Files
Aaru.Checksums.Native/fletcher32_ssse3.c

163 lines
6.5 KiB
C
Raw Permalink Normal View History

/*
* This file is part of the Aaru Data Preservation Suite.
2024-12-19 15:21:40 +00:00
* Copyright (c) 2019-2025 Natalia Portillo.
* Copyright 2017 The Chromium Authors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(__x86_64__) || defined(__amd64) || defined(_M_AMD64) || defined(_M_X64) || defined(__I386__) || \
defined(__i386__) || defined(__THW_INTEL) || defined(_M_IX86)
#include <stdint.h>
#include <tmmintrin.h>
#include "library.h"
#include "fletcher32.h"
2023-09-23 18:10:44 +01:00
/**
2023-09-23 19:51:50 +01:00
* @brief Calculate Fletcher-32 checksum for a given data using SSSE3 instructions.
2023-09-23 18:10:44 +01:00
*
2023-09-23 19:51:50 +01:00
* This function calculates the Fletcher-32 checksum for a block of data using SSSE3 vector instructions.
2023-09-23 18:10:44 +01:00
*
* @param sum1 Pointer to the variable where the first 16-bit checksum value is stored.
* @param sum2 Pointer to the variable where the second 16-bit checksum value is stored.
* @param data Pointer to the data buffer.
* @param len Length of the data buffer in bytes.
*/
2024-04-30 15:12:48 +01:00
AARU_EXPORT TARGET_WITH_SSSE3 void AARU_CALL fletcher32_ssse3(uint16_t *sum1, uint16_t *sum2, const uint8_t *data,
long len)
{
uint32_t s1 = *sum1;
uint32_t s2 = *sum2;
/*
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
if(len >= BLOCK_SIZE)
{
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
2023-09-23 18:55:52 +01:00
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m128i tap1 = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
const __m128i tap2 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
const __m128i zero = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
const __m128i ones = _mm_set_epi16(1, 1, 1, 1, 1, 1, 1, 1);
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
__m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n);
__m128i v_s2 = _mm_set_epi32(0, 0, 0, s2);
__m128i v_s1 = _mm_set_epi32(0, 0, 0, 0);
2024-04-30 15:12:48 +01:00
do {
/*
* Load 32 input bytes.
*/
const __m128i bytes1 = _mm_loadu_si128((__m128i *)(data));
const __m128i bytes2 = _mm_loadu_si128((__m128i *)(data + 16));
/*
* Add previous block byte sum to v_ps.
*/
2024-04-30 15:12:48 +01:00
v_ps = _mm_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
2024-04-30 15:12:48 +01:00
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero));
const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones));
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero));
const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones));
data += BLOCK_SIZE;
2024-04-30 15:12:48 +01:00
} while(--n);
v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5));
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
#define S23O1 _MM_SHUFFLE(2, 3, 0, 1) /* A B C D -> B A D C */
#define S1O32 _MM_SHUFFLE(1, 0, 3, 2) /* A B C D -> C D A B */
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1));
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32));
s1 += _mm_cvtsi128_si32(v_s1);
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1));
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32));
s2 = _mm_cvtsi128_si32(v_s2);
#undef S23O1
#undef S1O32
/*
* Reduce.
*/
s1 %= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
}
/*
* Handle leftover data.
*/
if(len)
{
if(len >= 16)
{
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
s2 += (s1 += *data++);
len -= 16;
}
2024-04-30 15:12:48 +01:00
while(len--) { s2 += (s1 += *data++); }
if(s1 >= FLETCHER32_MODULE) s1 -= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
/*
* Return the recombined sums.
*/
*sum1 = s1 & 0xFFFF;
*sum2 = s2 & 0xFFFF;
}
#endif