Files
sharpcompress/src/SharpCompress/Compressors/ZStandard/BitOperations.cs

312 lines
11 KiB
C#

// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
#if !NETCOREAPP3_0_OR_GREATER
using System.Runtime.CompilerServices;
using static SharpCompress.Compressors.ZStandard.UnsafeHelper;
// Some routines inspired by the Stanford Bit Twiddling Hacks by Sean Eron Anderson:
// http://graphics.stanford.edu/~seander/bithacks.html
namespace System.Numerics
{
/// <summary>
/// Utility methods for intrinsic bit-twiddling operations.
/// The methods use hardware intrinsics when available on the underlying platform,
/// otherwise they use optimized software fallbacks.
/// </summary>
public static unsafe class BitOperations
{
// hack: should be public because of inline
public static readonly byte* TrailingZeroCountDeBruijn = GetArrayPointer(
new byte[]
{
00,
01,
28,
02,
29,
14,
24,
03,
30,
22,
20,
15,
25,
17,
04,
08,
31,
27,
13,
23,
21,
19,
16,
07,
26,
12,
18,
06,
11,
05,
10,
09,
}
);
// hack: should be public because of inline
public static readonly byte* Log2DeBruijn = GetArrayPointer(
new byte[]
{
00,
09,
01,
10,
13,
21,
02,
29,
11,
14,
16,
18,
22,
25,
03,
30,
08,
12,
20,
28,
15,
17,
24,
07,
19,
27,
23,
06,
26,
05,
04,
31,
}
);
/// <summary>
/// Returns the integer (floor) log of the specified value, base 2.
/// Note that by convention, input value 0 returns 0 since log(0) is undefined.
/// </summary>
/// <param name="value">The value.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Log2(uint value)
{
// The 0->0 contract is fulfilled by setting the LSB to 1.
// Log(1) is 0, and setting the LSB for values > 1 does not change the log2 result.
value |= 1;
// value lzcnt actual expected
// ..0001 31 31-31 0
// ..0010 30 31-30 1
// 0010.. 2 31-2 29
// 0100.. 1 31-1 30
// 1000.. 0 31-0 31
// Fallback contract is 0->0
// No AggressiveInlining due to large method size
// Has conventional contract 0->0 (Log(0) is undefined)
// Fill trailing zeros with ones, eg 00010010 becomes 00011111
value |= value >> 01;
value |= value >> 02;
value |= value >> 04;
value |= value >> 08;
value |= value >> 16;
// uint.MaxValue >> 27 is always in range [0 - 31] so we use Unsafe.AddByteOffset to avoid bounds check
return Log2DeBruijn[
// Using deBruijn sequence, k=2, n=5 (2^5=32) : 0b_0000_0111_1100_0100_1010_1100_1101_1101u
(int)((value * 0x07C4ACDDu) >> 27)
];
}
/// <summary>
/// Returns the integer (floor) log of the specified value, base 2.
/// Note that by convention, input value 0 returns 0 since log(0) is undefined.
/// </summary>
/// <param name="value">The value.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Log2(ulong value)
{
value |= 1;
uint hi = (uint)(value >> 32);
if (hi == 0)
{
return Log2((uint)value);
}
return 32 + Log2(hi);
}
/// <summary>
/// Count the number of trailing zero bits in an integer value.
/// Similar in behavior to the x86 instruction TZCNT.
/// </summary>
/// <param name="value">The value.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int TrailingZeroCount(int value) => TrailingZeroCount((uint)value);
/// <summary>
/// Count the number of trailing zero bits in an integer value.
/// Similar in behavior to the x86 instruction TZCNT.
/// </summary>
/// <param name="value">The value.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int TrailingZeroCount(uint value)
{
// Unguarded fallback contract is 0->0, BSF contract is 0->undefined
if (value == 0)
{
return 32;
}
// uint.MaxValue >> 27 is always in range [0 - 31] so we use Unsafe.AddByteOffset to avoid bounds check
return TrailingZeroCountDeBruijn[
// Using deBruijn sequence, k=2, n=5 (2^5=32) : 0b_0000_0111_0111_1100_1011_0101_0011_0001u
(int)(((value & (uint)-(int)value) * 0x077CB531u) >> 27)
]; // Multi-cast mitigates redundant conv.u8
}
/// <summary>
/// Count the number of trailing zero bits in a mask.
/// Similar in behavior to the x86 instruction TZCNT.
/// </summary>
/// <param name="value">The value.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int TrailingZeroCount(long value) => TrailingZeroCount((ulong)value);
/// <summary>
/// Count the number of trailing zero bits in a mask.
/// Similar in behavior to the x86 instruction TZCNT.
/// </summary>
/// <param name="value">The value.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int TrailingZeroCount(ulong value)
{
uint lo = (uint)value;
if (lo == 0)
{
return 32 + TrailingZeroCount((uint)(value >> 32));
}
return TrailingZeroCount(lo);
}
/// <summary>
/// Rotates the specified value left by the specified number of bits.
/// Similar in behavior to the x86 instruction ROL.
/// </summary>
/// <param name="value">The value to rotate.</param>
/// <param name="offset">The number of bits to rotate by.
/// Any value outside the range [0..31] is treated as congruent mod 32.</param>
/// <returns>The rotated value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint RotateLeft(uint value, int offset) =>
(value << offset) | (value >> (32 - offset));
/// <summary>
/// Rotates the specified value left by the specified number of bits.
/// Similar in behavior to the x86 instruction ROL.
/// </summary>
/// <param name="value">The value to rotate.</param>
/// <param name="offset">The number of bits to rotate by.
/// Any value outside the range [0..63] is treated as congruent mod 64.</param>
/// <returns>The rotated value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static ulong RotateLeft(ulong value, int offset) =>
(value << offset) | (value >> (64 - offset));
/// <summary>
/// Rotates the specified value right by the specified number of bits.
/// Similar in behavior to the x86 instruction ROR.
/// </summary>
/// <param name="value">The value to rotate.</param>
/// <param name="offset">The number of bits to rotate by.
/// Any value outside the range [0..31] is treated as congruent mod 32.</param>
/// <returns>The rotated value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static uint RotateRight(uint value, int offset) =>
(value >> offset) | (value << (32 - offset));
/// <summary>
/// Rotates the specified value right by the specified number of bits.
/// Similar in behavior to the x86 instruction ROR.
/// </summary>
/// <param name="value">The value to rotate.</param>
/// <param name="offset">The number of bits to rotate by.
/// Any value outside the range [0..63] is treated as congruent mod 64.</param>
/// <returns>The rotated value.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static ulong RotateRight(ulong value, int offset) =>
(value >> offset) | (value << (64 - offset));
/// <summary>
/// Count the number of leading zero bits in a mask.
/// Similar in behavior to the x86 instruction LZCNT.
/// </summary>
/// <param name="value">The value.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int LeadingZeroCount(uint value)
{
// Unguarded fallback contract is 0->31, BSR contract is 0->undefined
if (value == 0)
{
return 32;
}
// No AggressiveInlining due to large method size
// Has conventional contract 0->0 (Log(0) is undefined)
// Fill trailing zeros with ones, eg 00010010 becomes 00011111
value |= value >> 01;
value |= value >> 02;
value |= value >> 04;
value |= value >> 08;
value |= value >> 16;
// uint.MaxValue >> 27 is always in range [0 - 31] so we use Unsafe.AddByteOffset to avoid bounds check
return 31
^ Log2DeBruijn[
// uint|long -> IntPtr cast on 32-bit platforms does expensive overflow checks not needed here
(int)((value * 0x07C4ACDDu) >> 27)
];
}
/// <summary>
/// Count the number of leading zero bits in a mask.
/// Similar in behavior to the x86 instruction LZCNT.
/// </summary>
/// <param name="value">The value.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int LeadingZeroCount(ulong value)
{
uint hi = (uint)(value >> 32);
if (hi == 0)
{
return 32 + LeadingZeroCount((uint)value);
}
return LeadingZeroCount(hi);
}
}
}
#endif