Files
linux-legacy/drivers/rtc/rtc-mxc.c
r63889 566b342445 ENGR00113627 MX35 RTC: Make mxc_rtc independent of pmic_rtc
Remove get_ext_rtc_time/set_ext_rtc_time in rtc-mxc.c, making mxc_rtc totally
independent of pmic_rtc.

Signed-off-by: Lionel Xu <r63889@freescale.com>
2010-08-10 11:45:31 -05:00

737 lines
20 KiB
C

/*
* Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
/*
* Implementation based on rtc-ds1553.c
*/
/*!
* @defgroup RTC Real Time Clock (RTC) Driver
*/
/*!
* @file rtc-mxc.c
* @brief Real Time Clock interface
*
* This file contains Real Time Clock interface for Linux.
*
* @ingroup RTC
*/
#include <linux/rtc.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/uaccess.h>
#include <mach/hardware.h>
#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
#define RTC_SW_BIT (1 << 0)
#define RTC_ALM_BIT (1 << 2)
#define RTC_1HZ_BIT (1 << 4)
#define RTC_2HZ_BIT (1 << 7)
#define RTC_SAM0_BIT (1 << 8)
#define RTC_SAM1_BIT (1 << 9)
#define RTC_SAM2_BIT (1 << 10)
#define RTC_SAM3_BIT (1 << 11)
#define RTC_SAM4_BIT (1 << 12)
#define RTC_SAM5_BIT (1 << 13)
#define RTC_SAM6_BIT (1 << 14)
#define RTC_SAM7_BIT (1 << 15)
#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
#define RTC_ENABLE_BIT (1 << 7)
#define MAX_PIE_NUM 9
#define MAX_PIE_FREQ 512
const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
{2, RTC_2HZ_BIT},
{4, RTC_SAM0_BIT},
{8, RTC_SAM1_BIT},
{16, RTC_SAM2_BIT},
{32, RTC_SAM3_BIT},
{64, RTC_SAM4_BIT},
{128, RTC_SAM5_BIT},
{256, RTC_SAM6_BIT},
{MAX_PIE_FREQ, RTC_SAM7_BIT},
};
/* Those are the bits from a classic RTC we want to mimic */
#define RTC_IRQF 0x80 /* any of the following 3 is active */
#define RTC_PF 0x40 /* Periodic interrupt */
#define RTC_AF 0x20 /* Alarm interrupt */
#define RTC_UF 0x10 /* Update interrupt for 1Hz RTC */
#define MXC_RTC_TIME 0
#define MXC_RTC_ALARM 1
#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
struct rtc_plat_data {
struct rtc_device *rtc;
void __iomem *ioaddr;
unsigned long baseaddr;
int irq;
struct clk *clk;
unsigned int irqen;
int alrm_sec;
int alrm_min;
int alrm_hour;
int alrm_mday;
};
/*!
* @defgroup RTC Real Time Clock (RTC) Driver
*/
/*!
* @file rtc-mxc.c
* @brief Real Time Clock interface
*
* This file contains Real Time Clock interface for Linux.
*
* @ingroup RTC
*/
#define RTC_VERSION "1.0"
#define MXC_EXTERNAL_RTC_OK 0
#define MXC_EXTERNAL_RTC_ERR -1
#define MXC_EXTERNAL_RTC_NONE -2
static u32 rtc_freq = 2; /* minimun value for PIE */
static unsigned long rtc_status;
static struct rtc_time g_rtc_alarm = {
.tm_year = 0,
.tm_mon = 0,
.tm_mday = 0,
.tm_hour = 0,
.tm_mon = 0,
.tm_sec = 0,
};
static DEFINE_SPINLOCK(rtc_lock);
/*!
* This function is used to obtain the RTC time or the alarm value in
* second.
*
* @param time_alarm use MXC_RTC_TIME for RTC time value; MXC_RTC_ALARM for alarm value
*
* @return The RTC time or alarm time in second.
*/
static u32 get_alarm_or_time(struct device *dev, int time_alarm)
{
struct platform_device *pdev = to_platform_device(dev);
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
void __iomem *ioaddr = pdata->ioaddr;
u32 day, hr, min, sec, hr_min;
if (time_alarm == MXC_RTC_TIME) {
day = readw(ioaddr + RTC_DAYR);
hr_min = readw(ioaddr + RTC_HOURMIN);
sec = readw(ioaddr + RTC_SECOND);
} else if (time_alarm == MXC_RTC_ALARM) {
day = readw(ioaddr + RTC_DAYALARM);
hr_min = (0x0000FFFF) & readw(ioaddr + RTC_ALRM_HM);
sec = readw(ioaddr + RTC_ALRM_SEC);
} else {
panic("wrong value for time_alarm=%d\n", time_alarm);
}
hr = hr_min >> 8;
min = hr_min & 0x00FF;
return ((((day * 24 + hr) * 60) + min) * 60 + sec);
}
/*!
* This function sets the RTC alarm value or the time value.
*
* @param time_alarm the new alarm value to be updated in the RTC
* @param time use MXC_RTC_TIME for RTC time value; MXC_RTC_ALARM for alarm value
*/
static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
{
u32 day, hr, min, sec, temp;
struct platform_device *pdev = to_platform_device(dev);
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
void __iomem *ioaddr = pdata->ioaddr;
day = time / 86400;
time -= day * 86400;
/* time is within a day now */
hr = time / 3600;
time -= hr * 3600;
/* time is within an hour now */
min = time / 60;
sec = time - min * 60;
temp = (hr << 8) + min;
if (time_alarm == MXC_RTC_TIME) {
writew(day, ioaddr + RTC_DAYR);
writew(sec, ioaddr + RTC_SECOND);
writew(temp, ioaddr + RTC_HOURMIN);
} else if (time_alarm == MXC_RTC_ALARM) {
writew(day, ioaddr + RTC_DAYALARM);
writew(sec, ioaddr + RTC_ALRM_SEC);
writew(temp, ioaddr + RTC_ALRM_HM);
} else {
panic("wrong value for time_alarm=%d\n", time_alarm);
}
}
/*!
* This function updates the RTC alarm registers and then clears all the
* interrupt status bits.
*
* @param alrm the new alarm value to be updated in the RTC
*
* @return 0 if successful; non-zero otherwise.
*/
static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
{
struct rtc_time alarm_tm, now_tm;
unsigned long now, time;
int ret;
struct platform_device *pdev = to_platform_device(dev);
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
void __iomem *ioaddr = pdata->ioaddr;
now = get_alarm_or_time(dev, MXC_RTC_TIME);
rtc_time_to_tm(now, &now_tm);
alarm_tm.tm_year = now_tm.tm_year;
alarm_tm.tm_mon = now_tm.tm_mon;
alarm_tm.tm_mday = now_tm.tm_mday;
alarm_tm.tm_hour = alrm->tm_hour;
alarm_tm.tm_min = alrm->tm_min;
alarm_tm.tm_sec = alrm->tm_sec;
rtc_tm_to_time(&now_tm, &now);
rtc_tm_to_time(&alarm_tm, &time);
if (time < now) {
time += 60 * 60 * 24;
rtc_time_to_tm(time, &alarm_tm);
}
ret = rtc_tm_to_time(&alarm_tm, &time);
/* clear all the interrupt status bits */
writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
set_alarm_or_time(dev, MXC_RTC_ALARM, time);
return ret;
}
/*!
* This function is the RTC interrupt service routine.
*
* @param irq RTC IRQ number
* @param dev_id device ID which is not used
*
* @return IRQ_HANDLED as defined in the include/linux/interrupt.h file.
*/
static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = dev_id;
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
void __iomem *ioaddr = pdata->ioaddr;
u32 status;
u32 events = 0;
spin_lock(&rtc_lock);
status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
/* clear interrupt sources */
writew(status, ioaddr + RTC_RTCISR);
/* clear alarm interrupt if it has occurred */
if (status & RTC_ALM_BIT) {
status &= ~RTC_ALM_BIT;
}
/* update irq data & counter */
if (status & RTC_ALM_BIT) {
events |= (RTC_AF | RTC_IRQF);
}
if (status & RTC_1HZ_BIT) {
events |= (RTC_UF | RTC_IRQF);
}
if (status & PIT_ALL_ON) {
events |= (RTC_PF | RTC_IRQF);
}
if ((status & RTC_ALM_BIT) && rtc_valid_tm(&g_rtc_alarm)) {
rtc_update_alarm(&pdev->dev, &g_rtc_alarm);
}
spin_unlock(&rtc_lock);
rtc_update_irq(pdata->rtc, 1, events);
return IRQ_HANDLED;
}
/*!
* This function is used to open the RTC driver by registering the RTC
* interrupt service routine.
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_open(struct device *dev)
{
if (test_and_set_bit(1, &rtc_status))
return -EBUSY;
return 0;
}
/*!
* clear all interrupts and release the IRQ
*/
static void mxc_rtc_release(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
void __iomem *ioaddr = pdata->ioaddr;
spin_lock_irq(&rtc_lock);
writew(0, ioaddr + RTC_RTCIENR); /* Disable all rtc interrupts */
writew(0xFFFFFFFF, ioaddr + RTC_RTCISR); /* Clear all interrupt status */
spin_unlock_irq(&rtc_lock);
rtc_status = 0;
}
/*!
* This function is used to support some ioctl calls directly.
* Other ioctl calls are supported indirectly through the
* arm/common/rtctime.c file.
*
* @param cmd ioctl command as defined in include/linux/rtc.h
* @param arg value for the ioctl command
*
* @return 0 if successful or negative value otherwise.
*/
static int mxc_rtc_ioctl(struct device *dev, unsigned int cmd,
unsigned long arg)
{
struct platform_device *pdev = to_platform_device(dev);
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
void __iomem *ioaddr = pdata->ioaddr;
int i;
switch (cmd) {
case RTC_PIE_OFF:
writew((readw(ioaddr + RTC_RTCIENR) & ~PIT_ALL_ON),
ioaddr + RTC_RTCIENR);
return 0;
case RTC_IRQP_SET:
if (arg < 2 || arg > MAX_PIE_FREQ || (arg % 2) != 0)
return -EINVAL; /* Also make sure a power of 2Hz */
if ((arg > 64) && (!capable(CAP_SYS_RESOURCE)))
return -EACCES;
rtc_freq = arg;
return 0;
case RTC_IRQP_READ:
return put_user(rtc_freq, (u32 *) arg);
case RTC_PIE_ON:
for (i = 0; i < MAX_PIE_NUM; i++) {
if (PIE_BIT_DEF[i][0] == rtc_freq) {
break;
}
}
if (i == MAX_PIE_NUM) {
return -EACCES;
}
spin_lock_irq(&rtc_lock);
writew((readw(ioaddr + RTC_RTCIENR) | PIE_BIT_DEF[i][1]),
ioaddr + RTC_RTCIENR);
spin_unlock_irq(&rtc_lock);
return 0;
case RTC_AIE_OFF:
spin_lock_irq(&rtc_lock);
writew((readw(ioaddr + RTC_RTCIENR) & ~RTC_ALM_BIT),
ioaddr + RTC_RTCIENR);
spin_unlock_irq(&rtc_lock);
return 0;
case RTC_AIE_ON:
spin_lock_irq(&rtc_lock);
writew((readw(ioaddr + RTC_RTCIENR) | RTC_ALM_BIT),
ioaddr + RTC_RTCIENR);
spin_unlock_irq(&rtc_lock);
return 0;
case RTC_UIE_OFF: /* UIE is for the 1Hz interrupt */
spin_lock_irq(&rtc_lock);
writew((readw(ioaddr + RTC_RTCIENR) & ~RTC_1HZ_BIT),
ioaddr + RTC_RTCIENR);
spin_unlock_irq(&rtc_lock);
return 0;
case RTC_UIE_ON:
spin_lock_irq(&rtc_lock);
writew((readw(ioaddr + RTC_RTCIENR) | RTC_1HZ_BIT),
ioaddr + RTC_RTCIENR);
spin_unlock_irq(&rtc_lock);
return 0;
}
return -ENOIOCTLCMD;
}
/*!
* This function reads the current RTC time into tm in Gregorian date.
*
* @param tm contains the RTC time value upon return
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
u32 val;
/* Avoid roll-over from reading the different registers */
do {
val = get_alarm_or_time(dev, MXC_RTC_TIME);
} while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
rtc_time_to_tm(val, tm);
return 0;
}
/*!
* This function sets the internal RTC time based on tm in Gregorian date.
*
* @param tm the time value to be set in the RTC
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
unsigned long time;
int ret;
ret = rtc_tm_to_time(tm, &time);
if (ret != 0) {
return ret;
}
/* Avoid roll-over from reading the different registers */
do {
set_alarm_or_time(dev, MXC_RTC_TIME, time);
} while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
return ret;
}
/*!
* This function reads the current alarm value into the passed in \b alrm
* argument. It updates the \b alrm's pending field value based on the whether
* an alarm interrupt occurs or not.
*
* @param alrm contains the RTC alarm value upon return
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct platform_device *pdev = to_platform_device(dev);
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
void __iomem *ioaddr = pdata->ioaddr;
rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
alrm->pending =
((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT) != 0) ? 1 : 0;
return 0;
}
/*!
* This function sets the RTC alarm based on passed in alrm.
*
* @param alrm the alarm value to be set in the RTC
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct platform_device *pdev = to_platform_device(dev);
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
void __iomem *ioaddr = pdata->ioaddr;
int ret;
spin_lock_irq(&rtc_lock);
if (rtc_valid_tm(&alrm->time)) {
if (alrm->time.tm_sec > 59 ||
alrm->time.tm_hour > 23 || alrm->time.tm_min > 59) {
ret = -EINVAL;
goto out;
}
ret = rtc_update_alarm(dev, &alrm->time);
} else {
if ((ret = rtc_valid_tm(&alrm->time)))
goto out;
ret = rtc_update_alarm(dev, &alrm->time);
}
if (ret == 0) {
memcpy(&g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
if (alrm->enabled) {
writew((readw(ioaddr + RTC_RTCIENR) | RTC_ALM_BIT),
ioaddr + RTC_RTCIENR);
} else {
writew((readw(ioaddr + RTC_RTCIENR) & ~RTC_ALM_BIT),
ioaddr + RTC_RTCIENR);
}
}
out:
spin_unlock_irq(&rtc_lock);
return ret;
}
/*!
* This function is used to provide the content for the /proc/driver/rtc
* file.
*
* @param buf the buffer to hold the information that the driver wants to write
*
* @return The number of bytes written into the rtc file.
*/
static int mxc_rtc_proc(struct device *dev, struct seq_file *sq)
{
struct platform_device *pdev = to_platform_device(dev);
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
void __iomem *ioaddr = pdata->ioaddr;
char *p = sq->buf;
p += sprintf(p, "alarm_IRQ\t: %s\n",
(((readw(ioaddr + RTC_RTCIENR)) & RTC_ALM_BIT) !=
0) ? "yes" : "no");
p += sprintf(p, "update_IRQ\t: %s\n",
(((readw(ioaddr + RTC_RTCIENR)) & RTC_1HZ_BIT) !=
0) ? "yes" : "no");
p += sprintf(p, "periodic_IRQ\t: %s\n",
(((readw(ioaddr + RTC_RTCIENR)) & PIT_ALL_ON) !=
0) ? "yes" : "no");
p += sprintf(p, "periodic_freq\t: %d\n", rtc_freq);
return p - (sq->buf);
}
/*!
* The RTC driver structure
*/
static struct rtc_class_ops mxc_rtc_ops = {
.open = mxc_rtc_open,
.release = mxc_rtc_release,
.ioctl = mxc_rtc_ioctl,
.read_time = mxc_rtc_read_time,
.set_time = mxc_rtc_set_time,
.read_alarm = mxc_rtc_read_alarm,
.set_alarm = mxc_rtc_set_alarm,
.proc = mxc_rtc_proc,
};
/*! MXC RTC Power management control */
static struct timespec mxc_rtc_delta;
static int mxc_rtc_probe(struct platform_device *pdev)
{
struct clk *clk;
struct timespec tv;
struct resource *res;
struct rtc_device *rtc;
struct rtc_plat_data *pdata = NULL;
u32 reg;
int ret = 0;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
pdata->clk = clk_get(&pdev->dev, "rtc_clk");
clk_enable(pdata->clk);
pdata->baseaddr = res->start;
pdata->ioaddr = ((void *)(IO_ADDRESS(pdata->baseaddr)));
/* Configure and enable the RTC */
pdata->irq = platform_get_irq(pdev, 0);
if (pdata->irq >= 0) {
if (request_irq(pdata->irq, mxc_rtc_interrupt, IRQF_SHARED,
pdev->name, pdev) < 0) {
dev_warn(&pdev->dev, "interrupt not available.\n");
pdata->irq = -1;
}
}
rtc =
rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
THIS_MODULE);
if (IS_ERR(rtc)) {
ret = PTR_ERR(rtc);
if (pdata->irq >= 0)
free_irq(pdata->irq, pdev);
kfree(pdata);
return ret;
}
pdata->rtc = rtc;
platform_set_drvdata(pdev, pdata);
tv.tv_nsec = 0;
tv.tv_sec = get_alarm_or_time(&pdev->dev, MXC_RTC_TIME);
clk = clk_get(NULL, "ckil");
if (clk_get_rate(clk) == 32768)
reg = RTC_INPUT_CLK_32768HZ;
else if (clk_get_rate(clk) == 32000)
reg = RTC_INPUT_CLK_32000HZ;
else if (clk_get_rate(clk) == 38400)
reg = RTC_INPUT_CLK_38400HZ;
else {
printk(KERN_ALERT "rtc clock is not valid");
return -EINVAL;
}
clk_put(clk);
reg |= RTC_ENABLE_BIT;
writew(reg, (pdata->ioaddr + RTC_RTCCTL));
if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
printk(KERN_ALERT "rtc : hardware module can't be enabled!\n");
return -EPERM;
}
printk("Real TIme clock Driver v%s \n", RTC_VERSION);
return ret;
}
static int __exit mxc_rtc_remove(struct platform_device *pdev)
{
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
rtc_device_unregister(pdata->rtc);
if (pdata->irq >= 0) {
free_irq(pdata->irq, pdev);
}
clk_disable(pdata->clk);
clk_put(pdata->clk);
kfree(pdata);
mxc_rtc_release(NULL);
return 0;
}
/*!
* This function is called to save the system time delta relative to
* the MXC RTC when enterring a low power state. This time delta is
* then used on resume to adjust the system time to account for time
* loss while suspended.
*
* @param pdev not used
* @param state Power state to enter.
*
* @return The function always returns 0.
*/
static int mxc_rtc_suspend(struct platform_device *pdev, pm_message_t state)
{
struct timespec tv;
/* calculate time delta for suspend */
/* RTC precision is 1 second; adjust delta for avg 1/2 sec err */
tv.tv_nsec = NSEC_PER_SEC >> 1;
tv.tv_sec = get_alarm_or_time(&pdev->dev, MXC_RTC_TIME);
set_normalized_timespec(&mxc_rtc_delta,
xtime.tv_sec - tv.tv_sec,
xtime.tv_nsec - tv.tv_nsec);
return 0;
}
/*!
* This function is called to correct the system time based on the
* current MXC RTC time relative to the time delta saved during
* suspend.
*
* @param pdev not used
*
* @return The function always returns 0.
*/
static int mxc_rtc_resume(struct platform_device *pdev)
{
struct timespec tv;
struct timespec ts;
tv.tv_nsec = 0;
tv.tv_sec = get_alarm_or_time(&pdev->dev, MXC_RTC_TIME);
/* restore wall clock using delta against this RTC;
* adjust again for avg 1/2 second RTC sampling error
*/
set_normalized_timespec(&ts,
tv.tv_sec + mxc_rtc_delta.tv_sec,
(NSEC_PER_SEC >> 1) + mxc_rtc_delta.tv_nsec);
do_settimeofday(&ts);
return 0;
}
/*!
* Contains pointers to the power management callback functions.
*/
static struct platform_driver mxc_rtc_driver = {
.driver = {
.name = "mxc_rtc",
},
.probe = mxc_rtc_probe,
.remove = __exit_p(mxc_rtc_remove),
.suspend = mxc_rtc_suspend,
.resume = mxc_rtc_resume,
};
/*!
* This function creates the /proc/driver/rtc file and registers the device RTC
* in the /dev/misc directory. It also reads the RTC value from external source
* and setup the internal RTC properly.
*
* @return -1 if RTC is failed to initialize; 0 is successful.
*/
static int __init mxc_rtc_init(void)
{
return platform_driver_register(&mxc_rtc_driver);
}
/*!
* This function removes the /proc/driver/rtc file and un-registers the
* device RTC from the /dev/misc directory.
*/
static void __exit mxc_rtc_exit(void)
{
platform_driver_unregister(&mxc_rtc_driver);
}
device_initcall_sync(mxc_rtc_init);
module_exit(mxc_rtc_exit);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");