mirror of
https://github.com/claunia/flac.git
synced 2025-12-16 18:54:26 +00:00
* Allow compiling using GCC GCC w/o SSE support. * Allow SSE4.1 intrinsic functions to be enabled. Patch-from: lvqcl <lvqcl.mail@gmail.com>
1127 lines
46 KiB
C
1127 lines
46 KiB
C
/* libFLAC - Free Lossless Audio Codec library
|
|
* Copyright (C) 2000-2009 Josh Coalson
|
|
* Copyright (C) 2011-2013 Xiph.Org Foundation
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* - Neither the name of the Xiph.org Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#if HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#ifndef FLAC__INTEGER_ONLY_LIBRARY
|
|
#ifndef FLAC__NO_ASM
|
|
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
|
|
#include "private/lpc.h"
|
|
#ifdef FLAC__SSE4_1_SUPPORTED
|
|
|
|
#include "FLAC/assert.h"
|
|
#include "FLAC/format.h"
|
|
|
|
#include <smmintrin.h> /* SSE4.1 */
|
|
|
|
#ifdef FLAC__CPU_IA32
|
|
#if defined _MSC_VER || defined __INTEL_COMPILER
|
|
#define RESIDUAL_RESULT(xmmN) residual[i] = data[i] - (FLAC__int32)(xmmN.m128i_i64[0] >> lp_quantization);
|
|
#define DATA_RESULT(xmmN) data[i] = residual[i] + (FLAC__int32)(xmmN.m128i_i64[0] >> lp_quantization);
|
|
#else
|
|
#define RESIDUAL_RESULT(xmmN) { \
|
|
FLAC__int64 tmp[2]; \
|
|
_mm_storel_epi64((__m128i *)tmp, xmmN); \
|
|
residual[i] = data[i] - (FLAC__int32)(tmp[0] >> lp_quantization); \
|
|
}
|
|
#define DATA_RESULT(xmmN) { \
|
|
FLAC__int64 tmp[2]; \
|
|
_mm_storel_epi64((__m128i *)tmp, xmmN); \
|
|
data[i] = residual[i] + (FLAC__int32)(tmp[0] >> lp_quantization); \
|
|
}
|
|
#endif
|
|
#else
|
|
#define RESIDUAL_RESULT(xmmN) residual[i] = data[i] - (FLAC__int32)(_mm_cvtsi128_si64(xmmN) >> lp_quantization);
|
|
#define DATA_RESULT(xmmN) data[i] = residual[i] + (FLAC__int32)(_mm_cvtsi128_si64(xmmN) >> lp_quantization);
|
|
#endif
|
|
|
|
FLAC__SSE_TARGET("sse4.1")
|
|
void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_sse41(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[])
|
|
{
|
|
int i;
|
|
|
|
FLAC__ASSERT(order > 0);
|
|
FLAC__ASSERT(order <= 32);
|
|
|
|
if(order <= 12) {
|
|
if(order > 8) { /* order == 9, 10, 11, 12 */
|
|
if(order > 10) { /* order == 11, 12 */
|
|
if(order == 12) {
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); // 0 0 q[1] q[0]
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); // 0 0 q[3] q[2]
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4)); // 0 0 q[5] q[4]
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6)); // 0 0 q[7] q[6]
|
|
xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8)); // 0 0 q[9] q[8]
|
|
xmm5 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+10)); // 0 0 q[11] q[10]
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); // 0 q[1] 0 q[0]
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); // 0 q[3] 0 q[2]
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); // 0 q[5] 0 q[4]
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0)); // 0 q[7] 0 q[6]
|
|
xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0)); // 0 q[9] 0 q[8]
|
|
xmm5 = _mm_shuffle_epi32(xmm5, _MM_SHUFFLE(3,1,2,0)); // 0 q[11] 0 q[10]
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
|
|
//sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-12)); // 0 0 d[i-11] d[i-12]
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1)); // 0 d[i-12] 0 d[i-11]
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm5);
|
|
|
|
//sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
|
|
//sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-10));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm4);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 11 */
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8));
|
|
xmm5 = _mm_cvtsi32_si128(qlp_coeff[10]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[10] * (FLAC__int64)data[i-11];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-11]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm5);
|
|
|
|
//sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
|
|
//sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-10));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm4);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 9, 10 */
|
|
if(order == 10) {
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
|
|
//sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-10));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm4);
|
|
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 9 */
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
xmm4 = _mm_cvtsi32_si128(qlp_coeff[8]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[8] * (FLAC__int64)data[i-9];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-9]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm4);
|
|
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(order > 4) { /* order == 5, 6, 7, 8 */
|
|
if(order > 6) { /* order == 7, 8 */
|
|
if(order == 8) {
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm3);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 7 */
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_cvtsi32_si128(qlp_coeff[6]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-7]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm3);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 5, 6 */
|
|
if(order == 6) {
|
|
__m128i xmm0, xmm1, xmm2, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm2);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 5 */
|
|
__m128i xmm0, xmm1, xmm2, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_cvtsi32_si128(qlp_coeff[4]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-5]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm2);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 1, 2, 3, 4 */
|
|
if(order > 2) { /* order == 3, 4 */
|
|
if(order == 4) {
|
|
__m128i xmm0, xmm1, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm1);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 3 */
|
|
__m128i xmm0, xmm1, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_cvtsi32_si128(qlp_coeff[2]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-3]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm1);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 1, 2 */
|
|
if(order == 2) {
|
|
__m128i xmm0, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm0);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 1 */
|
|
for(i = 0; i < (int)data_len; i++)
|
|
residual[i] = data[i] - (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else { /* order > 12 */
|
|
FLAC__int64 sum;
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
sum = 0;
|
|
switch(order) {
|
|
case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
|
|
case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
|
|
case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
|
|
case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
|
|
case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
|
|
case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
|
|
case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
|
|
case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
|
|
case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
|
|
case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
|
|
case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
|
|
case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
|
|
case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
|
|
case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
|
|
case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
|
|
case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
|
|
case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
|
|
case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
|
|
case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
|
|
case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
|
|
sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
|
|
sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
|
|
sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
|
|
sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
|
|
sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
|
|
sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
|
|
sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
|
|
sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
|
|
sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
|
|
sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
|
|
sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
|
|
sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
|
|
}
|
|
residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
|
|
}
|
|
}
|
|
}
|
|
|
|
FLAC__SSE_TARGET("sse4.1")
|
|
void FLAC__lpc_restore_signal_wide_intrin_sse41(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[])
|
|
{
|
|
int i;
|
|
|
|
FLAC__ASSERT(order > 0);
|
|
FLAC__ASSERT(order <= 32);
|
|
|
|
if(order <= 12) {
|
|
if(order > 8) { /* order == 9, 10, 11, 12 */
|
|
if(order > 10) { /* order == 11, 12 */
|
|
if(order == 12) {
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); // 0 0 q[1] q[0]
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); // 0 0 q[3] q[2]
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4)); // 0 0 q[5] q[4]
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6)); // 0 0 q[7] q[6]
|
|
xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8)); // 0 0 q[9] q[8]
|
|
xmm5 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+10)); // 0 0 q[11] q[10]
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); // 0 q[1] 0 q[0]
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); // 0 q[3] 0 q[2]
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); // 0 q[5] 0 q[4]
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0)); // 0 q[7] 0 q[6]
|
|
xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0)); // 0 q[9] 0 q[8]
|
|
xmm5 = _mm_shuffle_epi32(xmm5, _MM_SHUFFLE(3,1,2,0)); // 0 q[11] 0 q[10]
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
|
|
//sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-12)); // 0 0 d[i-11] d[i-12]
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1)); // 0 d[i-12] 0 d[i-11]
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm5);
|
|
|
|
//sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
|
|
//sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-10));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm4);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 11 */
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8));
|
|
xmm5 = _mm_cvtsi32_si128(qlp_coeff[10]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[10] * (FLAC__int64)data[i-11];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-11]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm5);
|
|
|
|
//sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
|
|
//sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-10));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm4);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 9, 10 */
|
|
if(order == 10) {
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
|
|
//sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-10));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm4);
|
|
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 9 */
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
xmm4 = _mm_cvtsi32_si128(qlp_coeff[8]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[8] * (FLAC__int64)data[i-9];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-9]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm4);
|
|
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(order > 4) { /* order == 5, 6, 7, 8 */
|
|
if(order > 6) { /* order == 7, 8 */
|
|
if(order == 8) {
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
|
|
//sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm3);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 7 */
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_cvtsi32_si128(qlp_coeff[6]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[6] * (FLAC__int64)data[i-7];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-7]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm3);
|
|
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 5, 6 */
|
|
if(order == 6) {
|
|
__m128i xmm0, xmm1, xmm2, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
|
|
//sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm2);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 5 */
|
|
__m128i xmm0, xmm1, xmm2, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_cvtsi32_si128(qlp_coeff[4]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[4] * (FLAC__int64)data[i-5];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-5]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm2);
|
|
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 1, 2, 3, 4 */
|
|
if(order > 2) { /* order == 3, 4 */
|
|
if(order == 4) {
|
|
__m128i xmm0, xmm1, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
|
|
//sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm1);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 3 */
|
|
__m128i xmm0, xmm1, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_cvtsi32_si128(qlp_coeff[2]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[2] * (FLAC__int64)data[i-3];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-3]);
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm1);
|
|
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epi32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi64(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 1, 2 */
|
|
if(order == 2) {
|
|
__m128i xmm0, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
|
|
//sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epi32(xmm7, xmm0);
|
|
|
|
xmm7 = _mm_add_epi64(xmm7, _mm_srli_si128(xmm7, 8));
|
|
DATA_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 1 */
|
|
for(i = 0; i < (int)data_len; i++)
|
|
data[i] = residual[i] + (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else { /* order > 12 */
|
|
FLAC__int64 sum;
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
sum = 0;
|
|
switch(order) {
|
|
case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
|
|
case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
|
|
case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
|
|
case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
|
|
case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
|
|
case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
|
|
case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
|
|
case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
|
|
case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
|
|
case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
|
|
case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
|
|
case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
|
|
case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
|
|
case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
|
|
case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
|
|
case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
|
|
case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
|
|
case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
|
|
case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
|
|
case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
|
|
sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
|
|
sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
|
|
sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
|
|
sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
|
|
sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
|
|
sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
|
|
sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
|
|
sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
|
|
sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
|
|
sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
|
|
sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
|
|
sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
|
|
}
|
|
data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* FLAC__SSE4_1_SUPPORTED */
|
|
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
|
|
#endif /* FLAC__NO_ASM */
|
|
#endif /* FLAC__INTEGER_ONLY_LIBRARY */
|