3 Commits

Author SHA1 Message Date
Matt Nadareski
dc68aa5046 Summary overhaul 2019-04-07 22:45:27 -07:00
Matt Nadareski
ff486d8613 More modularization of shared code 2019-04-07 21:21:34 -07:00
Matt Nadareski
941f7d5191 Modularization, cleanup 2019-04-07 13:54:25 -07:00
19 changed files with 1262 additions and 560 deletions

View File

@@ -49,6 +49,7 @@
<ItemGroup>
<Compile Include="Data\Constants.cs" />
<Compile Include="Headers\NCCHHeaderFlags.cs" />
<Compile Include="Headers\RomFSHeader.cs" />
<Compile Include="ThreeDSTool.cs" />
<Compile Include="Data\Enums.cs" />
<Compile Include="Headers\AccessControlInfo.cs" />

View File

@@ -2,6 +2,61 @@
namespace ThreeDS.Data
{
[Flags]
public enum ARM9AccessControlDescriptors : byte
{
MountNandRoot = 0x01,
MountNandroWriteAccess = 0x02,
MountTwlnRoot = 0x04,
MountWnandRoot = 0x08,
MountCardSPI = 0x0F,
UseSDIF3 = 0x10,
CreateSeed = 0x20,
UseCardSPI = 0x40,
SDApplication = 0x80,
MoundSdmcWriteAccess = 0xF0,
}
[Flags]
public enum ARM11LSCFlag0 : byte
{
IdealProcessor = 0x01 | 0x02,
AffinityMask = 0x04 | 0x08,
/// <summary>
/// Value Description
/// 0 Prod (64MB of usable application memory)
/// 1 Undefined (unusable)
/// 2 Dev1 (96MB of usable application memory)
/// 3 Dev2 (80MB of usable application memory)
/// 4 Dev3 (72MB of usable application memory)
/// 5 Dev4 (32MB of usable application memory)
/// 6-7 Undefined Same as Prod?
/// </summary>
Old3DSSystemMode = 0x0F | 0x10 | 0x20 | 0x40,
}
[Flags]
public enum ARM11LSCFlag1 : byte
{
EnableL2Cache = 0x01,
Cpuspeed_804MHz = 0x02,
}
[Flags]
public enum ARM11LSCFlag2 : byte
{
/// <summary>
/// Value Description
/// 0 Legacy (use Old3DS system mode)
/// 1 Prod (124MB of usable application memory)
/// 2 Dev1 (178MB of usable application memory)
/// 3 Dev2 (124MB of usable application memory)
/// 4-7 Undefined Same as Prod?
/// </summary>
New3DSSystemMode = 0x01 | 0x02 | 0x04 | 0x08,
}
[Flags]
public enum BitMasks : byte
{
@@ -36,6 +91,33 @@ namespace ThreeDS.Data
NineSix = 0x0B,
}
[Flags]
public enum FilesystemAccessInfo : ulong
{
CategorySystemApplication = 0x1,
CategoryHardwareCheck = 0x2,
CategoryFilesystemTool = 0x4,
Debug = 0x8,
TWLCardBackup = 0x10,
TWLNANDData = 0x20,
BOSS = 0x40,
sdmcRoot = 0x80,
Core = 0x100,
nandRootroReadOnly = 0x200,
nandRootrw = 0x400,
nandrootroWriteAccess = 0x800,
CategorySystemSettings = 0x1000,
Cardboard = 0x2000,
ExportImportIVS = 0x4000,
sdmcRootWriteOnly = 0x8000,
SwitchCleanup = 0x10000, // Introduced in 3.0.0?
SavedataMove = 0x20000, // Introduced in 5.0.0
Shop = 0x40000, // Introduced in 5.0.0
Shell = 0x80000, // Introduced in 5.0.0
CategoryHomeMenu = 0x100000, // Introduced in 6.0.0
SeedDB = 0x200000, // Introduced in 9.6.0-X FIRM. Home Menu has this bit set starting with 9.6.0-X.
}
public enum FilesystemType : ulong
{
None = 0,
@@ -82,4 +164,19 @@ namespace ThreeDS.Data
MediaUnitSize = 0x06,
MediaCardDevice2X = 0x07,
}
public enum ResourceLimitCategory
{
APPLICATION = 0,
SYS_APPLET = 1,
LIB_APPLET = 2,
OTHER = 3,
}
[Flags]
public enum StorageInfoOtherAttributes : byte
{
NotUseROMFS = 0x01,
UseExtendedSavedataAccess = 0x02,
}
}

View File

@@ -4,15 +4,52 @@ namespace ThreeDS.Headers
{
public class ARM11KernelCapabilities
{
public byte[][] Descriptors = new byte[28][];
public byte[] Reserved = new byte[0x10];
/// <summary>
/// Descriptors
/// -------------------
/// Pattern of bits 20-31 Type Fields
/// 0b1110xxxxxxxx Interrupt info
/// 0b11110xxxxxxx System call mask Bits 24-26: System call mask table index; Bits 0-23: mask
/// 0b1111110xxxxx Kernel release version Bits 8-15: Major version; Bits 0-7: Minor version
/// 0b11111110xxxx Handle table size Bits 0-18: size
/// 0b111111110xxx Kernel flags
/// 0b11111111100x Map address range Describes a memory mapping like the 0b111111111110 descriptor, but an entire range rather than a single page is mapped.Another 0b11111111100x descriptor must follow this one to denote the(exclusive) end of the address range to map.
/// 0b111111111110 Map memory page Bits 0-19: page index to map(virtual address >> 12; the physical address is determined per-page according to Memory layout); Bit 20: Map read-only(otherwise read-write)
///
/// ARM11 Kernel Flags
/// -------------------
/// Bit Description
/// 0 Allow debug
/// 1 Force debug
/// 2 Allow non-alphanum
/// 3 Shared page writing
/// 4 Privilege priority
/// 5 Allow main() args
/// 6 Shared device memory
/// 7 Runnable on sleep
/// 8-11 Memory type(1: application, 2: system, 3: base)
/// 12 Special memory
/// 13 Process has access to CPU core 2 (New3DS only)
/// </summary>
public byte[][] Descriptors { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved { get; private set; }
/// <summary>
/// Read from a stream and get ARM11 kernel capabilities, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>ARM11 kernel capabilities object, null on error</returns>
public static ARM11KernelCapabilities Read(BinaryReader reader)
{
ARM11KernelCapabilities kc = new ARM11KernelCapabilities();
try
{
kc.Descriptors = new byte[28][];
for (int i = 0; i < 28; i++)
kc.Descriptors[i] = reader.ReadBytes(4);

View File

@@ -1,22 +1,75 @@
using System.IO;
using ThreeDS.Data;
namespace ThreeDS.Headers
{
public class ARM11LocalSystemCapabilities
{
public byte[] ProgramID = new byte[8];
public uint CoreVersion;
public byte Flag1;
public byte Flag2;
public byte Flag0;
public byte Priority;
public byte[][] ResourceLimitDescriptors = new byte[16][];
public StorageInfo StorageInfo;
public byte[][] ServiceAccessControl = new byte[32][];
public byte[][] ExtendedServiceAccessControl = new byte[2][];
public byte[] Reserved = new byte[0xF];
public byte ResourceLimitCategory;
/// <summary>
/// Program ID
/// </summary>
public byte[] ProgramID { get; private set; }
/// <summary>
/// Core version (The Title ID low of the required FIRM)
/// </summary>
public uint CoreVersion { get; private set; }
/// <summary>
/// Flag1 (implemented starting from 8.0.0-18).
/// </summary>
public ARM11LSCFlag1 Flag1 { get; private set; }
/// <summary>
/// Flag2 (implemented starting from 8.0.0-18).
/// </summary>
public ARM11LSCFlag2 Flag2 { get; private set; }
/// <summary>
/// Flag0
/// </summary>
public ARM11LSCFlag0 Flag0 { get; private set; }
/// <summary>
/// Priority
/// </summary>
public byte Priority { get; private set; }
/// <summary>
/// Resource limit descriptors. The first byte here controls the maximum allowed CpuTime.
/// </summary>
public byte[][] ResourceLimitDescriptors { get; private set; }
/// <summary>
/// Storage info
/// </summary>
public StorageInfo StorageInfo { get; private set; }
/// <summary>
/// Service access control
/// </summary>
public byte[][] ServiceAccessControl { get; private set; }
/// <summary>
/// Extended service access control, support for this was implemented with 9.3.0-X.
/// </summary>
public byte[][] ExtendedServiceAccessControl { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved { get; private set; }
/// <summary>
/// Resource limit category. (0 = APPLICATION, 1 = SYS_APPLET, 2 = LIB_APPLET, 3 = OTHER (sysmodules running under the BASE memregion))
/// </summary>
public ResourceLimitCategory ResourceLimitCategory { get; private set; }
/// <summary>
/// Read from a stream and get ARM11 local system capabilities, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>ARM11 local system capabilities object, null on error</returns>
public static ARM11LocalSystemCapabilities Read(BinaryReader reader)
{
ARM11LocalSystemCapabilities lsc = new ARM11LocalSystemCapabilities();
@@ -25,24 +78,27 @@ namespace ThreeDS.Headers
{
lsc.ProgramID = reader.ReadBytes(8);
lsc.CoreVersion = reader.ReadUInt32();
lsc.Flag1 = reader.ReadByte();
lsc.Flag2 = reader.ReadByte();
lsc.Flag0 = reader.ReadByte();
lsc.Flag1 = (ARM11LSCFlag1)reader.ReadByte();
lsc.Flag2 = (ARM11LSCFlag2)reader.ReadByte();
lsc.Flag0 = (ARM11LSCFlag0)reader.ReadByte();
lsc.Priority = reader.ReadByte();
lsc.ResourceLimitDescriptors = new byte[16][];
for (int i = 0; i < 16; i++)
lsc.ResourceLimitDescriptors[i] = reader.ReadBytes(2);
lsc.StorageInfo = StorageInfo.Read(reader);
lsc.ServiceAccessControl = new byte[32][];
for (int i = 0; i < 32; i++)
lsc.ServiceAccessControl[i] = reader.ReadBytes(8);
lsc.ExtendedServiceAccessControl = new byte[2][];
for (int i = 0; i < 2; i++)
lsc.ExtendedServiceAccessControl[i] = reader.ReadBytes(8);
lsc.Reserved = reader.ReadBytes(0xF);
lsc.ResourceLimitCategory = reader.ReadByte();
lsc.ResourceLimitCategory = (ResourceLimitCategory)reader.ReadByte();
return lsc;
}
catch

View File

@@ -1,19 +1,34 @@
using System.IO;
using ThreeDS.Data;
namespace ThreeDS.Headers
{
public class ARM9AccessControl
{
public byte[] Descriptors = new byte[15];
public byte DescriptorVersion;
/// <summary>
/// Descriptors
/// </summary>
public ARM9AccessControlDescriptors[] Descriptors { get; private set; }
/// <summary>
/// ARM9 Descriptor Version. Originally this value had to be ≥ 2. Starting with 9.3.0-X this value has to be either value 2 or value 3.
/// </summary>
public byte DescriptorVersion { get; private set; }
/// <summary>
/// Read from a stream and get ARM9 access control, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>ARM9 access control object, null on error</returns>
public static ARM9AccessControl Read(BinaryReader reader)
{
ARM9AccessControl ac = new ARM9AccessControl();
try
{
ac.Descriptors = reader.ReadBytes(15);
ac.Descriptors = new ARM9AccessControlDescriptors[15];
for (int i = 0; i < 15; i++)
ac.Descriptors[i] = (ARM9AccessControlDescriptors)reader.ReadByte();
ac.DescriptorVersion = reader.ReadByte();
return ac;
}

View File

@@ -4,10 +4,26 @@ namespace ThreeDS.Headers
{
public class AccessControlInfo
{
public ARM11LocalSystemCapabilities ARM11LocalSystemCapabilities;
public ARM11KernelCapabilities ARM11KernelCapabilities;
public ARM9AccessControl ARM9AccessControl;
/// <summary>
/// ARM11 local system capabilities
/// </summary>
public ARM11LocalSystemCapabilities ARM11LocalSystemCapabilities { get; private set; }
/// <summary>
/// ARM11 kernel capabilities
/// </summary>
public ARM11KernelCapabilities ARM11KernelCapabilities { get; private set; }
/// <summary>
/// ARM9 access control
/// </summary>
public ARM9AccessControl ARM9AccessControl { get; private set; }
/// <summary>
/// Read from a stream and get access control info, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>Access control info object, null on error</returns>
public static AccessControlInfo Read(BinaryReader reader)
{
AccessControlInfo aci = new AccessControlInfo();

View File

@@ -4,12 +4,36 @@ namespace ThreeDS.Headers
{
public class CXIExtendedHeader
{
public SystemControlInfo SCI;
public AccessControlInfo ACI;
public byte[] AccessDescSignature = new byte[0x100];
public byte[] NCCHHDRPublicKey = new byte[0x100];
public AccessControlInfo ACIForLimitations;
/// <summary>
/// SCI
/// </summary>
public SystemControlInfo SCI { get; private set; }
/// <summary>
/// ACI
/// </summary>
public AccessControlInfo ACI { get; private set; }
/// <summary>
/// AccessDesc signature (RSA-2048-SHA256)
/// </summary>
public byte[] AccessDescSignature { get; private set; }
/// <summary>
/// NCCH HDR RSA-2048 public key
/// </summary>
public byte[] NCCHHDRPublicKey { get; private set; }
/// <summary>
/// ACI (for limitation of first ACI)
/// </summary>
public AccessControlInfo ACIForLimitations { get; private set; }
/// <summary>
/// Read from a stream and get a CXI extended header, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>CXI extended header object, null on error</returns>
public static CXIExtendedHeader Read(BinaryReader reader)
{
CXIExtendedHeader header = new CXIExtendedHeader();

View File

@@ -4,10 +4,26 @@ namespace ThreeDS.Headers
{
public class CodeSetInfo
{
public byte[] Address = new byte[0x04];
public uint PhysicalRegionSizeInPages;
public uint SizeInBytes;
/// <summary>
/// Address
/// </summary>
public byte[] Address { get; private set; }
/// <summary>
/// Physical region size (in page-multiples)
/// </summary>
public uint PhysicalRegionSizeInPages { get; private set; }
/// <summary>
/// Size (in bytes)
/// </summary>
public uint SizeInBytes { get; private set; }
/// <summary>
/// Read from a stream and get code set info, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>Code set info object, null on error</returns>
public static CodeSetInfo Read(BinaryReader reader)
{
CodeSetInfo csi = new CodeSetInfo();

View File

@@ -9,13 +9,33 @@ namespace ThreeDS.Headers
private const string codeSegment = ".code\0\0\0";
private readonly byte[] codeSegmentBytes = new byte[] { 0x2e, 0x63, 0x6f, 0x64, 0x65, 0x00, 0x00, 0x00 };
public byte[] FileName = new byte[8];
/// <summary>
/// File name
/// </summary>
public byte[] FileName { get; private set; }
public string ReadableFileName { get { return Encoding.ASCII.GetString(FileName); } }
public bool IsCodeBinary { get { return Enumerable.SequenceEqual(FileName, codeSegmentBytes); } }
public uint FileOffset;
public uint FileSize;
public byte[] FileHash = new byte[0x20];
/// <summary>
/// File offset
/// </summary>
public uint FileOffset { get; private set; }
/// <summary>
/// File size
/// </summary>
public uint FileSize { get; private set; }
/// <summary>
/// SHA256 hash calculated over the entire file contents
/// </summary>
public byte[] FileHash { get; set; }
/// <summary>
/// Read from a stream and get an ExeFS file header, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>ExeFS file header object, null on error</returns>
public static ExeFSFileHeader Read(BinaryReader reader)
{
ExeFSFileHeader header = new ExeFSFileHeader();

View File

@@ -4,25 +4,35 @@ namespace ThreeDS.Headers
{
public class ExeFSHeader
{
public ExeFSFileHeader[] FileHeaders = new ExeFSFileHeader[10];
public byte[] Reserved = new byte[0x20];
/// <summary>
/// File headers (10 headers maximum, 16 bytes each)
/// </summary>
public ExeFSFileHeader[] FileHeaders { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved { get; private set; }
/// <summary>
/// Read from a stream and get an ExeFS header, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>ExeFS header object, null on error</returns>
public static ExeFSHeader Read(BinaryReader reader)
{
ExeFSHeader header = new ExeFSHeader();
try
{
header.FileHeaders = new ExeFSFileHeader[10];
for (int i = 0; i < 10; i++)
header.FileHeaders[i] = ExeFSFileHeader.Read(reader);
header.Reserved = reader.ReadBytes(0x20);
for (int i = 0; i < 10; i++)
{
byte[] fileHash = reader.ReadBytes(0x20);
header.FileHeaders[9 - i].FileHash = fileHash;
}
header.FileHeaders[9 - i].FileHash = reader.ReadBytes(0x20);
return header;
}

View File

@@ -1,5 +1,4 @@
using System;
using System.IO;
using System.IO;
using System.Linq;
using ThreeDS.Data;
@@ -9,48 +8,159 @@ namespace ThreeDS.Headers
{
private const string NCCHMagicNumber = "NCCH";
/// <summary>
/// RSA-2048 signature of the NCCH header, using SHA-256.
/// </summary>
public byte[] RSA2048Signature = new byte[0x100];
public uint ContentSizeInMediaUnits;
public uint ContentSizeInBytes { get { return ContentSizeInMediaUnits * 0x200; } }
public byte[] PartitionId = new byte[8];
public byte[] MakerCode = new byte[2];
public byte[] Version = new byte[2];
public byte[] VerificationHash = new byte[4];
public byte[] ProgramId = new byte[4];
public byte[] Reserved1 = new byte[0x10];
public byte[] LogoRegionHash = new byte[0x20];
public byte[] ProductCode = new byte[0x10];
public byte[] ExtendedHeaderHash = new byte[0x20];
public uint ExtendedHeaderSizeInBytes;
public byte[] Reserved2 = new byte[4];
public NCCHHeaderFlags Flags;
public uint PlainRegionOffsetInMediaUnits;
public uint PlainRegionOffsetInBytes { get { return PlainRegionOffsetInMediaUnits * 0x200; } }
public uint PlainRegionSizeInMediaUnits;
public uint PlainRegionSizeInBytes { get { return PlainRegionSizeInMediaUnits * 0x200; } }
public uint LogoRegionOffsetInMediaUnits;
public uint LogoRegionOffsetInBytes { get { return LogoRegionOffsetInMediaUnits * 0x200; } }
public uint LogoRegionSizeInMediaUnits;
public uint LogoRegionSizeInBytes { get { return LogoRegionSizeInMediaUnits * 0x200; } }
public uint ExeFSOffsetInMediaUnits;
public uint ExeFSOffsetInBytes { get { return ExeFSOffsetInMediaUnits * 0x200; } }
public uint ExeFSSizeInMediaUnits;
public uint ExeFSSizeInBytes { get { return ExeFSSizeInMediaUnits * 0x200; } }
public uint ExeFSHashRegionOffsetInMediaUnits;
public uint ExeFSHashRegionOffsetInBytes { get { return ExeFSHashRegionOffsetInMediaUnits * 0x200; } }
public uint ExeFSHashRegionSizeInMediaUnits;
public uint ExeFSHashRegionSizeInBytes { get { return ExeFSHashRegionSizeInMediaUnits * 0x200; } }
public uint RomFSOffsetInMediaUnits;
public uint RomFSOffsetInBytes { get { return RomFSOffsetInMediaUnits * 0x200; } }
public uint RomFSSizeInMediaUnits;
public uint RomFSSizeInBytes { get { return RomFSSizeInMediaUnits * 0x200; } }
public uint RomFSHashRegionOffsetInMediaUnits;
public uint RomFSHashRegionOffsetInBytes { get { return RomFSHashRegionOffsetInMediaUnits * 0x200; } }
public uint RomFSHashRegionSizeInMediaUnits;
public uint RomFSHashRegionSizeInBytes { get { return RomFSHashRegionSizeInMediaUnits * 0x200; } }
public byte[] ExeFSSuperblockHash = new byte[0x20];
public byte[] RomFSSuperblockHash = new byte[0x20];
/// <summary>
/// Content size, in media units (1 media unit = 0x200 bytes)
/// </summary>
public uint ContentSizeInMediaUnits { get; private set; }
/// <summary>
/// Partition ID
/// </summary>
public byte[] PartitionId { get; private set; }
public byte[] PlainIV { get { return PartitionId.Concat(Constants.PlainCounter).ToArray(); } }
public byte[] ExeFSIV { get { return PartitionId.Concat(Constants.ExefsCounter).ToArray(); } }
public byte[] RomFSIV { get { return PartitionId.Concat(Constants.RomfsCounter).ToArray(); } }
/// <summary>
/// Maker code
/// </summary>
public byte[] MakerCode { get; private set; }
/// <summary>
/// Version
/// </summary>
public byte[] Version { get; private set; }
/// <summary>
/// When ncchflag[7] = 0x20 starting with FIRM 9.6.0-X, this is compared with the first output u32 from a
/// SHA256 hash. The data used for that hash is 0x18-bytes: [0x10-long title-unique content lock seed]
/// [programID from NCCH + 0x118]. This hash is only used for verification of the content lock seed, and
/// is not the actual keyY.
/// </summary>
public byte[] VerificationHash { get; private set; }
/// <summary>
/// Program ID
/// </summary>
public byte[] ProgramId { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved1 { get; private set; }
/// <summary>
/// Logo Region SHA-256 hash. (For applications built with SDK 5+) (Supported from firmware: 5.0.0-11)
/// </summary>
public byte[] LogoRegionHash { get; private set; }
/// <summary>
/// Product code
/// </summary>
public byte[] ProductCode { get; private set; }
/// <summary>
/// Extended header SHA-256 hash (SHA256 of 2x Alignment Size, beginning at 0x0 of ExHeader)
/// </summary>
public byte[] ExtendedHeaderHash { get; private set; }
/// <summary>
/// Extended header size, in bytes
/// </summary>
public uint ExtendedHeaderSizeInBytes { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved2 { get; private set; }
/// <summary>
/// Flags
/// </summary>
public NCCHHeaderFlags Flags { get; private set; }
/// <summary>
/// Plain region offset, in media units
/// </summary>
public uint PlainRegionOffsetInMediaUnits { get; private set; }
/// <summary>
/// Plain region size, in media units
/// </summary>
public uint PlainRegionSizeInMediaUnits { get; private set; }
/// <summary>
/// Logo Region offset, in media units (For applications built with SDK 5+) (Supported from firmware: 5.0.0-11)
/// </summary>
public uint LogoRegionOffsetInMediaUnits { get; private set; }
/// <summary>
/// Logo Region size, in media units (For applications built with SDK 5+) (Supported from firmware: 5.0.0-11)
/// </summary>
public uint LogoRegionSizeInMediaUnits { get; private set; }
/// <summary>
/// ExeFS offset, in media units
/// </summary>
public uint ExeFSOffsetInMediaUnits { get; private set; }
/// <summary>
/// ExeFS size, in media units
/// </summary>
public uint ExeFSSizeInMediaUnits { get; private set; }
/// <summary>
/// ExeFS hash region size, in media units
/// </summary>
public uint ExeFSHashRegionSizeInMediaUnits { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved3 { get; private set; }
/// <summary>
/// RomFS offset, in media units
/// </summary>
public uint RomFSOffsetInMediaUnits { get; private set; }
/// <summary>
/// RomFS size, in media units
/// </summary>
public uint RomFSSizeInMediaUnits { get; private set; }
/// <summary>
/// RomFS hash region size, in media units
/// </summary>
public uint RomFSHashRegionSizeInMediaUnits { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved4 { get; private set; }
/// <summary>
/// ExeFS superblock SHA-256 hash - (SHA-256 hash, starting at 0x0 of the ExeFS over the number of
/// media units specified in the ExeFS hash region size)
/// </summary>
public byte[] ExeFSSuperblockHash { get; private set; }
/// <summary>
/// RomFS superblock SHA-256 hash - (SHA-256 hash, starting at 0x0 of the RomFS over the number
/// of media units specified in the RomFS hash region size)
/// </summary>
public byte[] RomFSSuperblockHash { get; private set; }
/// <summary>
/// Read from a stream and get an NCCH header, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>NCCH header object, null on error</returns>
public static NCCHHeader Read(BinaryReader reader)
{
NCCHHeader header = new NCCHHeader();
@@ -81,12 +191,12 @@ namespace ThreeDS.Headers
header.LogoRegionSizeInMediaUnits = reader.ReadUInt32();
header.ExeFSOffsetInMediaUnits = reader.ReadUInt32();
header.ExeFSSizeInMediaUnits = reader.ReadUInt32();
header.ExeFSHashRegionOffsetInMediaUnits = reader.ReadUInt32();
header.ExeFSHashRegionSizeInMediaUnits = reader.ReadUInt32();
header.Reserved3 = reader.ReadBytes(4);
header.RomFSOffsetInMediaUnits = reader.ReadUInt32();
header.RomFSSizeInMediaUnits = reader.ReadUInt32();
header.RomFSHashRegionOffsetInMediaUnits = reader.ReadUInt32();
header.RomFSHashRegionSizeInMediaUnits = reader.ReadUInt32();
header.Reserved4 = reader.ReadBytes(4);
header.ExeFSSuperblockHash = reader.ReadBytes(0x20);
header.RomFSSuperblockHash = reader.ReadBytes(0x20);

View File

@@ -6,16 +6,54 @@ namespace ThreeDS.Headers
{
public class NCCHHeaderFlags
{
public byte Reserved0;
public byte Reserved1;
public byte Reserved2;
public CryptoMethod CryptoMethod;
public ContentPlatform ContentPlatform;
public ContentType MediaPlatformIndex;
public byte ContentUnitSize;
public uint ContentUnitSizeInBytes { get { return (uint)(0x200 * Math.Pow(2, this.ContentUnitSize)); } }
public BitMasks BitMasks;
/// <summary>
/// Reserved
/// </summary>
public byte Reserved0 { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte Reserved1 { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte Reserved2 { get; private set; }
/// <summary>
/// Crypto Method: When this is non-zero, a NCCH crypto method using two keyslots is used.
/// </summary>
public CryptoMethod CryptoMethod { get; private set; }
/// <summary>
/// Content Platform: 1 = CTR, 2 = snake (New 3DS).
/// </summary>
public ContentPlatform ContentPlatform { get; private set; }
/// <summary>
/// Content Type Bit-masks: Data = 0x1, Executable = 0x2, SystemUpdate = 0x4, Manual = 0x8,
/// Child = (0x4|0x8), Trial = 0x10. When 'Data' is set, but not 'Executable', NCCH is a CFA.
/// Otherwise when 'Executable' is set, NCCH is a CXI.
/// </summary>
public ContentType MediaPlatformIndex { get; private set; }
/// <summary>
/// Content Unit Size i.e. u32 ContentUnitSize = 0x200*2^flags[6];
/// </summary>
public byte ContentUnitSize { get; private set; }
/// <summary>
/// Bit-masks: FixedCryptoKey = 0x1, NoMountRomFs = 0x2, NoCrypto = 0x4, using a new keyY
/// generator = 0x20(starting with FIRM 9.6.0-X).
/// </summary>
public BitMasks BitMasks { get; private set; }
/// <summary>
/// Read from a stream and get an NCCH header flags, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>NCCH header flags object, null on error</returns>
public static NCCHHeaderFlags Read(BinaryReader reader)
{
NCCHHeaderFlags flags = new NCCHHeaderFlags();
@@ -38,6 +76,10 @@ namespace ThreeDS.Headers
}
}
/// <summary>
/// Write NCCH header flags to stream, if possible
/// </summary>
/// <param name="writer">BinaryWriter representing the output stream</param>
public void Write(BinaryWriter writer)
{
try

View File

@@ -8,36 +8,117 @@ namespace ThreeDS.Headers
{
private const string NCSDMagicNumber = "NCSD";
// Common to all NCSD files
public byte[] RSA2048Signature = new byte[0x100];
public uint ImageSizeInMediaUnits;
public uint ImageSizeInBytes { get { return ImageSizeInMediaUnits * 0x200; } }
public byte[] MediaId = new byte[8];
public FilesystemType PartitionsFSType;
public byte[] PartitionsCryptType = new byte[8];
public PartitionTableEntry[] PartitionsTable = new PartitionTableEntry[8];
#region Common to all NCSD files
// For carts
public byte[] ExheaderHash = new byte[0x20];
public uint AdditionalHeaderSize;
public uint SectorZeroOffset;
private byte[] partitionFlags = new byte[8];
/// <summary>
/// RSA-2048 SHA-256 signature of the NCSD header
/// </summary>
public byte[] RSA2048Signature { get; private set; }
/// <summary>
/// Size of the NCSD image, in media units (1 media unit = 0x200 bytes)
/// </summary>
public uint ImageSizeInMediaUnits { get; private set; }
/// <summary>
/// Media ID
/// </summary>
public byte[] MediaId { get; private set; }
/// <summary>
/// Partitions FS type (0=None, 1=Normal, 3=FIRM, 4=AGB_FIRM save)
/// </summary>
public FilesystemType PartitionsFSType { get; private set; }
/// <summary>
/// Partitions crypt type (each byte corresponds to a partition in the partition table)
/// </summary>
public byte[] PartitionsCryptType { get; private set; }
/// <summary>
/// Offset & Length partition table, in media units
/// </summary>
public PartitionTableEntry[] PartitionsTable { get; private set; }
#endregion
#region For carts
/// <summary>
/// Exheader SHA-256 hash
/// </summary>
public byte[] ExheaderHash { get; private set; }
/// <summary>
/// Additional header size
/// </summary>
public uint AdditionalHeaderSize { get; private set; }
/// <summary>
/// Sector zero offset
/// </summary>
public uint SectorZeroOffset { get; private set; }
/// <summary>
/// Partition Flags
/// </summary>
private byte[] partitionFlags;
public byte BackupWriteWaitTime { get { return partitionFlags[(int)NCSDFlags.BackupWriteWaitTime]; } }
public MediaCardDeviceType MediaCardDevice3X { get { return (MediaCardDeviceType)partitionFlags[(int)NCSDFlags.MediaCardDevice3X]; } }
public MediaPlatformIndex MediaPlatformIndex { get { return (MediaPlatformIndex)partitionFlags[(int)NCSDFlags.MediaPlatformIndex]; } }
public MediaTypeIndex MediaTypeIndex { get { return (MediaTypeIndex)partitionFlags[(int)NCSDFlags.MediaTypeIndex]; } }
public uint SectorSize { get { return (uint)(0x200 * Math.Pow(2, partitionFlags[(int)NCSDFlags.MediaUnitSize])); } }
public MediaCardDeviceType MediaCardDevice2X { get { return (MediaCardDeviceType)partitionFlags[(int)NCSDFlags.MediaCardDevice2X]; } }
public byte[][] PartitionIdTable = new byte[8][];
public byte[] ReservedBlock1 = new byte[0x20];
public byte[] ReservedBlock2 = new byte[0xE];
public byte FirmUpdateByte1;
public byte FIrmUpdateByte2;
// For NAND
public byte[] Unknown = new byte[0x5E];
public byte[] EncryptedMBR = new byte[0x42];
/// <summary>
/// Partition ID table
/// </summary>
public byte[][] PartitionIdTable { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved1 { get; private set; }
/// <summary>
/// Reserved?
/// </summary>
public byte[] Reserved2 { get; private set; }
/// <summary>
/// Support for this was implemented with 9.6.0-X FIRM. Bit0=1 enables using bits 1-2, it's unknown
/// what these two bits are actually used for(the value of these two bits get compared with some other
/// value during NCSD verification/loading). This appears to enable a new, likely hardware-based,
/// antipiracy check on cartridges.
/// </summary>
public byte FirmUpdateByte1 { get; private set; }
/// <summary>
/// Support for this was implemented with 9.6.0-X FIRM, see below regarding save crypto.
/// </summary>
public byte FIrmUpdateByte2 { get; private set; }
#endregion
#region For NAND
/// <summary>
/// Unknown
/// </summary>
public byte[] Unknown { get; private set; }
/// <summary>
/// Encrypted MBR partition-table, for the TWL partitions(key-data used for this keyslot is console-unique).
/// </summary>
public byte[] EncryptedMBR { get; private set; }
#endregion
/// <summary>
/// Read from a stream and get an NCSD header, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>NCSD header object, null on error</returns>
public static NCSDHeader Read(BinaryReader reader)
{
NCSDHeader header = new NCSDHeader();
@@ -54,6 +135,7 @@ namespace ThreeDS.Headers
header.PartitionsFSType = (FilesystemType)reader.ReadUInt64();
header.PartitionsCryptType = reader.ReadBytes(8);
header.PartitionsTable = new PartitionTableEntry[8];
for (int i = 0; i < 8; i++)
header.PartitionsTable[i] = PartitionTableEntry.Read(reader);
@@ -65,11 +147,12 @@ namespace ThreeDS.Headers
header.SectorZeroOffset = reader.ReadUInt32();
header.partitionFlags = reader.ReadBytes(8);
header.PartitionIdTable = new byte[8][];
for (int i = 0; i < 8; i++)
header.PartitionIdTable[i] = reader.ReadBytes(8);
header.ReservedBlock1 = reader.ReadBytes(0x20);
header.ReservedBlock2 = reader.ReadBytes(0xE);
header.Reserved1 = reader.ReadBytes(0x20);
header.Reserved2 = reader.ReadBytes(0xE);
header.FirmUpdateByte1 = reader.ReadByte();
header.FIrmUpdateByte2 = reader.ReadByte();
}

View File

@@ -4,9 +4,21 @@ namespace ThreeDS.Headers
{
public class PartitionTableEntry
{
/// <summary>
/// Offset
/// </summary>
public uint Offset { get; set; }
/// <summary>
/// Length
/// </summary>
public uint Length { get; set; }
/// <summary>
/// Read from a stream and get partition table entry, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>Partition table entry object, null on error</returns>
public static PartitionTableEntry Read(BinaryReader reader)
{
PartitionTableEntry entry = new PartitionTableEntry();
@@ -23,6 +35,10 @@ namespace ThreeDS.Headers
}
}
/// <summary>
/// Check for a valid partition
/// </summary>
/// <returns>True if the offset and length are not 0, false otherwise</returns>
public bool IsValid()
{
return Offset != 0 && Length != 0;

View File

@@ -0,0 +1,127 @@
using System.IO;
namespace ThreeDS.Headers
{
// https://www.3dbrew.org/wiki/RomFS
public class RomFSHeader
{
private const string RomFSMagicNumber = "IVFC";
private const uint RomFSSecondMagicNumber = 0x10000;
/// <summary>
/// Master hash size
/// </summary>
public uint MasterHashSize { get; private set; }
/// <summary>
/// Level 1 logical offset
/// </summary>
public ulong Level1LogicalOffset { get; private set; }
/// <summary>
/// Level 1 hashdata size
/// </summary>
public ulong Level1HashdataSize { get; private set; }
/// <summary>
/// Level 1 block size, in log2
/// </summary>
public uint Level1BlockSizeLog2 { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved1 { get; private set; }
/// <summary>
/// Level 2 logical offset
/// </summary>
public ulong Level2LogicalOffset { get; private set; }
/// <summary>
/// Level 2 hashdata size
/// </summary>
public ulong Level2HashdataSize { get; private set; }
/// <summary>
/// Level 2 block size, in log2
/// </summary>
public uint Level2BlockSizeLog2 { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved2 { get; private set; }
/// <summary>
/// Level 3 logical offset
/// </summary>
public ulong Level3LogicalOffset { get; private set; }
/// <summary>
/// Level 3 hashdata size
/// </summary>
public ulong Level3HashdataSize { get; private set; }
/// <summary>
/// Level 3 block size, in log2
/// </summary>
public uint Level3BlockSizeLog2 { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved3 { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved4 { get; private set; }
/// <summary>
/// Optional info size.
/// </summary>
public uint OptionalInfoSize { get; private set; }
/// <summary>
/// Read from a stream and get a RomFS header, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>RomFS header object, null on error</returns>
public static RomFSHeader Read(BinaryReader reader)
{
RomFSHeader header = new RomFSHeader();
try
{
if (new string(reader.ReadChars(4)) != RomFSMagicNumber)
return null;
if (reader.ReadUInt32() != RomFSSecondMagicNumber)
return null;
header.MasterHashSize = reader.ReadUInt32();
header.Level1LogicalOffset = reader.ReadUInt64();
header.Level1HashdataSize = reader.ReadUInt64();
header.Level1BlockSizeLog2 = reader.ReadUInt32();
header.Reserved1 = reader.ReadBytes(4);
header.Level2LogicalOffset = reader.ReadUInt64();
header.Level2HashdataSize = reader.ReadUInt64();
header.Level2BlockSizeLog2 = reader.ReadUInt32();
header.Reserved2 = reader.ReadBytes(4);
header.Level3LogicalOffset = reader.ReadUInt64();
header.Level3HashdataSize = reader.ReadUInt64();
header.Level3BlockSizeLog2 = reader.ReadUInt32();
header.Reserved3 = reader.ReadBytes(4);
header.Reserved4 = reader.ReadBytes(4);
header.OptionalInfoSize = reader.ReadUInt32();
return header;
}
catch
{
return null;
}
}
}
}

View File

@@ -1,15 +1,40 @@
using System.IO;
using ThreeDS.Data;
namespace ThreeDS.Headers
{
public class StorageInfo
{
public byte[] ExtdataID = new byte[8];
public byte[] SystemSavedataIDs = new byte[8];
public byte[] StorageAccessibleUniqueIDs = new byte[8];
public byte[] FilesystemAccessInfo = new byte[7];
public byte OtherAttributes;
/// <summary>
/// Extdata ID
/// </summary>
public byte[] ExtdataID { get; private set; }
/// <summary>
/// System savedata IDs
/// </summary>
public byte[] SystemSavedataIDs { get; private set; }
/// <summary>
/// Storage accessible unique IDs
/// </summary>
public byte[] StorageAccessibleUniqueIDs { get; private set; }
/// <summary>
/// Filesystem access info
/// </summary>
public byte[] FilesystemAccessInfo { get; private set; }
/// <summary>
/// Other attributes
/// </summary>
public StorageInfoOtherAttributes OtherAttributes { get; private set; }
/// <summary>
/// Read from a stream and get storage info, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>Storage info object, null on error</returns>
public static StorageInfo Read(BinaryReader reader)
{
StorageInfo si = new StorageInfo();
@@ -20,7 +45,7 @@ namespace ThreeDS.Headers
si.SystemSavedataIDs = reader.ReadBytes(8);
si.StorageAccessibleUniqueIDs = reader.ReadBytes(8);
si.FilesystemAccessInfo = reader.ReadBytes(7);
si.OtherAttributes = reader.ReadByte();
si.OtherAttributes = (StorageInfoOtherAttributes)reader.ReadByte();
return si;
}
catch

View File

@@ -4,19 +4,71 @@ namespace ThreeDS.Headers
{
public class SystemControlInfo
{
public char[] ApplicationTitle = new char[8];
public byte[] Reserved1 = new byte[5];
public byte Flag;
public byte[] RemasterVersion = new byte[2];
public CodeSetInfo TextCodesetInfo;
public uint StackSize;
public CodeSetInfo ReadOnlyCodeSetInfo;
public byte[] Reserved2 = new byte[4];
public CodeSetInfo DataCodeSetInfo;
public uint BSSSize;
public byte[][] DependencyModuleList = new byte[48][];
public SystemInfo SystemInfo;
/// <summary>
/// Application title (default is "CtrApp")
/// </summary>
public char[] ApplicationTitle { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved1 { get; private set; }
/// <summary>
/// Flag (bit 0: CompressExefsCode, bit 1: SDApplication)
/// </summary>
public byte Flag { get; private set; }
/// <summary>
/// Remaster version
/// </summary>
public byte[] RemasterVersion { get; private set; }
/// <summary>
/// Text code set info
/// </summary>
public CodeSetInfo TextCodesetInfo { get; private set; }
/// <summary>
/// Stack size
/// </summary>
public uint StackSize { get; private set; }
/// <summary>
/// Read-only code set info
/// </summary>
public CodeSetInfo ReadOnlyCodeSetInfo { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved2 { get; private set; }
/// <summary>
/// Data code set info
/// </summary>
public CodeSetInfo DataCodeSetInfo { get; private set; }
/// <summary>
/// BSS size
/// </summary>
public uint BSSSize { get; private set; }
/// <summary>
/// Dependency module (program ID) list
/// </summary>
public byte[][] DependencyModuleList { get; private set; }
/// <summary>
/// SystemInfo
/// </summary>
public SystemInfo SystemInfo { get; private set; }
/// <summary>
/// Read from a stream and get system control info, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>System control info object, null on error</returns>
public static SystemControlInfo Read(BinaryReader reader)
{
SystemControlInfo sci = new SystemControlInfo();
@@ -34,6 +86,7 @@ namespace ThreeDS.Headers
sci.DataCodeSetInfo = CodeSetInfo.Read(reader);
sci.BSSSize = reader.ReadUInt32();
sci.DependencyModuleList = new byte[48][];
for (int i = 0; i < 48; i++)
sci.DependencyModuleList[i] = reader.ReadBytes(8);

View File

@@ -4,10 +4,26 @@ namespace ThreeDS.Headers
{
public class SystemInfo
{
public ulong SaveDataSize;
public byte[] JumpID = new byte[8];
public byte[] Reserved = new byte[0x30];
/// <summary>
/// SaveData Size
/// </summary>
public ulong SaveDataSize { get; private set; }
/// <summary>
/// Jump ID
/// </summary>
public byte[] JumpID { get; private set; }
/// <summary>
/// Reserved
/// </summary>
public byte[] Reserved { get; private set; }
/// <summary>
/// Read from a stream and get system info, if possible
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <returns>System info object, null on error</returns>
public static SystemInfo Read(BinaryReader reader)
{
SystemInfo si = new SystemInfo();

View File

@@ -2,6 +2,7 @@
using System.IO;
using System.Linq;
using System.Numerics;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
using ThreeDS.Data;
@@ -11,15 +12,50 @@ namespace ThreeDS
{
public class ThreeDSTool
{
/// <summary>
/// Name of the input 3DS file
/// </summary>
private readonly string filename;
/// <summary>
/// Flag to detrmine if development keys should be used
/// </summary>
private readonly bool development;
/// <summary>
/// Boot rom key
/// </summary>
private BigInteger KeyX;
/// <summary>
/// NCCH boot rom key
/// </summary>
private BigInteger KeyX2C;
/// <summary>
/// Kernel9/Process9 key
/// </summary>
private BigInteger KeyY;
/// <summary>
/// Normal AES key
/// </summary>
private BigInteger NormalKey;
/// <summary>
/// NCCH AES key
/// </summary>
private BigInteger NormalKey2C;
public ThreeDSTool(string filename, bool development)
{
this.filename = filename;
this.development = development;
}
/// <summary>
/// Attempt to decrypt a 3DS file
/// </summary>
public void Decrypt()
{
if (!File.Exists(filename))
@@ -42,7 +78,7 @@ namespace ThreeDS
{
if (!header.PartitionsTable[p].IsValid())
{
Console.WriteLine("Partition {0} Not found... Skipping...", p);
Console.WriteLine($"Partition {p} Not found... Skipping...");
continue;
}
@@ -52,211 +88,24 @@ namespace ThreeDS
NCCHHeader partitionHeader = NCCHHeader.Read(f);
if (partitionHeader == null)
{
Console.WriteLine("Partition {0} Unable to read NCCH header", p);
Console.WriteLine($"Partition {p} Unable to read NCCH header");
continue;
}
// Check if the 'NoCrypto' bit is set
if ((partitionHeader.Flags.BitMasks & BitMasks.NoCrypto) != 0)
{
Console.WriteLine("Partition {0:d}: Already Decrypted?...", p);
Console.WriteLine($"Partition {p}: Already Decrypted?...");
continue;
}
// PartitionID is used as IV joined with the content type.
byte[] plainIV = partitionHeader.PartitionId.Concat(Constants.PlainCounter).ToArray(); // Get the IV for plain sector (TitleID + Plain Counter)
byte[] exefsIV = partitionHeader.PartitionId.Concat(Constants.ExefsCounter).ToArray(); // Get the IV for ExeFS (TitleID + ExeFS Counter)
byte[] romfsIV = partitionHeader.PartitionId.Concat(Constants.RomfsCounter).ToArray(); // Get the IV for RomFS (TitleID + RomFS Counter)
BigInteger KeyX = 0;
BigInteger KeyX2C = (development ? Constants.DevKeyX0x2C : Constants.KeyX0x2C);
BigInteger KeyY = new BigInteger(partitionHeader.RSA2048Signature.Take(16).Reverse().ToArray()); // KeyY is the first 16 bytes of the partition RSA-2048 SHA-256 signature
BigInteger NormalKey = 0;
BigInteger NormalKey2C = RotateLeft((RotateLeft(KeyX2C, 2, 128) ^ KeyY) + Constants.AESHardwareConstant, 87, 128);
// Determine the Keys to be used
if ((partitionHeader.Flags.BitMasks & BitMasks.FixedCryptoKey) != 0)
{
NormalKey = 0x00;
NormalKey2C = 0x00;
if (p == 0)
Console.WriteLine("Encryption Method: Zero Key");
}
else
{
if (partitionHeader.Flags.CryptoMethod == CryptoMethod.Original)
{
KeyX = (development ? Constants.DevKeyX0x2C : Constants.KeyX0x2C);
if (p == 0)
Console.WriteLine("Encryption Method: Key 0x2C");
}
else if (partitionHeader.Flags.CryptoMethod == CryptoMethod.Seven)
{
KeyX = (development ? Constants.KeyX0x25 : Constants.KeyX0x25);
if (p == 0)
Console.WriteLine("Encryption Method: Key 0x25");
}
else if (partitionHeader.Flags.CryptoMethod == CryptoMethod.NineThree)
{
KeyX = (development ? Constants.DevKeyX0x18 : Constants.KeyX0x18);
if (p == 0)
Console.WriteLine("Encryption Method: Key 0x18");
}
else if (partitionHeader.Flags.CryptoMethod == CryptoMethod.NineSix)
{
KeyX = (development ? Constants.DevKeyX0x1B : Constants.KeyX0x1B);
if (p == 0)
Console.WriteLine("Encryption Method: Key 0x1B");
}
SetEncryptionKeys(partitionHeader.RSA2048Signature, partitionHeader.Flags.BitMasks, partitionHeader.Flags.CryptoMethod, p);
NormalKey = RotateLeft((RotateLeft(KeyX, 2, 128) ^ KeyY) + Constants.AESHardwareConstant, 87, 128);
}
// Decrypted extended header, if it exists
if (partitionHeader.ExtendedHeaderSizeInBytes > 0)
{
// Seek to the partition start and skip first part of the header
f.BaseStream.Seek((header.PartitionsTable[p].Offset * header.SectorSize) + 0x200, SeekOrigin.Begin);
g.BaseStream.Seek((header.PartitionsTable[p].Offset * header.SectorSize) + 0x200, SeekOrigin.Begin);
var str = BitConverter.ToString(plainIV).Replace("-", "");
var exefsctrmode2C = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode2C.Init(false, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey2C)), plainIV));
Console.WriteLine("Partition {0} ExeFS: Decrypting: ExHeader", p);
g.Write(exefsctrmode2C.ProcessBytes(f.ReadBytes(Constants.CXTExtendedDataHeaderLength)));
g.Flush();
}
// Decrypt the ExeFS, if it exists
if (partitionHeader.ExeFSSizeInBytes > 0)
{
f.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
g.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
var exefsctrmode2C = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode2C.Init(false, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey2C)), exefsIV));
g.Write(exefsctrmode2C.ProcessBytes(f.ReadBytes((int)header.SectorSize)));
g.Flush();
Console.WriteLine("Partition {0} ExeFS: Decrypting: ExeFS Filename Table", p);
if (partitionHeader.Flags.CryptoMethod != CryptoMethod.Original)
{
f.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
ExeFSHeader exefsHeader = ExeFSHeader.Read(f);
if (exefsHeader != null)
{
foreach (ExeFSFileHeader fileHeader in exefsHeader.FileHeaders)
{
if (!fileHeader.IsCodeBinary)
continue;
uint datalenM = ((fileHeader.FileSize) / (1024 * 1024));
uint datalenB = ((fileHeader.FileSize) % (1024 * 1024));
uint ctroffset = ((fileHeader.FileOffset + header.SectorSize) / 0x10);
byte[] exefsIVWithOffsetForHeader = AddToByteArray(exefsIV, (int)ctroffset);
var exefsctrmode = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode.Init(false, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey)), exefsIVWithOffsetForHeader));
exefsctrmode2C = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode2C.Init(true, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey2C)), exefsIVWithOffsetForHeader));
f.BaseStream.Seek((((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) + 1) * header.SectorSize) + fileHeader.FileOffset, SeekOrigin.Begin);
g.BaseStream.Seek((((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) + 1) * header.SectorSize) + fileHeader.FileOffset, SeekOrigin.Begin);
if (datalenM > 0)
{
for (int i = 0; i < datalenM; i++)
{
g.Write(exefsctrmode2C.ProcessBytes(exefsctrmode.ProcessBytes(f.ReadBytes(1024 * 1024))));
g.Flush();
Console.Write("\rPartition {0} ExeFS: Decrypting: {1}... {2} / {3} mb...", p, fileHeader.ReadableFileName, i, datalenM + 1);
}
}
if (datalenB > 0)
{
g.Write(exefsctrmode2C.DoFinal(exefsctrmode.DoFinal(f.ReadBytes((int)datalenB))));
g.Flush();
}
Console.Write("\rPartition {0} ExeFS: Decrypting: {1}... {2} / {3} mb... Done!\r\n", p, fileHeader.ReadableFileName, datalenM + 1, datalenM + 1);
}
}
}
// decrypt exefs
int exefsSizeM = (int)((partitionHeader.ExeFSSizeInMediaUnits - 1) * header.SectorSize) / (1024 * 1024);
int exefsSizeB = (int)((partitionHeader.ExeFSSizeInMediaUnits - 1) * header.SectorSize) % (1024 * 1024);
int ctroffsetE = (int)(header.SectorSize / 0x10);
byte[] exefsIVWithOffset = AddToByteArray(exefsIV, ctroffsetE);
exefsctrmode2C = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode2C.Init(false, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey2C)), exefsIVWithOffset));
f.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits + 1) * header.SectorSize, SeekOrigin.Begin);
g.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits + 1) * header.SectorSize, SeekOrigin.Begin);
if (exefsSizeM > 0)
{
for (int i = 0; i < exefsSizeM; i++)
{
g.Write(exefsctrmode2C.ProcessBytes(f.ReadBytes(1024 * 1024)));
g.Flush();
Console.Write("\rPartition {0} ExeFS: Decrypting: {1} / {2} mb", p, i, exefsSizeM + 1);
}
}
if (exefsSizeB > 0)
{
g.Write(exefsctrmode2C.DoFinal(f.ReadBytes(exefsSizeB)));
g.Flush();
}
Console.Write("\rPartition {0} ExeFS: Decrypting: {1} / {2} mb... Done!\r\n", p, exefsSizeM + 1, exefsSizeM + 1);
}
else
{
Console.WriteLine("Partition {0} ExeFS: No Data... Skipping...", p);
}
if (partitionHeader.RomFSOffsetInMediaUnits != 0)
{
int romfsSizeM = (int)(partitionHeader.RomFSSizeInMediaUnits * header.SectorSize) / (1024 * 1024);
int romfsSizeB = (int)(partitionHeader.RomFSSizeInMediaUnits * header.SectorSize) % (1024 * 1024);
var romfsctrmode = CipherUtilities.GetCipher("AES/CTR");
romfsctrmode.Init(false, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey)), romfsIV));
f.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.RomFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
g.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.RomFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
if (romfsSizeM > 0)
{
for (int i = 0; i < romfsSizeM; i++)
{
g.Write(romfsctrmode.ProcessBytes(f.ReadBytes(1024 * 1024)));
g.Flush();
Console.Write("\rPartition {0} RomFS: Decrypting: {1} / {2} mb", p, i, romfsSizeM + 1);
}
}
if (romfsSizeB > 0)
{
g.Write(romfsctrmode.DoFinal(f.ReadBytes(romfsSizeB)));
g.Flush();
}
Console.Write("\rPartition {0} RomFS: Decrypting: {1} / {2} mb... Done!\r\n", p, romfsSizeM + 1, romfsSizeM + 1);
}
else
{
Console.WriteLine("Partition {0} RomFS: No Data... Skipping...", p);
}
// Decrypt each of the pieces if they exist
ProcessExtendedHeader(f, g, header, p, partitionHeader, false);
ProcessExeFS(f, g, header, p, partitionHeader, false);
ProcessRomFS(f, g, header, p, partitionHeader, false);
// Write the new CryptoMethod
g.BaseStream.Seek((header.PartitionsTable[p].Offset * header.SectorSize) + 0x18B, SeekOrigin.Begin);
@@ -277,6 +126,9 @@ namespace ThreeDS
}
}
/// <summary>
/// Attempt to encrypt a 3DS file
/// </summary>
public void Encrypt()
{
if (!File.Exists(filename))
@@ -294,12 +146,16 @@ namespace ThreeDS
return;
}
// Get the backup flags
f.BaseStream.Seek(0x1188, SeekOrigin.Begin);
NCCHHeaderFlags backupFlags = NCCHHeaderFlags.Read(f);
// Iterate over all 8 NCCH partitions
for (int p = 0; p < 8; p++)
{
if (!header.PartitionsTable[p].IsValid())
{
Console.WriteLine("Partition {0} Not found... Skipping...", p);
Console.WriteLine($"Partition {p} Not found... Skipping...");
continue;
}
@@ -309,231 +165,24 @@ namespace ThreeDS
NCCHHeader partitionHeader = NCCHHeader.Read(f);
if (partitionHeader == null)
{
Console.WriteLine("Partition {0} Unable to read NCCH header", p);
Console.WriteLine($"Partition {p} Unable to read NCCH header");
continue;
}
// Get the backup flags
f.BaseStream.Seek(0x1188, SeekOrigin.Begin);
NCCHHeaderFlags backupFlags = NCCHHeaderFlags.Read(f);
// Check if the 'NoCrypto' bit is not set
if ((partitionHeader.Flags.BitMasks & BitMasks.NoCrypto) == 0)
{
Console.WriteLine("Partition {0:d}: Already Encrypted?...", p);
Console.WriteLine($"Partition {p}: Already Encrypted?...");
continue;
}
// PartitionID is used as IV joined with the content type.
byte[] plainIV = partitionHeader.PartitionId.Concat(Constants.PlainCounter).ToArray(); // Get the IV for plain sector (TitleID + Plain Counter)
byte[] exefsIV = partitionHeader.PartitionId.Concat(Constants.ExefsCounter).ToArray(); // Get the IV for ExeFS (TitleID + ExeFS Counter)
byte[] romfsIV = partitionHeader.PartitionId.Concat(Constants.RomfsCounter).ToArray(); // Get the IV for RomFS (TitleID + RomFS Counter)
BigInteger KeyX = 0;
BigInteger KeyX2C = Constants.KeyX0x2C;
BigInteger KeyY = new BigInteger(partitionHeader.RSA2048Signature.Take(16).Reverse().ToArray()); // KeyY is the first 16 bytes of the partition RSA-2048 SHA-256 signature
BigInteger NormalKey = 0;
BigInteger NormalKey2C = RotateLeft((RotateLeft(KeyX2C, 2, 128) ^ KeyY) + Constants.AESHardwareConstant, 87, 128);
// Determine the Keys to be used
if ((backupFlags.BitMasks & BitMasks.FixedCryptoKey) != 0)
{
NormalKey = 0x00;
NormalKey2C = 0x00;
if (p == 0)
Console.WriteLine("Encryption Method: Zero Key");
}
else
{
if (backupFlags.CryptoMethod == CryptoMethod.Original)
{
KeyX = (development ? Constants.DevKeyX0x2C : Constants.KeyX0x2C);
if (p == 0)
Console.WriteLine("Encryption Method: Key 0x2C");
}
else if (backupFlags.CryptoMethod == CryptoMethod.Seven)
{
KeyX = (development ? Constants.KeyX0x25 : Constants.KeyX0x25);
if (p == 0)
Console.WriteLine("Encryption Method: Key 0x25");
}
else if (backupFlags.CryptoMethod == CryptoMethod.NineThree)
{
KeyX = (development ? Constants.DevKeyX0x18 : Constants.KeyX0x18);
if (p == 0)
Console.WriteLine("Encryption Method: Key 0x18");
}
else if (backupFlags.CryptoMethod == CryptoMethod.NineSix)
{
KeyX = (development ? Constants.DevKeyX0x1B : Constants.KeyX0x1B);
if (p == 0)
Console.WriteLine("Encryption Method: Key 0x1B");
}
SetEncryptionKeys(partitionHeader.RSA2048Signature, backupFlags.BitMasks, backupFlags.CryptoMethod, p);
NormalKey = RotateLeft((RotateLeft(KeyX, 2, 128) ^ KeyY) + Constants.AESHardwareConstant, 87, 128);
}
// Encrypt extended header, if it exists
if (partitionHeader.ExtendedHeaderSizeInBytes > 0)
{
// Seek to the partition start and skip first part of the header
f.BaseStream.Seek((header.PartitionsTable[p].Offset * header.SectorSize) + 0x200, SeekOrigin.Begin);
g.BaseStream.Seek((header.PartitionsTable[p].Offset * header.SectorSize) + 0x200, SeekOrigin.Begin);
var str = BitConverter.ToString(plainIV).Replace("-", "");
var exefsctrmode2C = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode2C.Init(true, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey2C)), plainIV));
Console.WriteLine("Partition {0} ExeFS: Encrypting: ExHeader", p);
g.Write(exefsctrmode2C.ProcessBytes(f.ReadBytes(Constants.CXTExtendedDataHeaderLength)));
g.Flush();
}
// Encrypt the ExeFS, if it exists
if (partitionHeader.ExeFSSizeInBytes > 0)
{
if (backupFlags.CryptoMethod != CryptoMethod.Original)
{
f.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
ExeFSHeader exefsHeader = ExeFSHeader.Read(f);
if (exefsHeader != null)
{
foreach (ExeFSFileHeader fileHeader in exefsHeader.FileHeaders)
{
if (!fileHeader.IsCodeBinary)
continue;
uint datalenM = ((fileHeader.FileSize) / (1024 * 1024));
uint datalenB = ((fileHeader.FileSize) % (1024 * 1024));
uint ctroffset = ((fileHeader.FileOffset + header.SectorSize) / 0x10);
byte[] exefsIVWithOffsetForHeader = AddToByteArray(exefsIV, (int)ctroffset);
var exefsctrmode = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode.Init(true, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey)), exefsIVWithOffsetForHeader));
var exefsctrmode2C = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode2C.Init(false, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey2C)), exefsIVWithOffsetForHeader));
f.BaseStream.Seek((((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) + 1) * header.SectorSize) + fileHeader.FileOffset, SeekOrigin.Begin);
g.BaseStream.Seek((((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) + 1) * header.SectorSize) + fileHeader.FileOffset, SeekOrigin.Begin);
if (datalenM > 0)
{
for (int i = 0; i < datalenM; i++)
{
g.Write(exefsctrmode2C.ProcessBytes(exefsctrmode.ProcessBytes(f.ReadBytes(1024 * 1024))));
g.Flush();
Console.Write("\rPartition {0} ExeFS: Encrypting: {1}... {2} / {3} mb...", p, fileHeader.ReadableFileName, i, datalenM + 1);
}
}
if (datalenB > 0)
{
g.Write(exefsctrmode2C.DoFinal(exefsctrmode.DoFinal(f.ReadBytes((int)datalenB))));
g.Flush();
}
Console.Write("\rPartition {0} ExeFS: Encrypting: {1}... {2} / {3} mb... Done!\r\n", p, fileHeader.ReadableFileName, datalenM + 1, datalenM + 1);
}
}
}
// encrypt exefs filename table
f.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
g.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
var exefsctrmode2C_2 = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode2C_2.Init(true, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey2C)), exefsIV));
g.Write(exefsctrmode2C_2.ProcessBytes(f.ReadBytes((int)header.SectorSize)));
g.Flush();
Console.WriteLine("Partition {0} ExeFS: Encrypting: ExeFS Filename Table", p);
// encrypt exefs
int exefsSizeM = (int)((partitionHeader.ExeFSSizeInMediaUnits - 1) * header.SectorSize) / (1024 * 1024);
int exefsSizeB = (int)((partitionHeader.ExeFSSizeInMediaUnits - 1) * header.SectorSize) % (1024 * 1024);
int ctroffsetE = (int)(header.SectorSize / 0x10);
byte[] exefsIVWithOffset = AddToByteArray(exefsIV, ctroffsetE);
exefsctrmode2C_2 = CipherUtilities.GetCipher("AES/CTR");
exefsctrmode2C_2.Init(true, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey2C)), exefsIVWithOffset));
f.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits + 1) * header.SectorSize, SeekOrigin.Begin);
g.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.ExeFSOffsetInMediaUnits + 1) * header.SectorSize, SeekOrigin.Begin);
if (exefsSizeM > 0)
{
for (int i = 0; i < exefsSizeM; i++)
{
g.Write(exefsctrmode2C_2.ProcessBytes(f.ReadBytes(1024 * 1024)));
g.Flush();
Console.Write("\rPartition {0} ExeFS: Encrypting: {1} / {2} mb", p, i, exefsSizeM + 1);
}
}
if (exefsSizeB > 0)
{
g.Write(exefsctrmode2C_2.DoFinal(f.ReadBytes(exefsSizeB)));
g.Flush();
}
Console.Write("\rPartition {0} ExeFS: Encrypting: {1} / {2} mb... Done!\r\n", p, exefsSizeM + 1, exefsSizeM + 1);
}
else
{
Console.WriteLine("Partition {0} ExeFS: No Data... Skipping...", p);
}
if (partitionHeader.RomFSOffsetInMediaUnits != 0)
{
int romfsBlockSize = 16; // block size in mb
int romfsSizeM = (int)(partitionHeader.RomFSSizeInMediaUnits * header.SectorSize) / (romfsBlockSize * (1024 * 1024));
int romfsSizeB = (int)(partitionHeader.RomFSSizeInMediaUnits * header.SectorSize) % (romfsBlockSize * (1024 * 1024));
int romfsSizeTotalMb = (int)((partitionHeader.RomFSSizeInMediaUnits * header.SectorSize) / (1024 * 1024) + 1);
if (p > 0) // RomFS for partitions 1 and up always use Key0x2C
{
if ((backupFlags.BitMasks & BitMasks.FixedCryptoKey) != 0) // except if using zero-key
{
NormalKey = 0x00;
}
else
{
KeyX = KeyX = (development ? Constants.DevKeyX0x2C : Constants.KeyX0x2C);
NormalKey = RotateLeft((RotateLeft(KeyX, 2, 128) ^ KeyY) + Constants.AESHardwareConstant, 87, 128);
}
}
var romfsctrmode = CipherUtilities.GetCipher("AES/CTR");
romfsctrmode.Init(true, new ParametersWithIV(new KeyParameter(TakeSixteen(NormalKey)), romfsIV));
f.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.RomFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
g.BaseStream.Seek((header.PartitionsTable[p].Offset + partitionHeader.RomFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
if (romfsSizeM > 0)
{
for (int i = 0; i < romfsSizeM; i++)
{
g.Write(romfsctrmode.ProcessBytes(f.ReadBytes(romfsBlockSize * 1024 * 1024)));
g.Flush();
Console.Write("\rPartition {0} RomFS: Encrypting: {1} / {2} mb", p, i * romfsBlockSize, romfsSizeTotalMb);
}
}
if (romfsSizeB > 0)
{
g.Write(romfsctrmode.DoFinal(f.ReadBytes(romfsSizeB)));
g.Flush();
}
Console.Write("\rPartition {0} RomFS: Encrypting: {1} / {2} mb... Done!\r\n", p, romfsSizeTotalMb, romfsSizeTotalMb);
}
else
{
Console.WriteLine("Partition {0} RomFS: No Data... Skipping...", p);
}
// Encrypt each of the pieces if they exist
ProcessExtendedHeader(f, g, header, p, partitionHeader, true);
ProcessExeFS(f, g, header, p, partitionHeader, true);
ProcessRomFS(f, g, header, p, partitionHeader, true, backupFlags);
// Write the new CryptoMethod
g.BaseStream.Seek((header.PartitionsTable[p].Offset * header.SectorSize) + 0x18B, SeekOrigin.Begin);
@@ -562,24 +211,79 @@ namespace ThreeDS
}
}
private static BigInteger RotateLeft(BigInteger val, int r_bits, int max_bits)
/// <summary>
/// Perform a rotate left on a BigInteger
/// </summary>
/// <param name="val">BigInteger value to rotate</param>
/// <param name="r_bits">Number of bits to rotate</param>
/// <param name="max_bits">Maximum number of bits to rotate on</param>
/// <returns>Rotated BigInteger value</returns>
private BigInteger RotateLeft(BigInteger val, int r_bits, int max_bits)
{
return (val << r_bits % max_bits) & (BigInteger.Pow(2, max_bits) - 1) | ((val & (BigInteger.Pow(2, max_bits) - 1)) >> (max_bits - (r_bits % max_bits)));
}
private static string ToBytes(int num)
/// <summary>
/// Determine the set of keys to be used for encryption or decryption
/// </summary>
/// <param name="rsaSignature">RSA-2048 signature from a partition header</param>
/// <param name="masks">BitMasks value for a partition header or backup header</param>
/// <param name="method">CryptoMethod used for the partition</param>
/// <param name="partitionNumber">Partition number, only used for logging</param>
private void SetEncryptionKeys(byte[] rsaSignature, BitMasks masks, CryptoMethod method, int partitionNumber)
{
string numstr = string.Empty;
while (numstr.Length < 16)
{
numstr += (char)(num & 0xFF);
num >>= 8;
}
KeyX = 0;
KeyX2C = (development ? Constants.DevKeyX0x2C : Constants.KeyX0x2C);
KeyY = new BigInteger(rsaSignature.Take(16).Reverse().ToArray()); // KeyY is the first 16 bytes of the partition RSA-2048 SHA-256 signature
return numstr;
NormalKey = 0;
NormalKey2C = RotateLeft((RotateLeft(KeyX2C, 2, 128) ^ KeyY) + Constants.AESHardwareConstant, 87, 128);
if ((masks & BitMasks.FixedCryptoKey) != 0)
{
NormalKey = 0x00;
NormalKey2C = 0x00;
if (partitionNumber == 0)
Console.WriteLine("Encryption Method: Zero Key");
}
else
{
if (method == CryptoMethod.Original)
{
KeyX = (development ? Constants.DevKeyX0x2C : Constants.KeyX0x2C);
if (partitionNumber == 0)
Console.WriteLine("Encryption Method: Key 0x2C");
}
else if (method == CryptoMethod.Seven)
{
KeyX = (development ? Constants.KeyX0x25 : Constants.KeyX0x25);
if (partitionNumber == 0)
Console.WriteLine("Encryption Method: Key 0x25");
}
else if (method == CryptoMethod.NineThree)
{
KeyX = (development ? Constants.DevKeyX0x18 : Constants.KeyX0x18);
if (partitionNumber == 0)
Console.WriteLine("Encryption Method: Key 0x18");
}
else if (method == CryptoMethod.NineSix)
{
KeyX = (development ? Constants.DevKeyX0x1B : Constants.KeyX0x1B);
if (partitionNumber == 0)
Console.WriteLine("Encryption Method: Key 0x1B");
}
NormalKey = RotateLeft((RotateLeft(KeyX, 2, 128) ^ KeyY) + Constants.AESHardwareConstant, 87, 128);
}
}
private static byte[] AddToByteArray(byte[] input, int add)
/// <summary>
/// Add an integer value to a number represented by a byte array
/// </summary>
/// <param name="input">Byte array to add to</param>
/// <param name="add">Amount to add</param>
/// <returns>Byte array representing the new value</returns>
private byte[] AddToByteArray(byte[] input, int add)
{
int len = input.Length;
var bigint = new BigInteger(input.Reverse().ToArray());
@@ -599,7 +303,26 @@ namespace ThreeDS
return arr;
}
private static byte[] TakeSixteen(BigInteger input)
/// <summary>
/// Create AES cipher and intialize
/// </summary>
/// <param name="key">BigInteger representation of 128-bit encryption key</param>
/// <param name="iv">AES initial value for counter</param>
/// <param name="encrypt">True if cipher is created for encryption, false otherwise</param>
/// <returns>Initialized AES cipher</returns>
private IBufferedCipher CreateAESCipher(BigInteger key, byte[] iv, bool encrypt)
{
var cipher = CipherUtilities.GetCipher("AES/CTR");
cipher.Init(encrypt, new ParametersWithIV(new KeyParameter(TakeSixteen(key)), iv));
return cipher;
}
/// <summary>
/// Get a 16-byte array representation of a BigInteger
/// </summary>
/// <param name="input">BigInteger value to convert</param>
/// <returns>16-byte array representing the BigInteger</returns>
private byte[] TakeSixteen(BigInteger input)
{
var arr = input.ToByteArray().Take(16).Reverse().ToArray();
@@ -615,5 +338,220 @@ namespace ThreeDS
return arr;
}
/// <summary>
/// Process the extended header, if it exists
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <param name="writer">BinaryWriter representing the output stream</param>
/// <param name="header">File header</param>
/// <param name="partitionNumber">Partition number for logging</param>
/// <param name="partitionHeader">Partition header</param>
/// <param name="encrypt">True if we want to encrypt the extended header, false otherwise</param>
private void ProcessExtendedHeader(BinaryReader reader, BinaryWriter writer, NCSDHeader header, int partitionNumber, NCCHHeader partitionHeader, bool encrypt)
{
if (partitionHeader.ExtendedHeaderSizeInBytes > 0)
{
reader.BaseStream.Seek((header.PartitionsTable[partitionNumber].Offset * header.SectorSize) + 0x200, SeekOrigin.Begin);
writer.BaseStream.Seek((header.PartitionsTable[partitionNumber].Offset * header.SectorSize) + 0x200, SeekOrigin.Begin);
Console.WriteLine($"Partition {partitionNumber} ExeFS: " + (encrypt ? "Encrypting" : "Decrypting") + ": ExHeader");
var cipher = CreateAESCipher(NormalKey2C, partitionHeader.PlainIV, encrypt);
writer.Write(cipher.ProcessBytes(reader.ReadBytes(Constants.CXTExtendedDataHeaderLength)));
writer.Flush();
}
else
{
Console.WriteLine($"Partition {partitionNumber} ExeFS: No Extended Header... Skipping...");
}
}
/// <summary>
/// Process the ExeFS, if it exists
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <param name="writer">BinaryWriter representing the output stream</param>
/// <param name="header">File header</param>
/// <param name="partitionNumber">Partition number for logging</param>
/// <param name="partitionHeader">Partition header</param>
/// <param name="encrypt">True if we want to encrypt the extended header, false otherwise</param>
private void ProcessExeFS(BinaryReader reader, BinaryWriter writer, NCSDHeader header, int partitionNumber, NCCHHeader partitionHeader, bool encrypt)
{
if (partitionHeader.ExeFSSizeInMediaUnits > 0)
{
// If we're decrypting, we need to decrypt the filename table first
if (!encrypt)
ProcessExeFSFilenameTable(reader, writer, header, partitionNumber, partitionHeader, encrypt);
// For all but the original crypto method, process each of the files in the table
if (partitionHeader.Flags.CryptoMethod != CryptoMethod.Original)
{
reader.BaseStream.Seek((header.PartitionsTable[partitionNumber].Offset + partitionHeader.ExeFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
ExeFSHeader exefsHeader = ExeFSHeader.Read(reader);
if (exefsHeader != null)
{
foreach (ExeFSFileHeader fileHeader in exefsHeader.FileHeaders)
{
// Only decrypt a file if it's a code binary
if (!fileHeader.IsCodeBinary)
continue;
uint datalenM = ((fileHeader.FileSize) / (1024 * 1024));
uint datalenB = ((fileHeader.FileSize) % (1024 * 1024));
uint ctroffset = ((fileHeader.FileOffset + header.SectorSize) / 0x10);
byte[] exefsIVWithOffsetForHeader = AddToByteArray(partitionHeader.ExeFSIV, (int)ctroffset);
var firstCipher = CreateAESCipher(NormalKey, exefsIVWithOffsetForHeader, encrypt);
var secondCipher = CreateAESCipher(NormalKey2C, exefsIVWithOffsetForHeader, !encrypt);
reader.BaseStream.Seek((((header.PartitionsTable[partitionNumber].Offset + partitionHeader.ExeFSOffsetInMediaUnits) + 1) * header.SectorSize) + fileHeader.FileOffset, SeekOrigin.Begin);
writer.BaseStream.Seek((((header.PartitionsTable[partitionNumber].Offset + partitionHeader.ExeFSOffsetInMediaUnits) + 1) * header.SectorSize) + fileHeader.FileOffset, SeekOrigin.Begin);
if (datalenM > 0)
{
for (int i = 0; i < datalenM; i++)
{
writer.Write(secondCipher.ProcessBytes(firstCipher.ProcessBytes(reader.ReadBytes(1024 * 1024))));
writer.Flush();
Console.Write($"\rPartition {partitionNumber} ExeFS: " + (encrypt ? "Encrypting" : "Decrypting") + $": {fileHeader.ReadableFileName}... {i} / {datalenM + 1} mb...");
}
}
if (datalenB > 0)
{
writer.Write(secondCipher.DoFinal(firstCipher.DoFinal(reader.ReadBytes((int)datalenB))));
writer.Flush();
}
Console.Write($"\rPartition {partitionNumber} ExeFS: " + (encrypt ? "Encrypting" : "Decrypting") + $": {fileHeader.ReadableFileName}... {datalenM + 1} / {datalenM + 1} mb... Done!\r\n");
}
}
}
// If we're encrypting, we need to encrypt the filename table now
if (encrypt)
ProcessExeFSFilenameTable(reader, writer, header, partitionNumber, partitionHeader, encrypt);
// Process the ExeFS
int exefsSizeM = (int)((partitionHeader.ExeFSSizeInMediaUnits - 1) * header.SectorSize) / (1024 * 1024);
int exefsSizeB = (int)((partitionHeader.ExeFSSizeInMediaUnits - 1) * header.SectorSize) % (1024 * 1024);
int ctroffsetE = (int)(header.SectorSize / 0x10);
byte[] exefsIVWithOffset = AddToByteArray(partitionHeader.ExeFSIV, ctroffsetE);
var exeFS = CreateAESCipher(NormalKey2C, exefsIVWithOffset, encrypt);
reader.BaseStream.Seek((header.PartitionsTable[partitionNumber].Offset + partitionHeader.ExeFSOffsetInMediaUnits + 1) * header.SectorSize, SeekOrigin.Begin);
writer.BaseStream.Seek((header.PartitionsTable[partitionNumber].Offset + partitionHeader.ExeFSOffsetInMediaUnits + 1) * header.SectorSize, SeekOrigin.Begin);
if (exefsSizeM > 0)
{
for (int i = 0; i < exefsSizeM; i++)
{
writer.Write(exeFS.ProcessBytes(reader.ReadBytes(1024 * 1024)));
writer.Flush();
Console.Write($"\rPartition {partitionNumber} ExeFS: " + (encrypt ? "Encrypting" : "Decrypting") + $": {i} / {exefsSizeM + 1} mb");
}
}
if (exefsSizeB > 0)
{
writer.Write(exeFS.DoFinal(reader.ReadBytes(exefsSizeB)));
writer.Flush();
}
Console.Write($"\rPartition {partitionNumber} ExeFS: " + (encrypt ? "Encrypting" : "Decrypting") + $": {exefsSizeM + 1} / {exefsSizeM + 1} mb... Done!\r\n");
}
else
{
Console.WriteLine($"Partition {partitionNumber} ExeFS: No Data... Skipping...");
}
}
/// <summary>
/// Process the ExeFS Filename Table
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <param name="writer">BinaryWriter representing the output stream</param>
/// <param name="header">File header</param>
/// <param name="partitionNumber">Partition number for logging</param>
/// <param name="partitionHeader">Partition header</param>
/// <param name="encrypt">True if we want to encrypt the extended header, false otherwise</param>
private void ProcessExeFSFilenameTable(BinaryReader reader, BinaryWriter writer, NCSDHeader header, int partitionNumber, NCCHHeader partitionHeader, bool encrypt)
{
reader.BaseStream.Seek((header.PartitionsTable[partitionNumber].Offset + partitionHeader.ExeFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
writer.BaseStream.Seek((header.PartitionsTable[partitionNumber].Offset + partitionHeader.ExeFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
Console.WriteLine($"Partition {partitionNumber} ExeFS: " + (encrypt ? "Encrypting" : "Decrypting") + $": ExeFS Filename Table");
var exeFSFilenameTable = CreateAESCipher(NormalKey2C, partitionHeader.ExeFSIV, encrypt);
writer.Write(exeFSFilenameTable.ProcessBytes(reader.ReadBytes((int)header.SectorSize)));
writer.Flush();
}
/// <summary>
/// Process the RomFS, if it exists
/// </summary>
/// <param name="reader">BinaryReader representing the input stream</param>
/// <param name="writer">BinaryWriter representing the output stream</param>
/// <param name="header">File header</param>
/// <param name="partitionNumber">Partition number for logging</param>
/// <param name="partitionHeader">Partition header</param>
/// <param name="encrypt">True if we want to encrypt the extended header, false otherwise</param>
/// <param name="backupFlags">Optional backup flags, only used for encrypt</param>
private void ProcessRomFS(BinaryReader reader, BinaryWriter writer, NCSDHeader header, int partitionNumber, NCCHHeader partitionHeader, bool encrypt, NCCHHeaderFlags backupFlags = null)
{
if (partitionHeader.RomFSOffsetInMediaUnits != 0)
{
int romfsSizeM = (int)(partitionHeader.RomFSSizeInMediaUnits * header.SectorSize) / (1024 * 1024);
int romfsSizeB = (int)(partitionHeader.RomFSSizeInMediaUnits * header.SectorSize) % (1024 * 1024);
// Encrypting RomFS for partitions 1 and up always use Key0x2C
if (encrypt && partitionNumber > 0)
{
// If the backup flags aren't provided and we're encrypting, assume defaults
if (backupFlags == null)
{
KeyX = KeyX = (development ? Constants.DevKeyX0x2C : Constants.KeyX0x2C);
NormalKey = RotateLeft((RotateLeft(KeyX, 2, 128) ^ KeyY) + Constants.AESHardwareConstant, 87, 128);
}
if ((backupFlags.BitMasks & BitMasks.FixedCryptoKey) != 0) // except if using zero-key
{
NormalKey = 0x00;
}
else
{
KeyX = KeyX = (development ? Constants.DevKeyX0x2C : Constants.KeyX0x2C);
NormalKey = RotateLeft((RotateLeft(KeyX, 2, 128) ^ KeyY) + Constants.AESHardwareConstant, 87, 128);
}
}
var cipher = CreateAESCipher(NormalKey, partitionHeader.RomFSIV, encrypt);
reader.BaseStream.Seek((header.PartitionsTable[partitionNumber].Offset + partitionHeader.RomFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
writer.BaseStream.Seek((header.PartitionsTable[partitionNumber].Offset + partitionHeader.RomFSOffsetInMediaUnits) * header.SectorSize, SeekOrigin.Begin);
if (romfsSizeM > 0)
{
for (int i = 0; i < romfsSizeM; i++)
{
writer.Write(cipher.ProcessBytes(reader.ReadBytes(1024 * 1024)));
writer.Flush();
Console.Write($"\rPartition {partitionNumber} RomFS: Decrypting: {i} / {romfsSizeM + 1} mb");
}
}
if (romfsSizeB > 0)
{
writer.Write(cipher.DoFinal(reader.ReadBytes(romfsSizeB)));
writer.Flush();
}
Console.Write($"\rPartition {partitionNumber} RomFS: Decrypting: {romfsSizeM + 1} / {romfsSizeM + 1} mb... Done!\r\n");
}
else
{
Console.WriteLine($"Partition {partitionNumber} RomFS: No Data... Skipping...");
}
}
}
}