qlp_coeff_precision = 10; else if(encoder->protected_->blocksize <= 2304) encoder->protected_->qlp_coeff_precision = 11; else if(encoder->protected_->blocksize <= 4608) encoder->protected_->qlp_coeff_precision = 12; else encoder->protected_->qlp_coeff_precision = 13; } else { encoder->protected_->qlp_coeff_precision = min(13, 8*sizeof(FLAC__int32) - encoder->protected_->bits_per_sample - 1 - 2); /* @@@ -2 to keep things 32-bit safe */ } } else if(encoder->protected_->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->protected_->qlp_coeff_precision + encoder->protected_->bits_per_sample >= 8*sizeof(FLAC__uint32) || encoder->protected_->qlp_coeff_precision >= (1u<protected_->state = FLAC__STREAM_ENCODER_INVALID_QLP_COEFF_PRECISION; if(encoder->protected_->streamable_subset) { /*@@@ add check for blocksize here */ if(encoder->protected_->bits_per_sample != 8 && encoder->protected_->bits_per_sample != 12 && encoder->protected_->bits_per_sample != 16 && encoder->protected_->bits_per_sample != 20 && encoder->protected_->bits_per_sample != 24) return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; if(encoder->protected_->sample_rate > 655350) return encoder->protected_->state = FLAC__STREAM_ENCODER_NOT_STREAMABLE; } if(encoder->protected_->max_residual_partition_order >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN)) encoder->protected_->max_residual_partition_order = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1; if(encoder->protected_->min_residual_partition_order >= encoder->protected_->max_residual_partition_order) encoder->protected_->min_residual_partition_order = encoder->protected_->max_residual_partition_order; encoder->private_->input_capacity = 0; for(i = 0; i < encoder->protected_->channels; i++) { encoder->private_->integer_signal_unaligned[i] = encoder->private_->integer_signal[i] = 0; encoder->private_->real_signal_unaligned[i] = encoder->private_->real_signal[i] = 0; } for(i = 0; i < 2; i++) { encoder->private_->integer_signal_mid_side_unaligned[i] = encoder->private_->integer_signal_mid_side[i] = 0; encoder->private_->real_signal_mid_side_unaligned[i] = encoder->private_->real_signal_mid_side[i] = 0; } for(i = 0; i < encoder->protected_->channels; i++) { encoder->private_->residual_workspace_unaligned[i][0] = encoder->private_->residual_workspace[i][0] = 0; encoder->private_->residual_workspace_unaligned[i][1] = encoder->private_->residual_workspace[i][1] = 0; encoder->private_->best_subframe[i] = 0; } for(i = 0; i < 2; i++) { encoder->private_->residual_workspace_mid_side_unaligned[i][0] = encoder->private_->residual_workspace_mid_side[i][0] = 0; encoder->private_->residual_workspace_mid_side_unaligned[i][1] = encoder->private_->residual_workspace_mid_side[i][1] = 0; encoder->private_->best_subframe_mid_side[i] = 0; } for(i = 0; i < encoder->protected_->channels; i++) { encoder->private_->subframe_workspace_ptr[i][0] = &encoder->private_->subframe_workspace[i][0]; encoder->private_->subframe_workspace_ptr[i][1] = &encoder->private_->subframe_workspace[i][1]; } for(i = 0; i < 2; i++) { encoder->private_->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->subframe_workspace_mid_side[i][0]; encoder->private_->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->subframe_workspace_mid_side[i][1]; } encoder->private_->abs_residual_unaligned = encoder->private_->abs_residual = 0; encoder->private_->abs_residual_partition_sums_unaligned = encoder->private_->abs_residual_partition_sums = 0; encoder->private_->raw_bits_per_partition_unaligned = encoder->private_->raw_bits_per_partition = 0; encoder->private_->loose_mid_side_stereo_frames_exact = (double)encoder->protected_->sample_rate * 0.4 / (double)encoder->protected_->blocksize; encoder->private_->loose_mid_side_stereo_frames = (unsigned)(encoder->private_->loose_mid_side_stereo_frames_exact + 0.5); if(encoder->private_->loose_mid_side_stereo_frames == 0) encoder->private_->loose_mid_side_stereo_frames = 1; encoder->private_->loose_mid_side_stereo_frame_count = 0; encoder->private_->current_sample_number = 0; encoder->private_->current_frame_number = 0; encoder->private_->use_wide_by_block = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(encoder->protected_->blocksize)+1 > 30); encoder->private_->use_wide_by_order = (encoder->protected_->bits_per_sample + FLAC__bitmath_ilog2(max(encoder->protected_->max_lpc_order, FLAC__MAX_FIXED_ORDER))+1 > 30); /*@@@ need to use this? */ encoder->private_->use_wide_by_partition = (false); /*@@@ need to set this */ /* * get the CPU info and set the function pointers */ FLAC__cpu_info(&encoder->private_->cpuinfo); /* first default to the non-asm routines */ encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation; encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients; /* now override with asm where appropriate */ #ifndef FLAC__NO_ASM if(encoder->private_->cpuinfo.use_asm) { #ifdef FLAC__CPU_IA32 FLAC__ASSERT(encoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_IA32); #ifdef FLAC__HAS_NASM if(0 && encoder->private_->cpuinfo.data.ia32.sse) { if(encoder->protected_->max_lpc_order < 4) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_4; else if(encoder->protected_->max_lpc_order < 8) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_8; else if(encoder->protected_->max_lpc_order < 12) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_12; else encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32; } else if(encoder->private_->cpuinfo.data.ia32._3dnow) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32_3dnow; else encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_asm_ia32; if(encoder->private_->cpuinfo.data.ia32.mmx && encoder->private_->cpuinfo.data.ia32.cmov) encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov; if(encoder->private_->cpuinfo.data.ia32.mmx) { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx; } else { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; } #endif #endif } #endif /* finally override based on wide-ness if necessary */ if(encoder->private_->use_wide_by_block) { encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_wide; } /* we require precompute_partition_sums if do_escape_coding because of their intertwined nature */ encoder->private_->precompute_partition_sums = (encoder->protected_->max_residual_partition_order > encoder->protected_->min_residual_partition_order) || encoder->protected_->do_escape_coding; if(!stream_encoder_resize_buffers_(encoder, encoder->protected_->blocksize)) { /* the above function sets the state for us in case of an error */ return encoder->protected_->state; } if(!FLAC__bitbuffer_init(encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; /* * write the stream header */ if(!FLAC__bitbuffer_write_raw_uint32(encoder->private_->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN)) return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; encoder->private_->metadata.type = FLAC__METADATA_TYPE_STREAMINFO; encoder->private_->metadata.is_last = (encoder->protected_->seek_table == 0 && encoder->protected_->padding < 0 && encoder->protected_->last_metadata_is_last); encoder->private_->metadata.length = FLAC__STREAM_METADATA_STREAMINFO_LENGTH; encoder->private_->metadata.data.stream_info.min_blocksize = encoder->protected_->blocksize; /* this encoder uses the same blocksize for the whole stream */ encoder->private_->metadata.data.stream_info.max_blocksize = encoder->protected_->blocksize; encoder->private_->metadata.data.stream_info.min_framesize = 0; /* we don't know this yet; have to fill it in later */ encoder->private_->metadata.data.stream_info.max_framesize = 0; /* we don't know this yet; have to fill it in later */ encoder->private_->metadata.data.stream_info.sample_rate = encoder->protected_->sample_rate; encoder->private_->metadata.data.stream_info.channels = encoder->protected_->channels; encoder->private_->metadata.data.stream_info.bits_per_sample = encoder->protected_->bits_per_sample; encoder->private_->metadata.data.stream_info.total_samples = encoder->protected_->total_samples_estimate; /* we will replace this later with the real total */ memset(encoder->private_->metadata.data.stream_info.md5sum, 0, 16); /* we don't know this yet; have to fill it in later */ MD5Init(&encoder->private_->md5context); if(!FLAC__add_metadata_block(&encoder->private_->metadata, encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; if(0 != encoder->protected_->seek_table) { if(!FLAC__seek_table_is_valid(encoder->protected_->seek_table)) return encoder->protected_->state = FLAC__STREAM_ENCODER_INVALID_SEEK_TABLE; seek_table_block.type = FLAC__METADATA_TYPE_SEEKTABLE; seek_table_block.is_last = (encoder->protected_->padding < 0 && encoder->protected_->last_metadata_is_last); seek_table_block.length = encoder->protected_->seek_table->num_points * FLAC__STREAM_METADATA_SEEKPOINT_LENGTH; seek_table_block.data.seek_table = *encoder->protected_->seek_table; if(!FLAC__add_metadata_block(&seek_table_block, encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; } /* add a PADDING block if requested */ if(encoder->protected_->padding >= 0) { padding_block.type = FLAC__METADATA_TYPE_PADDING; padding_block.is_last = encoder->protected_->last_metadata_is_last; padding_block.length = (unsigned)encoder->protected_->padding; if(!FLAC__add_metadata_block(&padding_block, encoder->private_->frame)) return encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; } FLAC__ASSERT(FLAC__bitbuffer_is_byte_aligned(encoder->private_->frame)); { FLAC__byte *buffer; unsigned bytes; FLAC__bitbuffer_get_buffer(encoder->private_->frame, &buffer, &bytes); if(encoder->private_->write_callback(encoder, buffer, bytes, 0, encoder->private_->current_frame_number, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_OK) return encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING; FLAC__bitbuffer_release_buffer(encoder->private_->frame); } /* now that the metadata block is written, we can init this to an absurdly-high value... */ encoder->private_->metadata.data.stream_info.min_framesize = (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1; /* ... and clear this to 0 */ encoder->private_->metadata.data.stream_info.total_samples = 0; return encoder->protected_->state; } void FLAC__stream_encoder_finish(FLAC__StreamEncoder *encoder) { unsigned i, channel; FLAC__ASSERT(encoder != 0); if(encoder->protected_->state == FLAC__STREAM_ENCODER_UNINITIALIZED) return; if(encoder->private_->current_sample_number != 0) { encoder->protected_->blocksize = encoder->private_->current_sample_number; stream_encoder_process_frame_(encoder, true); /* true => is last frame */ } MD5Final(encoder->private_->metadata.data.stream_info.md5sum, &encoder->private_->md5context); encoder->private_->metadata_callback(encoder, &encoder->private_->metadata, encoder->private_->client_data); for(i = 0; i < encoder->protected_->channels; i++) { if(encoder->private_->integer_signal_unaligned[i] != 0) { free(encoder->private_->integer_signal_unaligned[i]); encoder->private_->integer_signal_unaligned[i] = 0; } if(encoder->private_->real_signal_unaligned[i] != 0) { free(encoder->private_->real_signal_unaligned[i]); encoder->private_->real_signal_unaligned[i] = 0; } } for(i = 0; i < 2; i++) { if(encoder->private_->integer_signal_mid_side_unaligned[i] != 0) { free(encoder->private_->integer_signal_mid_side_unaligned[i]); encoder->private_->integer_signal_mid_side_unaligned[i] = 0; } if(encoder->private_->real_signal_mid_side_unaligned[i] != 0) { free(encoder->private_->real_signal_mid_side_unaligned[i]); encoder->private_->real_signal_mid_side_unaligned[i] = 0; } } for(channel = 0; channel < encoder->protected_->channels; channel++) { for(i = 0; i < 2; i++) { if(encoder->private_->residual_workspace_unaligned[channel][i] != 0) { free(encoder->private_->residual_workspace_unaligned[channel][i]); encoder->private_->residual_workspace_unaligned[channel][i] = 0; } } } for(channel = 0; channel < 2; channel++) { for(i = 0; i < 2; i++) { if(encoder->private_->residual_workspace_mid_side_unaligned[channel][i] != 0) { free(encoder->private_->residual_workspace_mid_side_unaligned[channel][i]); encoder->private_->residual_workspace_mid_side_unaligned[channel][i] = 0; } } } if(encoder->private_->abs_residual_unaligned != 0) { free(encoder->private_->abs_residual_unaligned); encoder->private_->abs_residual_unaligned = 0; } if(encoder->private_->abs_residual_partition_sums_unaligned != 0) { free(encoder->private_->abs_residual_partition_sums_unaligned); encoder->private_->abs_residual_partition_sums_unaligned = 0; } if(encoder->private_->raw_bits_per_partition_unaligned != 0) { free(encoder->private_->raw_bits_per_partition_unaligned); encoder->private_->raw_bits_per_partition_unaligned = 0; } FLAC__bitbuffer_free(encoder->private_->frame); encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; } FLAC__bool FLAC__stream_encoder_set_streamable_subset(FLAC__StreamEncoder *encoder, FLAC__bool value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->streamable_subset = value; return true; } FLAC__bool FLAC__stream_encoder_set_do_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_mid_side_stereo = value; return true; } FLAC__bool FLAC__stream_encoder_set_loose_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->loose_mid_side_stereo = value; return true; } FLAC__bool FLAC__stream_encoder_set_channels(FLAC__StreamEncoder *encoder, unsigned value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->channels = value; return true; } FLAC__bool FLAC__stream_encoder_set_bits_per_sample(FLAC__StreamEncoder *encoder, unsigned value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->bits_per_sample = value; return true; } FLAC__bool FLAC__stream_encoder_set_sample_rate(FLAC__StreamEncoder *encoder, unsigned value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->sample_rate = value; return true; } FLAC__bool FLAC__stream_encoder_set_blocksize(FLAC__StreamEncoder *encoder, unsigned value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->blocksize = value; return true; } FLAC__bool FLAC__stream_encoder_set_max_lpc_order(FLAC__StreamEncoder *encoder, unsigned value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->max_lpc_order = value; return true; } FLAC__bool FLAC__stream_encoder_set_qlp_coeff_precision(FLAC__StreamEncoder *encoder, unsigned value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->qlp_coeff_precision = value; return true; } FLAC__bool FLAC__stream_encoder_set_do_qlp_coeff_prec_search(FLAC__StreamEncoder *encoder, FLAC__bool value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_qlp_coeff_prec_search = value; return true; } FLAC__bool FLAC__stream_encoder_set_do_escape_coding(FLAC__StreamEncoder *encoder, FLAC__bool value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_escape_coding = value; return true; } FLAC__bool FLAC__stream_encoder_set_do_exhaustive_model_search(FLAC__StreamEncoder *encoder, FLAC__bool value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_exhaustive_model_search = value; return true; } FLAC__bool FLAC__stream_encoder_set_min_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->min_residual_partition_order = value; return true; } FLAC__bool FLAC__stream_encoder_set_max_residual_partition_order(FLAC__StreamEncoder *encoder, unsigned value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->max_residual_partition_order = value; return true; } FLAC__bool FLAC__stream_encoder_set_rice_parameter_search_dist(FLAC__StreamEncoder *encoder, unsigned value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->rice_parameter_search_dist = value; return true; } FLAC__bool FLAC__stream_encoder_set_total_samples_estimate(FLAC__StreamEncoder *encoder, FLAC__uint64 value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->total_samples_estimate = value; return true; } FLAC__bool FLAC__stream_encoder_set_seek_table(FLAC__StreamEncoder *encoder, const FLAC__StreamMetaData_SeekTable *value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->seek_table = value; return true; } FLAC__bool FLAC__stream_encoder_set_padding(FLAC__StreamEncoder *encoder, int value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->padding = value; return true; } FLAC__bool FLAC__stream_encoder_set_last_metadata_is_last(FLAC__StreamEncoder *encoder, FLAC__bool value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->last_metadata_is_last = value; return true; } FLAC__bool FLAC__stream_encoder_set_write_callback(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderWriteStatus (*value)(const FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data)) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->write_callback = value; return true; } FLAC__bool FLAC__stream_encoder_set_metadata_callback(FLAC__StreamEncoder *encoder, void (*value)(const FLAC__StreamEncoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data)) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->metadata_callback = value; return true; } FLAC__bool FLAC__stream_encoder_set_client_data(FLAC__StreamEncoder *encoder, void *value) { if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->client_data = value; return true; } FLAC__StreamEncoderState FLAC__stream_encoder_get_state(const FLAC__StreamEncoder *encoder) { return encoder->protected_->state; } FLAC__bool FLAC__stream_encoder_get_streamable_subset(const FLAC__StreamEncoder *encoder) { return encoder->protected_->streamable_subset; } FLAC__bool FLAC__stream_encoder_get_do_mid_side_stereo(const FLAC__StreamEncoder *encoder) { return encoder->protected_->do_mid_side_stereo; } FLAC__bool FLAC__stream_encoder_get_loose_mid_side_stereo(const FLAC__StreamEncoder *encoder) { return encoder->protected_->loose_mid_side_stereo; } unsigned FLAC__stream_encoder_get_channels(const FLAC__StreamEncoder *encoder) { return encoder->protected_->channels; } unsigned FLAC__stream_encoder_get_bits_per_sample(const FLAC__StreamEncoder *encoder) { return encoder->protected_->bits_per_sample; } unsigned FLAC__stream_encoder_get_sample_rate(const FLAC__StreamEncoder *encoder) { return encoder->protected_->sample_rate; } unsigned FLAC__stream_encoder_get_blocksize(const FLAC__StreamEncoder *encoder) { return encoder->protected_->blocksize; } unsigned FLAC__stream_encoder_get_max_lpc_order(const FLAC__StreamEncoder *encoder) { return encoder->protected_->max_lpc_order; } unsigned FLAC__stream_encoder_get_qlp_coeff_precision(const FLAC__StreamEncoder *encoder) { return encoder->protected_->qlp_coeff_precision; } FLAC__bool FLAC__stream_encoder_get_do_qlp_coeff_prec_search(const FLAC__StreamEncoder *encoder) { return encoder->protected_->do_qlp_coeff_prec_search; } FLAC__bool FLAC__stream_encoder_get_do_escape_coding(const FLAC__StreamEncoder *encoder) { return encoder->protected_->do_escape_coding; } FLAC__bool FLAC__stream_encoder_get_do_exhaustive_model_search(const FLAC__StreamEncoder *encoder) { return encoder->protected_->do_exhaustive_model_search; } unsigned FLAC__stream_encoder_get_min_residual_partition_order(const FLAC__StreamEncoder *encoder) { return encoder->protected_->min_residual_partition_order; } unsigned FLAC__stream_encoder_get_max_residual_partition_order(const FLAC__StreamEncoder *encoder) { return encoder->protected_->max_residual_partition_order; } unsigned FLAC__stream_encoder_get_rice_parameter_search_dist(const FLAC__StreamEncoder *encoder) { return encoder->protected_->rice_parameter_search_dist; } FLAC__bool FLAC__stream_encoder_process(FLAC__StreamEncoder *encoder, const FLAC__int32 *buf[], unsigned samples) { unsigned i, j, channel; FLAC__int32 x, mid, side; const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize; FLAC__ASSERT(encoder != 0); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); j = 0; if(encoder->protected_->do_mid_side_stereo && channels == 2) { do { for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { x = mid = side = buf[0][j]; encoder->private_->integer_signal[0][i] = x; encoder->private_->real_signal[0][i] = (FLAC__real)x; x = buf[1][j]; encoder->private_->integer_signal[1][i] = x; encoder->private_->real_signal[1][i] = (FLAC__real)x; mid += x; side -= x; mid >>= 1; /* NOTE: not the same as 'mid = (buf[0][j] + buf[1][j]) / 2' ! */ encoder->private_->integer_signal_mid_side[1][i] = side; encoder->private_->integer_signal_mid_side[0][i] = mid; encoder->private_->real_signal_mid_side[1][i] = (FLAC__real)side; encoder->private_->real_signal_mid_side[0][i] = (FLAC__real)mid; encoder->private_->current_sample_number++; } if(i == blocksize) { if(!stream_encoder_process_frame_(encoder, false)) /* false => not last frame */ return false; } } while(j < samples); } else { do { for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { for(channel = 0; channel < channels; channel++) { x = buf[channel][j]; encoder->private_->integer_signal[channel][i] = x; encoder->private_->real_signal[channel][i] = (FLAC__real)x; } encoder->private_->current_sample_number++; } if(i == blocksize) { if(!stream_encoder_process_frame_(encoder, false)) /* false => not last frame */ return false; } } while(j < samples); } return true; } /* 'samples' is channel-wide samples, e.g. for 1 second at 44100Hz, 'samples' = 44100 regardless of the number of channels */ FLAC__bool FLAC__stream_encoder_process_interleaved(FLAC__StreamEncoder *encoder, const FLAC__int32 buf[], unsigned samples) { unsigned i, j, k, channel; FLAC__int32 x, mid, side; const unsigned channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize; FLAC__ASSERT(encoder != 0); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); j = k = 0; if(encoder->protected_->do_mid_side_stereo && channels == 2) { do { for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { x = mid = side = buf[k++]; encoder->private_->integer_signal[0][i] = x; encoder->private_->real_signal[0][i] = (FLAC__real)x; x = buf[k++]; encoder->private_->integer_signal[1][i] = x; encoder->private_->real_signal[1][i] = (FLAC__real)x; mid += x; side -= x; mid >>= 1; /* NOTE: not the same as 'mid = (left + right) / 2' ! */ encoder->private_->integer_signal_mid_side[1][i] = side; encoder->private_->integer_signal_mid_side[0][i] = mid; encoder->private_->real_signal_mid_side[1][i] = (FLAC__real)side; encoder->private_->real_signal_mid_side[0][i] = (FLAC__real)mid; encoder->private_->current_sample_number++; } if(i == blocksize) { if(!stream_encoder_process_frame_(encoder, false)) /* false => not last frame */ return false; } } while(j < samples); } else { do { for(i = encoder->private_->current_sample_number; i < blocksize && j < samples; i++, j++) { for(channel = 0; channel < channels; channel++) { x = buf[k++]; encoder->private_->integer_signal[channel][i] = x; encoder->private_->real_signal[channel][i] = (FLAC__real)x; } encoder->private_->current_sample_number++; } if(i == blocksize) { if(!stream_encoder_process_frame_(encoder, false)) /* false => not last frame */ return false; } } while(j < samples); } return true; } FLAC__bool stream_encoder_resize_buffers_(FLAC__StreamEncoder *encoder, unsigned new_size) { FLAC__bool ok; unsigned i, channel; FLAC__ASSERT(new_size > 0); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); FLAC__ASSERT(encoder->private_->current_sample_number == 0); /* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */ if(new_size <= encoder->private_->input_capacity) return true; ok = true; /* WATCHOUT: FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx() requires that the input arrays (in our case the integer signals) have a buffer of up to 3 zeroes in front (at negative indices) for alignment purposes; we use 4 to keep the data well-aligned. */ for(i = 0; ok && i < encoder->protected_->channels; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size+4, &encoder->private_->integer_signal_unaligned[i], &encoder->private_->integer_signal[i]); ok = ok && FLAC__memory_alloc_aligned_real_array(new_size, &encoder->private_->real_signal_unaligned[i], &encoder->private_->real_signal[i]); memset(encoder->private_->integer_signal[i], 0, sizeof(FLAC__int32)*4); encoder->private_->integer_signal[i] += 4; } for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size+4, &encoder->private_->integer_signal_mid_side_unaligned[i], &encoder->private_->integer_signal_mid_side[i]); ok = ok && FLAC__memory_alloc_aligned_real_array(new_size, &encoder->private_->real_signal_mid_side_unaligned[i], &encoder->private_->real_signal_mid_side[i]); memset(encoder->private_->integer_signal_mid_side[i], 0, sizeof(FLAC__int32)*4); encoder->private_->integer_signal_mid_side[i] += 4; } for(channel = 0; ok && channel < encoder->protected_->channels; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size, &encoder->private_->residual_workspace_unaligned[channel][i], &encoder->private_->residual_workspace[channel][i]); } } for(channel = 0; ok && channel < 2; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_size, &encoder->private_->residual_workspace_mid_side_unaligned[channel][i], &encoder->private_->residual_workspace_mid_side[channel][i]); } } ok = ok && FLAC__memory_alloc_aligned_uint32_array(new_size, &encoder->private_->abs_residual_unaligned, &encoder->private_->abs_residual); if(encoder->private_->precompute_partition_sums || encoder->protected_->do_escape_coding) /* we require precompute_partition_sums if do_escape_coding because of their intertwined nature */ ok = ok && FLAC__memory_alloc_aligned_uint64_array(new_size * 2, &encoder->private_->abs_residual_partition_sums_unaligned, &encoder->private_->abs_residual_partition_sums); if(encoder->protected_->do_escape_coding) ok = ok && FLAC__memory_alloc_aligned_unsigned_array(new_size * 2, &encoder->private_->raw_bits_per_partition_unaligned, &encoder->private_->raw_bits_per_partition); if(ok) encoder->private_->input_capacity = new_size; else encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return ok; } /*********************************************************************** * * Private class methods * ***********************************************************************/ FLAC__bool stream_encoder_process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame) { const FLAC__byte *buffer; unsigned bytes; FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); /* * Accumulate raw signal to the MD5 signature */ /* NOTE: some versions of GCC can't figure out const-ness right and will give you an 'incompatible pointer type' warning on arg 2 here: */ if(!FLAC__MD5Accumulate(&encoder->private_->md5context, encoder->private_->integer_signal, encoder->protected_->channels, encoder->protected_->blocksize, (encoder->protected_->bits_per_sample+7) / 8)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * Process the frame header and subframes into the frame bitbuffer */ if(!stream_encoder_process_subframes_(encoder, is_last_frame)) { /* the above function sets the state for us in case of an error */ return false; } /* * Zero-pad the frame to a byte_boundary */ if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * CRC-16 the whole thing */ FLAC__ASSERT(FLAC__bitbuffer_is_byte_aligned(encoder->private_->frame)); FLAC__bitbuffer_write_raw_uint32(encoder->private_->frame, FLAC__bitbuffer_get_write_crc16(encoder->private_->frame), FLAC__FRAME_FOOTER_CRC_LEN); /* * Write it */ FLAC__bitbuffer_get_buffer(encoder->private_->frame, &buffer, &bytes); if(encoder->private_->write_callback(encoder, buffer, bytes, encoder->protected_->blocksize, encoder->private_->current_frame_number, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_WRITING; return false; } FLAC__bitbuffer_release_buffer(encoder->private_->frame); /* * Get ready for the next frame */ encoder->private_->current_sample_number = 0; encoder->private_->current_frame_number++; encoder->private_->metadata.data.stream_info.total_samples += (FLAC__uint64)encoder->protected_->blocksize; encoder->private_->metadata.data.stream_info.min_framesize = min(bytes, encoder->private_->metadata.data.stream_info.min_framesize); encoder->private_->metadata.data.stream_info.max_framesize = max(bytes, encoder->private_->metadata.data.stream_info.max_framesize); return true; } FLAC__bool stream_encoder_process_subframes_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_frame) { FLAC__FrameHeader frame_header; unsigned channel, min_partition_order = encoder->protected_->min_residual_partition_order, max_partition_order; FLAC__bool do_independent, do_mid_side, precompute_partition_sums; /* * Calculate the min,max Rice partition orders */ if(is_last_frame) { max_partition_order = 0; } else { unsigned limit = 0, b = encoder->protected_->blocksize; while(!(b & 1)) { limit++; b >>= 1; } max_partition_order = min(encoder->protected_->max_residual_partition_order, limit); } min_partition_order = min(min_partition_order, max_partition_order); precompute_partition_sums = encoder->private_->precompute_partition_sums && ((max_partition_order > min_partition_order) || encoder->protected_->do_escape_coding); /* * Setup the frame */ if(!FLAC__bitbuffer_clear(encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } frame_header.blocksize = encoder->protected_->blocksize; frame_header.sample_rate = encoder->protected_->sample_rate; frame_header.channels = encoder->protected_->channels; frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */ frame_header.bits_per_sample = encoder->protected_->bits_per_sample; frame_header.number_type = FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER; frame_header.number.frame_number = encoder->private_->current_frame_number; /* * Figure out what channel assignments to try */ if(encoder->protected_->do_mid_side_stereo) { if(encoder->protected_->loose_mid_side_stereo) { if(encoder->private_->loose_mid_side_stereo_frame_count == 0) { do_independent = true; do_mid_side = true; } else { do_independent = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT); do_mid_side = !do_independent; } } else { do_independent = true; do_mid_side = true; } } else { do_independent = true; do_mid_side = false; } FLAC__ASSERT(do_independent || do_mid_side); /* * Check for wasted bits; set effective bps for each subframe */ if(do_independent) { unsigned w; for(channel = 0; channel < encoder->protected_->channels; channel++) { w = stream_encoder_get_wasted_bits_(encoder->private_->integer_signal[channel], encoder->protected_->blocksize); encoder->private_->subframe_workspace[channel][0].wasted_bits = encoder->private_->subframe_workspace[channel][1].wasted_bits = w; encoder->private_->subframe_bps[channel] = encoder->protected_->bits_per_sample - w; } } if(do_mid_side) { unsigned w; FLAC__ASSERT(encoder->protected_->channels == 2); for(channel = 0; channel < 2; channel++) { w = stream_encoder_get_wasted_bits_(encoder->private_->integer_signal_mid_side[channel], encoder->protected_->blocksize); encoder->private_->subframe_workspace_mid_side[channel][0].wasted_bits = encoder->private_->subframe_workspace_mid_side[channel][1].wasted_bits = w; encoder->private_->subframe_bps_mid_side[channel] = encoder->protected_->bits_per_sample - w + (channel==0? 0:1); } } /* * First do a normal encoding pass of each independent channel */ if(do_independent) { for(channel = 0; channel < encoder->protected_->channels; channel++) { if(!stream_encoder_process_subframe_(encoder, min_partition_order, max_partition_order, precompute_partition_sums, false, &frame_header, encoder->private_->subframe_bps[channel], encoder->private_->integer_signal[channel], encoder->private_->real_signal[channel], encoder->private_->subframe_workspace_ptr[channel], encoder->private_->residual_workspace[channel], encoder->private_->best_subframe+channel, encoder->private_->best_subframe_bits+channel)) return false; } } /* * Now do mid and side channels if requested */ if(do_mid_side) { FLAC__ASSERT(encoder->protected_->channels == 2); for(channel = 0; channel < 2; channel++) { if(!stream_encoder_process_subframe_(encoder, min_partition_order, max_partition_order, precompute_partition_sums, false, &frame_header, encoder->private_->subframe_bps_mid_side[channel], encoder->private_->integer_signal_mid_side[channel], encoder->private_->real_signal_mid_side[channel], encoder->private_->subframe_workspace_ptr_mid_side[channel], encoder->private_->residual_workspace_mid_side[channel], encoder->private_->best_subframe_mid_side+channel, encoder->private_->best_subframe_bits_mid_side+channel)) return false; } } /* * Compose the frame bitbuffer */ if(do_mid_side) { unsigned left_bps = 0, right_bps = 0; /* initialized only to prevent superfluous compiler warning */ FLAC__Subframe *left_subframe = 0, *right_subframe = 0; /* initialized only to prevent superfluous compiler warning */ FLAC__ChannelAssignment channel_assignment; FLAC__ASSERT(encoder->protected_->channels == 2); if(encoder->protected_->loose_mid_side_stereo && encoder->private_->loose_mid_side_stereo_frame_count > 0) { channel_assignment = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT? FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT : FLAC__CHANNEL_ASSIGNMENT_MID_SIDE); } else { unsigned bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */ unsigned min_bits; FLAC__ChannelAssignment ca; FLAC__ASSERT(do_independent && do_mid_side); /* We have to figure out which channel assignent results in the smallest frame */ bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits [1]; bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE ] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits_mid_side[1]; bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = encoder->private_->best_subframe_bits [1] + encoder->private_->best_subframe_bits_mid_side[1]; bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE ] = encoder->private_->best_subframe_bits_mid_side[0] + encoder->private_->best_subframe_bits_mid_side[1]; for(channel_assignment = 0, min_bits = bits[0], ca = 1; ca <= 3; ca++) { if(bits[ca] < min_bits) { min_bits = bits[ca]; channel_assignment = ca; } } } frame_header.channel_assignment = channel_assignment; if(!FLAC__frame_add_header(&frame_header, encoder->protected_->streamable_subset, is_last_frame, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } switch(channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: left_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: left_subframe = &encoder->private_->subframe_workspace_mid_side[0][encoder->private_->best_subframe_mid_side[0]]; right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; break; default: FLAC__ASSERT(0); } switch(channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: left_bps = encoder->private_->subframe_bps [0]; right_bps = encoder->private_->subframe_bps [1]; break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: left_bps = encoder->private_->subframe_bps [0]; right_bps = encoder->private_->subframe_bps_mid_side[1]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: left_bps = encoder->private_->subframe_bps_mid_side[1]; right_bps = encoder->private_->subframe_bps [1]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: left_bps = encoder->private_->subframe_bps_mid_side[0]; right_bps = encoder->private_->subframe_bps_mid_side[1]; break; default: FLAC__ASSERT(0); } /* note that encoder_add_subframe_ sets the state for us in case of an error */ if(!stream_encoder_add_subframe_(encoder, &frame_header, left_bps , left_subframe , encoder->private_->frame)) return false; if(!stream_encoder_add_subframe_(encoder, &frame_header, right_bps, right_subframe, encoder->private_->frame)) return false; } else { if(!FLAC__frame_add_header(&frame_header, encoder->protected_->streamable_subset, is_last_frame, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } for(channel = 0; channel < encoder->protected_->channels; channel++) { if(!stream_encoder_add_subframe_(encoder, &frame_header, encoder->private_->subframe_bps[channel], &encoder->private_->subframe_workspace[channel][encoder->private_->best_subframe[channel]], encoder->private_->frame)) { /* the above function sets the state for us in case of an error */ return false; } } } if(encoder->protected_->loose_mid_side_stereo) { encoder->private_->loose_mid_side_stereo_frame_count++; if(encoder->private_->loose_mid_side_stereo_frame_count >= encoder->private_->loose_mid_side_stereo_frames) encoder->private_->loose_mid_side_stereo_frame_count = 0; } encoder->private_->last_channel_assignment = frame_header.channel_assignment; return true; } FLAC__bool stream_encoder_process_subframe_(FLAC__StreamEncoder *encoder, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool verbatim_only, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__int32 integer_signal[], const FLAC__real real_signal[], FLAC__Subframe *subframe[2], FLAC__int32 *residual[2], unsigned *best_subframe, unsigned *best_bits) { FLAC__real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; FLAC__real lpc_residual_bits_per_sample; FLAC__real autoc[FLAC__MAX_LPC_ORDER+1]; /* WATCHOUT: the size is important even though encoder->protected_->max_lpc_order might be less; some asm routines need all the space */ FLAC__real lpc_error[FLAC__MAX_LPC_ORDER]; unsigned min_lpc_order, max_lpc_order, lpc_order; unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order; unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision; unsigned rice_parameter; unsigned _candidate_bits, _best_bits; unsigned _best_subframe; /* verbatim subframe is the baseline against which we measure other compressed subframes */ _best_subframe = 0; _best_bits = stream_encoder_evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]); if(!verbatim_only && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) { /* check for constant subframe */ guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor(integer_signal+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample); if(fixed_residual_bits_per_sample[1] == 0.0) { /* the above means integer_signal+FLAC__MAX_FIXED_ORDER is constant, now we just have to check the warmup samples */ unsigned i, signal_is_constant = true; for(i = 1; i <= FLAC__MAX_FIXED_ORDER; i++) { if(integer_signal[0] != integer_signal[i]) { signal_is_constant = false; break; } } if(signal_is_constant) { _candidate_bits = stream_encoder_evaluate_constant_subframe_(integer_signal[0], subframe_bps, subframe[!_best_subframe]); if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } } else { /* encode fixed */ if(encoder->protected_->do_exhaustive_model_search) { min_fixed_order = 0; max_fixed_order = FLAC__MAX_FIXED_ORDER; } else { min_fixed_order = max_fixed_order = guess_fixed_order; } for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) { if(fixed_residual_bits_per_sample[fixed_order] >= (FLAC__real)subframe_bps) continue; /* don't even try */ rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0; /* 0.5 is for rounding */ #ifndef FLAC__SYMMETRIC_RICE rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */ #endif if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @0\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } _candidate_bits = stream_encoder_evaluate_fixed_subframe_(encoder, integer_signal, residual[!_best_subframe], encoder->private_->abs_residual, encoder->private_->abs_residual_partition_sums, encoder->private_->raw_bits_per_partition, frame_header->blocksize, subframe_bps, fixed_order, rice_parameter, min_partition_order, max_partition_order, precompute_partition_sums, encoder->protected_->do_escape_coding, encoder->protected_->rice_parameter_search_dist, subframe[!_best_subframe]); if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } /* encode lpc */ if(encoder->protected_->max_lpc_order > 0) { if(encoder->protected_->max_lpc_order >= frame_header->blocksize) max_lpc_order = frame_header->blocksize-1; else max_lpc_order = encoder->protected_->max_lpc_order; if(max_lpc_order > 0) { encoder->private_->local_lpc_compute_autocorrelation(real_signal, frame_header->blocksize, max_lpc_order+1, autoc); /* if autoc[0] == 0.0, the signal is constant and we usually won't get here, but it can happen */ if(autoc[0] != 0.0) { FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, encoder->private_->lp_coeff, lpc_error); if(encoder->protected_->do_exhaustive_model_search) { min_lpc_order = 1; } else { unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, subframe_bps); min_lpc_order = max_lpc_order = guess_lpc_order; } if(encoder->protected_->do_qlp_coeff_prec_search) { min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION; max_qlp_coeff_precision = min(8*sizeof(FLAC__int32) - subframe_bps - 1 - 2, (1u<protected_->qlp_coeff_precision; } for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) { lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize-lpc_order); if(lpc_residual_bits_per_sample >= (FLAC__real)subframe_bps) continue; /* don't even try */ rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0; /* 0.5 is for rounding */ #ifndef FLAC__SYMMETRIC_RICE rice_parameter++; /* to account for the signed->unsigned conversion during rice coding */ #endif if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @1\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) { _candidate_bits = stream_encoder_evaluate_lpc_subframe_(encoder, integer_signal, residual[!_best_subframe], encoder->private_->abs_residual, encoder->private_->abs_residual_partition_sums, encoder->private_->raw_bits_per_partition, encoder->private_->lp_coeff[lpc_order-1], frame_header->blocksize, subframe_bps, lpc_order, qlp_coeff_precision, rice_parameter, min_partition_order, max_partition_order, precompute_partition_sums, encoder->protected_->do_escape_coding, encoder->protected_->rice_parameter_search_dist, subframe[!_best_subframe]); if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */ if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } } } } } } } } *best_subframe = _best_subframe; *best_bits = _best_bits; return true; } FLAC__bool stream_encoder_add_subframe_(FLAC__StreamEncoder *encoder, const FLAC__FrameHeader *frame_header, unsigned subframe_bps, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame) { switch(subframe->type) { case FLAC__SUBFRAME_TYPE_CONSTANT: if(!FLAC__subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; return false; } break; case FLAC__SUBFRAME_TYPE_FIXED: if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), frame_header->blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; return false; } break; case FLAC__SUBFRAME_TYPE_LPC: if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), frame_header->blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; return false; } break; case FLAC__SUBFRAME_TYPE_VERBATIM: if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), frame_header->blocksize, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FATAL_ERROR_WHILE_ENCODING; return false; } break; default: FLAC__ASSERT(0); } return true; } unsigned stream_encoder_evaluate_constant_subframe_(const FLAC__int32 signal, unsigned subframe_bps, FLAC__Subframe *subframe) { subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT; subframe->data.constant.value = signal; return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe_bps; } unsigned stream_encoder_evaluate_fixed_subframe_(FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe) { unsigned i, residual_bits; const unsigned residual_samples = blocksize - order; FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual); subframe->type = FLAC__SUBFRAME_TYPE_FIXED; subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; subframe->data.fixed.residual = residual; residual_bits = stream_encoder_find_best_partition_order_(encoder->private_, residual, abs_residual, abs_residual_partition_sums, raw_bits_per_partition, residual_samples, order, rice_parameter, min_partition_order, max_partition_order, precompute_partition_sums, do_escape_coding, rice_parameter_search_dist, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.raw_bits); subframe->data.fixed.order = order; for(i = 0; i < order; i++) subframe->data.fixed.warmup[i] = signal[i]; return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (order * subframe_bps) + residual_bits; } unsigned stream_encoder_evaluate_lpc_subframe_(FLAC__StreamEncoder *encoder, const FLAC__int32 signal[], FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], const FLAC__real lp_coeff[], unsigned blocksize, unsigned subframe_bps, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, FLAC__Subframe *subframe) { FLAC__int32 qlp_coeff[FLAC__MAX_LPC_ORDER]; unsigned i, residual_bits; int quantization, ret; const unsigned residual_samples = blocksize - order; ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, subframe_bps, qlp_coeff, &quantization); if(ret != 0) return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */ if(subframe_bps <= 16 && qlp_coeff_precision <= 16) encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit(signal+order, residual_samples, qlp_coeff, order, quantization, residual); else encoder->private_->local_lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual); subframe->type = FLAC__SUBFRAME_TYPE_LPC; subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; subframe->data.lpc.residual = residual; residual_bits = stream_encoder_find_best_partition_order_(encoder->private_, residual, abs_residual, abs_residual_partition_sums, raw_bits_per_partition, residual_samples, order, rice_parameter, min_partition_order, max_partition_order, precompute_partition_sums, do_escape_coding, rice_parameter_search_dist, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.raw_bits); subframe->data.lpc.order = order; subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision; subframe->data.lpc.quantization_level = quantization; memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(FLAC__int32)*FLAC__MAX_LPC_ORDER); for(i = 0; i < order; i++) subframe->data.lpc.warmup[i] = signal[i]; return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps)) + residual_bits; } unsigned stream_encoder_evaluate_verbatim_subframe_(const FLAC__int32 signal[], unsigned blocksize, unsigned subframe_bps, FLAC__Subframe *subframe) { subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM; subframe->data.verbatim.data = signal; return FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + (blocksize * subframe_bps); } unsigned stream_encoder_find_best_partition_order_(FLAC__StreamEncoderPrivate *private_, const FLAC__int32 residual[], FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned min_partition_order, unsigned max_partition_order, FLAC__bool precompute_partition_sums, FLAC__bool do_escape_coding, unsigned rice_parameter_search_dist, unsigned *best_partition_order, unsigned best_parameters[], unsigned best_raw_bits[]) { FLAC__int32 r; unsigned residual_bits, best_residual_bits = 0; unsigned residual_sample; unsigned best_parameters_index = 0; const unsigned blocksize = residual_samples + predictor_order; /* compute abs(residual) for use later */ for(residual_sample = 0; residual_sample < residual_samples; residual_sample++) { r = residual[residual_sample]; abs_residual[residual_sample] = (FLAC__uint32)(r<0? -r : r); } while(max_partition_order > 0 && blocksize >> max_partition_order <= predictor_order) max_partition_order--; FLAC__ASSERT(blocksize >> max_partition_order > predictor_order); min_partition_order = min(min_partition_order, max_partition_order); if(precompute_partition_sums) { int partition_order; unsigned sum; stream_encoder_precompute_partition_info_sums_(abs_residual, abs_residual_partition_sums, residual_samples, predictor_order, min_partition_order, max_partition_order); if(do_escape_coding) stream_encoder_precompute_partition_info_escapes_(residual, raw_bits_per_partition, residual_samples, predictor_order, min_partition_order, max_partition_order); for(partition_order = (int)max_partition_order, sum = 0; partition_order >= (int)min_partition_order; partition_order--) { #ifdef DONT_ESTIMATE_RICE_BITS if(!stream_encoder_set_partitioned_rice_with_precompute_(residual, abs_residual_partition_sums+sum, raw_bits_per_partition+sum, residual_samples, predictor_order, rice_parameter, rice_parameter_search_dist, (unsigned)partition_order, do_escape_coding, private_->parameters[!best_parameters_index], private_->raw_bits[!best_parameters_index], &residual_bits)) #else if(!stream_encoder_set_partitioned_rice_with_precompute_(abs_residual, abs_residual_partition_sums+sum, raw_bits_per_partition+sum, residual_samples, predictor_order, rice_parameter, rice_parameter_search_dist, (unsigned)partition_order, do_escape_coding, private_->parameters[!best_parameters_index], private_->raw_bits[!best_parameters_index], &residual_bits)) #endif { FLAC__ASSERT(best_residual_bits != 0); break; } sum += 1u << partition_order; if(best_residual_bits == 0 || residual_bits < best_residual_bits) { best_residual_bits = residual_bits; *best_partition_order = partition_order; best_parameters_index = !best_parameters_index; } } } else { unsigned partition_order; for(partition_order = min_partition_order; partition_order <= max_partition_order; partition_order++) { #ifdef DONT_ESTIMATE_RICE_BITS if(!stream_encoder_set_partitioned_rice_(abs_residual, residual, residual_samples, predictor_order, rice_parameter, rice_parameter_search_dist, partition_order, private_->parameters[!best_parameters_index], &residual_bits)) #else if(!stream_encoder_set_partitioned_rice_(abs_residual, residual_samples, predictor_order, rice_parameter, rice_parameter_search_dist, partition_order, private_->parameters[!best_parameters_index], &residual_bits)) #endif { FLAC__ASSERT(best_residual_bits != 0); break; } if(best_residual_bits == 0 || residual_bits < best_residual_bits) { best_residual_bits = residual_bits; *best_partition_order = partition_order; best_parameters_index = !best_parameters_index; } } } memcpy(best_parameters, private_->parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order))); memcpy(best_raw_bits, private_->raw_bits[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order))); return best_residual_bits; } void stream_encoder_precompute_partition_info_sums_(const FLAC__uint32 abs_residual[], FLAC__uint64 abs_residual_partition_sums[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order) { int partition_order; unsigned from_partition, to_partition = 0; const unsigned blocksize = residual_samples + predictor_order; /* first do max_partition_order */ for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) { FLAC__uint64 abs_residual_partition_sum; FLAC__uint32 abs_r; unsigned partition, partition_sample, partition_samples, residual_sample; const unsigned partitions = 1u << partition_order; const unsigned default_partition_samples = blocksize >> partition_order; FLAC__ASSERT(default_partition_samples > predictor_order); for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = default_partition_samples; if(partition == 0) partition_samples -= predictor_order; abs_residual_partition_sum = 0; for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) { abs_r = abs_residual[residual_sample]; abs_residual_partition_sum += abs_r; residual_sample++; } abs_residual_partition_sums[partition] = abs_residual_partition_sum; } to_partition = partitions; break; } /* now merge partitions for lower orders */ for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) { FLAC__uint64 s; unsigned i; const unsigned partitions = 1u << partition_order; for(i = 0; i < partitions; i++) { s = abs_residual_partition_sums[from_partition]; from_partition++; abs_residual_partition_sums[to_partition] = s + abs_residual_partition_sums[from_partition]; from_partition++; to_partition++; } } } void stream_encoder_precompute_partition_info_escapes_(const FLAC__int32 residual[], unsigned raw_bits_per_partition[], unsigned residual_samples, unsigned predictor_order, unsigned min_partition_order, unsigned max_partition_order) { int partition_order; unsigned from_partition, to_partition = 0; const unsigned blocksize = residual_samples + predictor_order; /* first do max_partition_order */ for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) { FLAC__int32 r, residual_partition_min, residual_partition_max; unsigned silog2_min, silog2_max; unsigned partition, partition_sample, partition_samples, residual_sample; const unsigned partitions = 1u << partition_order; const unsigned default_partition_samples = blocksize >> partition_order; FLAC__ASSERT(default_partition_samples > predictor_order); for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = default_partition_samples; if(partition == 0) partition_samples -= predictor_order; residual_partition_min = residual_partition_max = 0; for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) { r = residual[residual_sample]; if(r < residual_partition_min) residual_partition_min = r; else if(r > residual_partition_max) residual_partition_max = r; residual_sample++; } silog2_min = FLAC__bitmath_silog2(residual_partition_min); silog2_max = FLAC__bitmath_silog2(residual_partition_max); raw_bits_per_partition[partition] = max(silog2_min, silog2_max); } to_partition = partitions; break; } /* now merge partitions for lower orders */ for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) { unsigned m; unsigned i; const unsigned partitions = 1u << partition_order; for(i = 0; i < partitions; i++) { m = raw_bits_per_partition[from_partition]; from_partition++; raw_bits_per_partition[to_partition] = max(m, raw_bits_per_partition[from_partition]); from_partition++; to_partition++; } } } #ifdef VARIABLE_RICE_BITS #undef VARIABLE_RICE_BITS #endif #ifndef DONT_ESTIMATE_RICE_BITS #define VARIABLE_RICE_BITS(value, parameter) ((value) >> (parameter)) #endif #ifdef DONT_ESTIMATE_RICE_BITS FLAC__bool stream_encoder_set_partitioned_rice_(const FLAC__uint32 abs_residual[], const FLAC__int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, unsigned parameters[], unsigned *bits) #else FLAC__bool stream_encoder_set_partitioned_rice_(const FLAC__uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, unsigned parameters[], unsigned *bits) #endif { unsigned rice_parameter, partition_bits; #ifndef NO_RICE_SEARCH unsigned best_partition_bits; unsigned min_rice_parameter, max_rice_parameter, best_rice_parameter = 0; #endif unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; FLAC__ASSERT(suggested_rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER); if(partition_order == 0) { unsigned i; #ifndef NO_RICE_SEARCH if(rice_parameter_search_dist) { if(suggested_rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist; max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @2\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } } else min_rice_parameter = max_rice_parameter = suggested_rice_parameter; best_partition_bits = 0xffffffff; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits = (2+rice_parameter) * residual_samples; #else const unsigned rice_parameter_estimate = rice_parameter-1; partition_bits = (1+rice_parameter) * residual_samples; #endif #else partition_bits = 0; #endif partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; for(i = 0; i < residual_samples; i++) { #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter); #else partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate); #endif #else partition_bits += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); /* NOTE: we will need to pass in residual[] in addition to abs_residual[] */ #endif } #ifndef NO_RICE_SEARCH if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } } #endif parameters[0] = best_rice_parameter; bits_ += best_partition_bits; } else { unsigned partition, residual_sample, save_residual_sample, partition_sample; unsigned partition_samples; FLAC__uint64 mean, k; const unsigned partitions = 1u << partition_order; for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = (residual_samples+predictor_order) >> partition_order; if(partition == 0) { if(partition_samples <= predictor_order) return false; else partition_samples -= predictor_order; } mean = 0; save_residual_sample = residual_sample; for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) mean += abs_residual[residual_sample]; residual_sample = save_residual_sample; #ifdef FLAC__SYMMETRIC_RICE mean += partition_samples >> 1; /* for rounding effect */ mean /= partition_samples; /* calc rice_parameter = floor(log2(mean)) */ rice_parameter = 0; mean>>=1; while(mean) { rice_parameter++; mean >>= 1; } #else /* calc rice_parameter ala LOCO-I */ for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1) ; #endif if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @3\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } #ifndef NO_RICE_SEARCH if(rice_parameter_search_dist) { if(rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = rice_parameter - rice_parameter_search_dist; max_rice_parameter = rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @4\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } } else min_rice_parameter = max_rice_parameter = rice_parameter; best_partition_bits = 0xffffffff; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits = (2+rice_parameter) * partition_samples; #else const unsigned rice_parameter_estimate = rice_parameter-1; partition_bits = (1+rice_parameter) * partition_samples; #endif #else partition_bits = 0; #endif partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; save_residual_sample = residual_sample; for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) { #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter); #else partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate); #endif #else partition_bits += FLAC__bitbuffer_rice_bits(residual[residual_sample], rice_parameter); /* NOTE: we will need to pass in residual[] in addition to abs_residual[] */ #endif } #ifndef NO_RICE_SEARCH if(rice_parameter != max_rice_parameter) residual_sample = save_residual_sample; if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } } #endif parameters[partition] = best_rice_parameter; bits_ += best_partition_bits; } } *bits = bits_; return true; } #ifdef DONT_ESTIMATE_RICE_BITS FLAC__bool stream_encoder_set_partitioned_rice_with_precompute_(const FLAC__int32 residual[], const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, unsigned parameters[], unsigned raw_bits[], unsigned *bits) #else FLAC__bool stream_encoder_set_partitioned_rice_with_precompute_(const FLAC__uint32 abs_residual[], const FLAC__uint64 abs_residual_partition_sums[], const unsigned raw_bits_per_partition[], const unsigned residual_samples, const unsigned predictor_order, const unsigned suggested_rice_parameter, const unsigned rice_parameter_search_dist, const unsigned partition_order, const FLAC__bool search_for_escapes, unsigned parameters[], unsigned raw_bits[], unsigned *bits) #endif { unsigned rice_parameter, partition_bits; #ifndef NO_RICE_SEARCH unsigned best_partition_bits; unsigned min_rice_parameter, max_rice_parameter, best_rice_parameter = 0; #endif unsigned flat_bits; unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; FLAC__ASSERT(suggested_rice_parameter < FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER); if(partition_order == 0) { unsigned i; #ifndef NO_RICE_SEARCH if(rice_parameter_search_dist) { if(suggested_rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = suggested_rice_parameter - rice_parameter_search_dist; max_rice_parameter = suggested_rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @5\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } } else min_rice_parameter = max_rice_parameter = suggested_rice_parameter; best_partition_bits = 0xffffffff; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits = (2+rice_parameter) * residual_samples; #else const unsigned rice_parameter_estimate = rice_parameter-1; partition_bits = (1+rice_parameter) * residual_samples; #endif #else partition_bits = 0; #endif partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; for(i = 0; i < residual_samples; i++) { #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter); #else partition_bits += VARIABLE_RICE_BITS(abs_residual[i], rice_parameter_estimate); #endif #else partition_bits += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */ #endif } #ifndef NO_RICE_SEARCH if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } } #endif if(search_for_escapes) { flat_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[0] * residual_samples; if(flat_bits <= best_partition_bits) { raw_bits[0] = raw_bits_per_partition[0]; best_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; best_partition_bits = flat_bits; } } parameters[0] = best_rice_parameter; bits_ += best_partition_bits; } else { unsigned partition, residual_sample, save_residual_sample, partition_sample; unsigned partition_samples; FLAC__uint64 mean, k; const unsigned partitions = 1u << partition_order; for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = (residual_samples+predictor_order) >> partition_order; if(partition == 0) { if(partition_samples <= predictor_order) return false; else partition_samples -= predictor_order; } mean = abs_residual_partition_sums[partition]; #ifdef FLAC__SYMMETRIC_RICE mean += partition_samples >> 1; /* for rounding effect */ mean /= partition_samples; /* calc rice_parameter = floor(log2(mean)) */ rice_parameter = 0; mean>>=1; while(mean) { rice_parameter++; mean >>= 1; } #else /* calc rice_parameter ala LOCO-I */ for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1) ; #endif if(rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @6\n", rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } #ifndef NO_RICE_SEARCH if(rice_parameter_search_dist) { if(rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = rice_parameter - rice_parameter_search_dist; max_rice_parameter = rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { #ifdef DEBUG_VERBOSE fprintf(stderr, "clipping rice_parameter (%u -> %u) @7\n", max_rice_parameter, FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1); #endif max_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER - 1; } } else min_rice_parameter = max_rice_parameter = rice_parameter; best_partition_bits = 0xffffffff; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits = (2+rice_parameter) * partition_samples; #else const unsigned rice_parameter_estimate = rice_parameter-1; partition_bits = (1+rice_parameter) * partition_samples; #endif #else partition_bits = 0; #endif partition_bits += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN; save_residual_sample = residual_sample; for(partition_sample = 0; partition_sample < partition_samples; residual_sample++, partition_sample++) { #ifdef VARIABLE_RICE_BITS #ifdef FLAC__SYMMETRIC_RICE partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter); #else partition_bits += VARIABLE_RICE_BITS(abs_residual[residual_sample], rice_parameter_estimate); #endif #else partition_bits += FLAC__bitbuffer_rice_bits(residual[residual_sample], rice_parameter); /* NOTE: we will need to pass in residual[] instead of abs_residual[] */ #endif } #ifndef NO_RICE_SEARCH if(rice_parameter != max_rice_parameter) residual_sample = save_residual_sample; if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } } #endif if(search_for_escapes) { flat_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[partition] * partition_samples; if(flat_bits <= best_partition_bits) { raw_bits[partition] = raw_bits_per_partition[partition]; best_rice_parameter = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; best_partition_bits = flat_bits; } } parameters[partition] = best_rice_parameter; bits_ += best_partition_bits; } } *bits = bits_; return true; } unsigned stream_encoder_get_wasted_bits_(FLAC__int32 signal[], unsigned samples) { unsigned i, shift; FLAC__int32 x = 0; for(i = 0; i < samples && !(x&1); i++) x |= signal[i]; if(x == 0) { shift = 0; } else { for(shift = 0; !(x&1); shift++) x >>= 1; } if(shift > 0) { for(i = 0; i < samples; i++) signal[i] >>= shift; } return shift; }