Files
linux-legacy/drivers/mtd/devices/mxc_dataflash.c
Lily Zhang 3a8994f9c7 ENGR00124795 SPI NOR: uniform include header file
The default partitions are missing in MX53 SPI NOR MTD.
It's because spi nor driver and mx53 msl include different
header files. It causes struct definitions are different.
For i.MX SPI nor driver, need to use asm/mach/flash.h by
aligning with NAND driver.

Signed-off-by: Lily Zhang <r58066@freescale.com>
2010-08-10 11:51:19 -05:00

1038 lines
25 KiB
C

/*
* Copyright 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
* (c) 2005 MontaVista Software, Inc.
*
* This code is based on mtd_dataflash.c by adding FSL spi access.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/spi/spi.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <asm/mach/flash.h>
/*
* DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
* each chip, which may be used for double buffered I/O; but this driver
* doesn't (yet) use these for any kind of i/o overlap or prefetching.
*
* Sometimes DataFlash is packaged in MMC-format cards, although the
* MMC stack can't (yet?) distinguish between MMC and DataFlash
* protocols during enumeration.
*/
/* reads can bypass the buffers */
#define OP_READ_CONTINUOUS 0xE8
#define OP_READ_PAGE 0xD2
/* group B requests can run even while status reports "busy" */
#define OP_READ_STATUS 0xD7 /* group B */
/* move data between host and buffer */
#define OP_READ_BUFFER1 0xD4 /* group B */
#define OP_READ_BUFFER2 0xD6 /* group B */
#define OP_WRITE_BUFFER1 0x84 /* group B */
#define OP_WRITE_BUFFER2 0x87 /* group B */
/* erasing flash */
#define OP_ERASE_PAGE 0x81
#define OP_ERASE_BLOCK 0x50
/* move data between buffer and flash */
#define OP_TRANSFER_BUF1 0x53
#define OP_TRANSFER_BUF2 0x55
#define OP_MREAD_BUFFER1 0xD4
#define OP_MREAD_BUFFER2 0xD6
#define OP_MWERASE_BUFFER1 0x83
#define OP_MWERASE_BUFFER2 0x86
#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
/* write to buffer, then write-erase to flash */
#define OP_PROGRAM_VIA_BUF1 0x82
#define OP_PROGRAM_VIA_BUF2 0x85
/* compare buffer to flash */
#define OP_COMPARE_BUF1 0x60
#define OP_COMPARE_BUF2 0x61
/* read flash to buffer, then write-erase to flash */
#define OP_REWRITE_VIA_BUF1 0x58
#define OP_REWRITE_VIA_BUF2 0x59
/* newer chips report JEDEC manufacturer and device IDs; chip
* serial number and OTP bits; and per-sector writeprotect.
*/
#define OP_READ_ID 0x9F
#define OP_READ_SECURITY 0x77
#define OP_WRITE_SECURITY_REVC 0x9A
#define OP_WRITE_SECURITY 0x9B /* revision D */
#define SPI_FIFOSIZE 24 /* Bust size in bytes */
#define CMD_SIZE 4
#define DUMY_SIZE 4
struct dataflash {
uint8_t command[4];
char name[24];
unsigned partitioned:1;
unsigned short page_offset; /* offset in flash address */
unsigned int page_size; /* of bytes per page */
struct mutex lock;
struct spi_device *spi;
struct mtd_info mtd;
};
#ifdef CONFIG_MTD_PARTITIONS
#define mtd_has_partitions() (1)
#else
#define mtd_has_partitions() (0)
#endif
/* ......................................................................... */
/*
* This function initializes the SPI device parameters.
*/
static inline int spi_nor_setup(struct spi_device *spi, u8 bst_len)
{
spi->bits_per_word = bst_len << 3;
return spi_setup(spi);
}
/*
* This function perform spi read/write transfer.
*/
static int spi_read_write(struct spi_device *spi, u8 * buf, u32 len)
{
struct spi_message m;
struct spi_transfer t;
if (len > SPI_FIFOSIZE || len <= 0)
return -1;
spi_nor_setup(spi, len);
spi_message_init(&m);
memset(&t, 0, sizeof t);
t.tx_buf = buf;
t.rx_buf = buf;
t.len = ((len - 1) >> 2) + 1;
spi_message_add_tail(&t, &m);
if (spi_sync(spi, &m) != 0 || m.status != 0) {
printk(KERN_ERR "%s: error\n", __func__);
return -1;
}
DEBUG(MTD_DEBUG_LEVEL2, "%s: len: 0x%x success\n", __func__, len);
return 0;
}
/*
* Return the status of the DataFlash device.
*/
static inline int dataflash_status(struct spi_device *spi)
{
/* NOTE: at45db321c over 25 MHz wants to write
* a dummy byte after the opcode...
*/
ssize_t retval;
u16 val = OP_READ_STATUS << 8;
retval = spi_read_write(spi, (u8 *)&val, 2);
if (retval < 0)
return retval;
DEBUG(MTD_DEBUG_LEVEL2, "%s: status: 0x%x\n", __func__, val & 0xff);
return val & 0xff;
}
/*
* Poll the DataFlash device until it is READY.
* This usually takes 5-20 msec or so; more for sector erase.
*/
static int dataflash_waitready(struct spi_device *spi)
{
int status;
for (;;) {
status = dataflash_status(spi);
if (status < 0) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n",
dev_name(&spi->dev), status);
status = 0;
}
if (status & (1 << 7)) /* RDY/nBSY */
return status;
msleep(3);
}
}
/* ......................................................................... */
/*
* Erase pages of flash.
*/
static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct dataflash *priv = (struct dataflash *)mtd->priv;
struct spi_device *spi = priv->spi;
unsigned blocksize = priv->page_size << 3;
uint8_t *command;
uint32_t rem;
DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%llx len 0x%llx\n",
dev_name(&spi->dev), (long long)instr->addr,
(long long)instr->len);
/* Sanity checks */
if (instr->addr + instr->len > mtd->size)
return -EINVAL;
div_u64_rem(instr->len, priv->page_size, &rem);
if (rem)
return -EINVAL;
div_u64_rem(instr->addr, priv->page_size, &rem);
if (rem)
return -EINVAL;
command = priv->command;
mutex_lock(&priv->lock);
while (instr->len > 0) {
unsigned int pageaddr;
int status;
int do_block;
/* Calculate flash page address; use block erase (for speed) if
* we're at a block boundary and need to erase the whole block.
*/
pageaddr = div_u64(instr->addr, priv->page_size);
do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
pageaddr = pageaddr << priv->page_offset;
command[3] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
command[2] = (uint8_t) (pageaddr >> 16);
command[1] = (uint8_t) (pageaddr >> 8);
command[0] = 0;
DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n",
do_block ? "block" : "page",
command[0], command[1], command[2], command[3], pageaddr);
status = spi_read_write(spi, command, 4);
(void)dataflash_waitready(spi);
if (status < 0) {
printk(KERN_ERR "%s: erase %x, err %d\n",
dev_name(&spi->dev), pageaddr, status);
/* REVISIT: can retry instr->retries times; or
* giveup and instr->fail_addr = instr->addr;
*/
continue;
}
if (do_block) {
instr->addr += blocksize;
instr->len -= blocksize;
} else {
instr->addr += priv->page_size;
instr->len -= priv->page_size;
}
}
mutex_unlock(&priv->lock);
/* Inform MTD subsystem that erase is complete */
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
/*
* Read from the DataFlash device.
* from : Start offset in flash device
* len : Amount to read
* retlen : About of data actually read
* buf : Buffer containing the data
*/
static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct dataflash *priv = mtd->priv;
struct spi_device *spi = priv->spi;
u32 addr;
int rx_len = 0, count = 0, i = 0;
u_char txer[SPI_FIFOSIZE];
u_char *s = txer;
u_char *d = buf;
int cmd_len = CMD_SIZE + DUMY_SIZE;
int status = 0;
DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n",
dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len));
*retlen = 0;
/* Sanity checks */
if (!len)
return 0;
if (from + len > mtd->size)
return -EINVAL;
/* Calculate flash page/byte address */
addr = (((unsigned)from / priv->page_size) << priv->page_offset)
+ ((unsigned)from % priv->page_size);
mutex_unlock(&priv->lock);
while (len > 0) {
rx_len = len > (SPI_FIFOSIZE - cmd_len) ?
SPI_FIFOSIZE - cmd_len : len;
txer[3] = OP_READ_CONTINUOUS;
txer[2] = (addr >> 16) & 0xff;
txer[1] = (addr >> 8) & 0xff;
txer[0] = addr & 0xff;
status = spi_read_write(spi, txer,
roundup(rx_len, 4) + cmd_len);
if (status) {
mutex_unlock(&priv->lock);
return status;
}
s = txer + cmd_len;
for (i = rx_len; i >= 0; i -= 4, s += 4) {
if (i < 4) {
if (i == 1) {
*d = s[3];
} else if (i == 2) {
*d++ = s[3];
*d++ = s[2];
} else if (i == 3) {
*d++ = s[3];
*d++ = s[2];
*d++ = s[1];
}
break;
}
*d++ = s[3];
*d++ = s[2];
*d++ = s[1];
*d++ = s[0];
}
/* updaate */
len -= rx_len;
addr += rx_len;
count += rx_len;
DEBUG(MTD_DEBUG_LEVEL2,
"%s: left:0x%x, from:0x%08x, to:0x%p, done: 0x%x\n",
__func__, len, (u32) addr, d, count);
}
*retlen = count;
DEBUG(MTD_DEBUG_LEVEL2, "%s: %d bytes read\n", __func__, count);
mutex_unlock(&priv->lock);
return status;
}
/*
* Write to the DataFlash device.
* to : Start offset in flash device
* len : Amount to write
* retlen : Amount of data actually written
* buf : Buffer containing the data
*/
static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct dataflash *priv = mtd->priv;
struct spi_device *spi = priv->spi;
u32 pageaddr, addr, offset, writelen;
size_t remaining = len;
u_char *writebuf = (u_char *) buf;
int status = -EINVAL;
u_char txer[SPI_FIFOSIZE] = { 0 };
uint8_t *command = priv->command;
u_char *d = txer;
u_char *s = (u_char *) buf;
int delta = 0, l = 0, i = 0, count = 0;
DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n",
dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
*retlen = 0;
/* Sanity checks */
if (!len)
return 0;
if ((to + len) > mtd->size)
return -EINVAL;
pageaddr = ((unsigned)to / priv->page_size);
offset = ((unsigned)to % priv->page_size);
if (offset + len > priv->page_size)
writelen = priv->page_size - offset;
else
writelen = len;
mutex_lock(&priv->lock);
while (remaining > 0) {
DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n",
pageaddr, offset, writelen);
addr = pageaddr << priv->page_offset;
/* (1) Maybe transfer partial page to Buffer1 */
if (writelen != priv->page_size) {
command[3] = OP_TRANSFER_BUF1;
command[2] = (addr & 0x00FF0000) >> 16;
command[1] = (addr & 0x0000FF00) >> 8;
command[0] = 0;
DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n",
command[3], command[2], command[1], command[0]);
status = spi_read_write(spi, command, CMD_SIZE);
if (status) {
mutex_unlock(&priv->lock);
return status;
}
(void)dataflash_waitready(spi);
}
count = writelen;
while (count) {
d = txer;
l = count > (SPI_FIFOSIZE - CMD_SIZE) ?
SPI_FIFOSIZE - CMD_SIZE : count;
delta = l % 4;
if (delta) {
switch (delta) {
case 1:
d[0] = OP_WRITE_BUFFER1;
d[6] = (offset >> 8) & 0xff;
d[5] = offset & 0xff;
d[4] = *s++;
break;
case 2:
d[1] = OP_WRITE_BUFFER1;
d[7] = (offset >> 8) & 0xff;
d[6] = offset & 0xff;
d[5] = *s++;
d[4] = *s++;
break;
case 3:
d[2] = OP_WRITE_BUFFER1;
d[0] = (offset >> 8) & 0xff;
d[7] = offset & 0xff;
d[6] = *s++;
d[5] = *s++;
d[4] = *s++;
break;
default:
break;
}
DEBUG(MTD_DEBUG_LEVEL3,
"WRITEBUF: (%x) %x %x %x\n",
txer[3], txer[2], txer[1], txer[0]);
status = spi_read_write(spi, txer,
delta + CMD_SIZE);
if (status) {
mutex_unlock(&priv->lock);
return status;
}
/* update */
count -= delta;
offset += delta;
l -= delta;
}
d[3] = OP_WRITE_BUFFER1;
d[1] = (offset >> 8) & 0xff;
d[0] = offset & 0xff;
for (i = 0, d += 4; i < l / 4; i++, d += 4) {
d[3] = *s++;
d[2] = *s++;
d[1] = *s++;
d[0] = *s++;
}
DEBUG(MTD_DEBUG_LEVEL3, "WRITEBUF: (%x) %x %x %x\n",
txer[3], txer[2], txer[1], txer[0]);
status = spi_read_write(spi, txer, l + CMD_SIZE);
if (status) {
mutex_unlock(&priv->lock);
return status;
}
/* update */
count -= l;
offset += l;
}
/* (2) Program full page via Buffer1 */
command[3] = OP_MWERASE_BUFFER1;
command[2] = (addr >> 16) & 0xff;
command[1] = (addr >> 8) & 0xff;
DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n",
command[3], command[2], command[1], command[0]);
status = spi_read_write(spi, command, CMD_SIZE);
if (status) {
mutex_unlock(&priv->lock);
return status;
}
(void)dataflash_waitready(spi);
remaining -= writelen;
pageaddr++;
offset = 0;
writebuf += writelen;
*retlen += writelen;
if (remaining > priv->page_size)
writelen = priv->page_size;
else
writelen = remaining;
}
mutex_unlock(&priv->lock);
return status;
}
/* ......................................................................... */
#ifdef CONFIG_MTD_DATAFLASH_OTP
static int dataflash_get_otp_info(struct mtd_info *mtd,
struct otp_info *info, size_t len)
{
/* Report both blocks as identical: bytes 0..64, locked.
* Unless the user block changed from all-ones, we can't
* tell whether it's still writable; so we assume it isn't.
*/
info->start = 0;
info->length = 64;
info->locked = 1;
return sizeof(*info);
}
static ssize_t otp_read(struct spi_device *spi, unsigned base,
uint8_t *buf, loff_t off, size_t len)
{
struct dataflash *priv = mtd->priv;
struct spi_device *spi = priv->spi;
int rx_len = 0, count = 0, i = 0;
u_char txer[SPI_FIFOSIZE];
u_char *s = txer;
u_char *d = NULL;
int cmd_len = CMD_SIZE;
int status;
if (off > 64)
return -EINVAL;
if ((off + len) > 64)
len = 64 - off;
if (len == 0)
return len;
/* to make simple, we read 64 out */
l = base + 64;
d = kzalloc(l, GFP_KERNEL);
if (!d)
return -ENOMEM;
while (l > 0) {
rx_len = l > (SPI_FIFOSIZE - cmd_len) ?
SPI_FIFOSIZE - cmd_len : l;
txer[3] = OP_READ_SECURITY;
status = spi_read_write(spi, txer, rx_len + cmd_len);
if (status) {
mutex_unlock(&priv->lock);
return status;
}
s = txer + cmd_len;
for (i = rx_len; i >= 0; i -= 4, s += 4) {
*d++ = s[3];
*d++ = s[2];
*d++ = s[1];
*d++ = s[0];
}
/* updaate */
l -= rx_len;
addr += rx_len;
count += rx_len;
DEBUG(MTD_DEBUG_LEVEL2,
"%s: left:0x%x, from:0x%08x, to:0x%p, done: 0x%x\n",
__func__, len, (u32) addr, d, count);
}
d -= count;
memcpy(buf, d + base + off, len);
mutex_unlock(&priv->lock);
return len;
}
static int dataflash_read_fact_otp(struct mtd_info *mtd,
loff_t from, size_t len, size_t *retlen,
u_char *buf)
{
struct dataflash *priv = (struct dataflash *)mtd->priv;
int status;
/* 64 bytes, from 0..63 ... start at 64 on-chip */
mutex_lock(&priv->lock);
status = otp_read(priv->spi, 64, buf, from, len);
mutex_unlock(&priv->lock);
if (status < 0)
return status;
*retlen = status;
return 0;
}
static int dataflash_read_user_otp(struct mtd_info *mtd,
loff_t from, size_t len, size_t *retlen,
u_char *buf)
{
struct dataflash *priv = (struct dataflash *)mtd->priv;
int status;
/* 64 bytes, from 0..63 ... start at 0 on-chip */
mutex_lock(&priv->lock);
status = otp_read(priv->spi, 0, buf, from, len);
mutex_unlock(&priv->lock);
if (status < 0)
return status;
*retlen = status;
return 0;
}
static int dataflash_write_user_otp(struct mtd_info *mtd,
loff_t from, size_t len, size_t *retlen,
u_char *buf)
{
printk(KERN_ERR "%s not support!!\n", __func__);
return 0;
}
static char *otp_setup(struct mtd_info *device, char revision)
{
device->get_fact_prot_info = dataflash_get_otp_info;
device->read_fact_prot_reg = dataflash_read_fact_otp;
device->get_user_prot_info = dataflash_get_otp_info;
device->read_user_prot_reg = dataflash_read_user_otp;
/* rev c parts (at45db321c and at45db1281 only!) use a
* different write procedure; not (yet?) implemented.
*/
if (revision > 'c')
device->write_user_prot_reg = dataflash_write_user_otp;
return ", OTP";
}
#else
static char *otp_setup(struct mtd_info *device, char revision)
{
return " (OTP)";
}
#endif
/* ......................................................................... */
/*
* Register DataFlash device with MTD subsystem.
*/
static int __devinit
add_dataflash_otp(struct spi_device *spi, char *name,
int nr_pages, int pagesize, int pageoffset, char revision)
{
struct dataflash *priv;
struct mtd_info *device;
struct flash_platform_data *pdata = spi->dev.platform_data;
char *otp_tag = "";
priv = kzalloc(sizeof *priv, GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_init(&priv->lock);
priv->spi = spi;
priv->page_size = pagesize;
priv->page_offset = pageoffset;
/* name must be usable with cmdlinepart */
sprintf(priv->name, "spi%d.%d-%s",
spi->master->bus_num, spi->chip_select, name);
device = &priv->mtd;
device->name = (pdata && pdata->name) ? pdata->name : priv->name;
device->size = nr_pages * pagesize;
device->erasesize = pagesize;
device->writesize = pagesize;
device->owner = THIS_MODULE;
device->type = MTD_DATAFLASH;
device->flags = MTD_CAP_NORFLASH;
device->erase = dataflash_erase;
device->read = dataflash_read;
device->write = dataflash_write;
device->priv = priv;
if (revision >= 'c')
otp_tag = otp_setup(device, revision);
dev_info(&spi->dev, "%s (%llx KBytes) pagesize %d bytes%s\n",
name, DIV_ROUND_UP(device->size, 1024), pagesize, otp_tag);
dev_set_drvdata(&spi->dev, priv);
if (mtd_has_partitions()) {
struct mtd_partition *parts;
int nr_parts = 0;
#ifdef CONFIG_MTD_CMDLINE_PARTS
static const char *part_probes[] = { "cmdlinepart", NULL, };
nr_parts = parse_mtd_partitions(device, part_probes, &parts, 0);
#endif
if (nr_parts <= 0 && pdata && pdata->parts) {
parts = pdata->parts;
nr_parts = pdata->nr_parts;
}
if (nr_parts > 0) {
priv->partitioned = 1;
return add_mtd_partitions(device, parts, nr_parts);
}
} else if (pdata && pdata->nr_parts)
dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
pdata->nr_parts, device->name);
return add_mtd_device(device) == 1 ? -ENODEV : 0;
}
static inline int __devinit
add_dataflash(struct spi_device *spi, char *name,
int nr_pages, int pagesize, int pageoffset)
{
return add_dataflash_otp(spi, name, nr_pages, pagesize, pageoffset, 0);
}
struct flash_info {
char *name;
/* JEDEC id has a high byte of zero plus three data bytes:
* the manufacturer id, then a two byte device id.
*/
uint32_t jedec_id;
/* The size listed here is what works with OP_ERASE_PAGE. */
unsigned nr_pages;
uint16_t pagesize;
uint16_t pageoffset;
uint16_t flags;
#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
#define IS_POW2PS 0x0001 /* uses 2^N byte pages */
};
static struct flash_info __devinitdata dataflash_data[] = {
/*
* NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
* one with IS_POW2PS and the other without. The entry with the
* non-2^N byte page size can't name exact chip revisions without
* losing backwards compatibility for cmdlinepart.
*
* These newer chips also support 128-byte security registers (with
* 64 bytes one-time-programmable) and software write-protection.
*/
{"AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
{"at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
{"AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
{"at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
{"AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
{"at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
{"AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
{"at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
{"AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
{"at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
{"AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
{"AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
{"at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
{"AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
{"at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
};
static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
{
int tmp;
u32 code = OP_READ_ID << 24;
u32 jedec;
struct flash_info *info;
int status;
/* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*
* If the vendor ID isn't Atmel's (0x1f), assume this call failed.
* That's not an error; only rev C and newer chips handle it, and
* only Atmel sells these chips.
*/
tmp = spi_read_write(spi, (u8 *)&code, 4);
if (tmp < 0) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
dev_name(&spi->dev), tmp);
return NULL;
}
jedec = code & 0xFFFFFF;
for (tmp = 0, info = dataflash_data;
tmp < ARRAY_SIZE(dataflash_data); tmp++, info++) {
if (info->jedec_id == jedec) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n",
dev_name(&spi->dev), (info->flags & SUP_POW2PS)
? ", binary pagesize" : "");
if (info->flags & SUP_POW2PS) {
status = dataflash_status(spi);
if (status < 0) {
DEBUG(MTD_DEBUG_LEVEL1,
"%s: status error %d\n",
dev_name(&spi->dev), status);
return ERR_PTR(status);
}
if (status & 0x1) {
if (info->flags & IS_POW2PS)
return info;
} else {
if (!(info->flags & IS_POW2PS))
return info;
}
}
}
}
/*
* Treat other chips as errors ... we won't know the right page
* size (it might be binary) even when we can tell which density
* class is involved (legacy chip id scheme).
*/
dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
return ERR_PTR(-ENODEV);
}
/*
* Detect and initialize DataFlash device, using JEDEC IDs on newer chips
* or else the ID code embedded in the status bits:
*
* Device Density ID code #Pages PageSize Offset
* AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
* AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
* AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
* AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
* AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
* AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
* AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
* AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
*/
static int __devinit dataflash_probe(struct spi_device *spi)
{
int status;
struct flash_info *info;
/*
* Try to detect dataflash by JEDEC ID.
* If it succeeds we know we have either a C or D part.
* D will support power of 2 pagesize option.
* Both support the security register, though with different
* write procedures.
*/
info = jedec_probe(spi);
if (IS_ERR(info))
return PTR_ERR(info);
if (info != NULL)
return add_dataflash_otp(spi, info->name, info->nr_pages,
info->pagesize, info->pageoffset,
(info->flags & SUP_POW2PS) ? 'd' :
'c');
/*
* Older chips support only legacy commands, identifing
* capacity using bits in the status byte.
*/
status = dataflash_status(spi);
if (status <= 0 || status == 0xff) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n",
dev_name(&spi->dev), status);
if (status == 0 || status == 0xff)
status = -ENODEV;
return status;
}
/* if there's a device there, assume it's dataflash.
* board setup should have set spi->max_speed_max to
* match f(car) for continuous reads, mode 0 or 3.
*/
switch (status & 0x3c) {
case 0x0c: /* 0 0 1 1 x x */
status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
break;
case 0x14: /* 0 1 0 1 x x */
status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
break;
case 0x1c: /* 0 1 1 1 x x */
status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
break;
case 0x24: /* 1 0 0 1 x x */
status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
break;
case 0x2c: /* 1 0 1 1 x x */
status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
break;
case 0x34: /* 1 1 0 1 x x */
status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
break;
case 0x38: /* 1 1 1 x x x */
case 0x3c:
status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
break;
/* obsolete AT45DB1282 not (yet?) supported */
default:
DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n",
dev_name(&spi->dev), status & 0x3c);
status = -ENODEV;
}
if (status < 0)
DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n",
dev_name(&spi->dev), status);
return status;
}
static int __devexit dataflash_remove(struct spi_device *spi)
{
struct dataflash *flash = dev_get_drvdata(&spi->dev);
int status;
DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", dev_name(&spi->dev));
if (mtd_has_partitions() && flash->partitioned)
status = del_mtd_partitions(&flash->mtd);
else
status = del_mtd_device(&flash->mtd);
if (status == 0)
kfree(flash);
return status;
}
static struct spi_driver dataflash_driver = {
.driver = {
.name = "mxc_dataflash",
.bus = &spi_bus_type,
.owner = THIS_MODULE,
},
.probe = dataflash_probe,
.remove = __devexit_p(dataflash_remove),
/* FIXME: investigate suspend and resume... */
};
static int __init dataflash_init(void)
{
return spi_register_driver(&dataflash_driver);
}
module_init(dataflash_init);
static void __exit dataflash_exit(void)
{
spi_unregister_driver(&dataflash_driver);
}
module_exit(dataflash_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MTD DataFlash driver");