diff --git a/README.md b/README.md index 8dede82..0b64a27 100644 --- a/README.md +++ b/README.md @@ -5,7 +5,7 @@ [![LICENSE](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/TencentARC/GFPGAN/blob/master/LICENSE) [![python lint](https://github.com/TencentARC/GFPGAN/actions/workflows/pylint.yml/badge.svg)](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/pylint.yml) -1. [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) for GFPGAN google colab logo +1. [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) for GFPGAN google colab logo; (Another [Colab Demo](https://colab.research.google.com/drive/1Oa1WwKB4M4l1GmR7CtswDVgOCOeSLChA?usp=sharing) for the original paper model) 1. We provide a *clean* version of GFPGAN, which can run without CUDA extensions. So that it can run in **Windows** or on **CPU mode**. GFPGAN aims at developing **Practical Algorithm for Real-world Face Restoration**.
@@ -13,7 +13,7 @@ It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g :triangular_flag_on_post: **Updates** -- :white_check_mark: We provide a *clean* version of GFPGAN, which does not require CUDA extensionts. +- :white_check_mark: We provide a *clean* version of GFPGAN, which does not require CUDA extensions. - :white_check_mark: We provide an updated model without colorizing faces. ### :book: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior @@ -77,8 +77,8 @@ python inference_gfpgan_full.py --upscale_factor 2 --test_path inputs/whole_imgs ## :european_castle: Model Zoo -- [GFPGANCleanv1-NoCE-C2.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth) -- [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth) +- [GFPGANCleanv1-NoCE-C2.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth): No colorization; no CUDA extensions are required. It is still in training. Trained with more data with pre-processing. +- [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth): The paper Model, with colorization. ## :computer: Training diff --git a/inputs/whole_imgs/Blake_Lively.jpg b/inputs/whole_imgs/Blake_Lively.jpg new file mode 100644 index 0000000..bc986be Binary files /dev/null and b/inputs/whole_imgs/Blake_Lively.jpg differ