Fix Adler and Fletcher calculations using SIMD when dataset is smaller than block size.

This commit is contained in:
2023-09-24 19:33:25 +01:00
parent 89382334ec
commit 0d9d1d92eb
9 changed files with 750 additions and 699 deletions

View File

@@ -51,101 +51,104 @@ AARU_EXPORT TARGET_WITH_AVX2 void AARU_CALL adler32_avx2(uint16_t *sum1, uint16_
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
if(len >= BLOCK_SIZE)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m256i tap = _mm256_set_epi8(1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32);
const __m256i zero = _mm256_setzero_si256();
const __m256i ones = _mm256_set1_epi16(1);
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
__m256i v_ps = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (s1 * n));
__m256i v_s2 = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, s2);
__m256i v_s1 = _mm256_setzero_si256();
do
while(blocks)
{
/*
* Load 32 input bytes.
*/
const __m256i bytes = _mm256_lddqu_si256((__m256i *)(data));
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m256i tap = _mm256_set_epi8(1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32);
const __m256i zero = _mm256_setzero_si256();
const __m256i ones = _mm256_set1_epi16(1);
/*
* Add previous block byte sum to v_ps.
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
v_ps = _mm256_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm256_add_epi32(v_s1, _mm256_sad_epu8(bytes, zero));
const __m256i mad = _mm256_maddubs_epi16(bytes, tap);
v_s2 = _mm256_add_epi32(v_s2, _mm256_madd_epi16(mad, ones));
__m256i v_ps = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (s1 * n));
__m256i v_s2 = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, s2);
__m256i v_s1 = _mm256_setzero_si256();
do
{
/*
* Load 32 input bytes.
*/
const __m256i bytes = _mm256_lddqu_si256((__m256i *)(data));
data += BLOCK_SIZE;
/*
* Add previous block byte sum to v_ps.
*/
v_ps = _mm256_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm256_add_epi32(v_s1, _mm256_sad_epu8(bytes, zero));
const __m256i mad = _mm256_maddubs_epi16(bytes, tap);
v_s2 = _mm256_add_epi32(v_s2, _mm256_madd_epi16(mad, ones));
data += BLOCK_SIZE;
}
while(--n);
__m128i sum = _mm_add_epi32(_mm256_castsi256_si128(v_s1), _mm256_extracti128_si256(v_s1, 1));
__m128i hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s1 += _mm_cvtsi128_si32(sum);
v_s2 = _mm256_add_epi32(v_s2, _mm256_slli_epi32(v_ps, 5));
sum = _mm_add_epi32(_mm256_castsi256_si128(v_s2), _mm256_extracti128_si256(v_s2, 1));
hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s2 = _mm_cvtsi128_si32(sum);
/*
* Reduce.
*/
s1 %= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
while(--n);
__m128i sum = _mm_add_epi32(_mm256_castsi256_si128(v_s1), _mm256_extracti128_si256(v_s1, 1));
__m128i hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s1 += _mm_cvtsi128_si32(sum);
v_s2 = _mm256_add_epi32(v_s2, _mm256_slli_epi32(v_ps, 5));
sum = _mm_add_epi32(_mm256_castsi256_si128(v_s2), _mm256_extracti128_si256(v_s2, 1));
hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s2 = _mm_cvtsi128_si32(sum);
/*
* Reduce.
*/
s1 %= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
/*
@@ -178,6 +181,7 @@ AARU_EXPORT TARGET_WITH_AVX2 void AARU_CALL adler32_avx2(uint16_t *sum1, uint16_
if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
/*
* Return the recombined sums.
*/

View File

@@ -55,118 +55,124 @@ TARGET_WITH_NEON void adler32_neon(uint16_t *sum1, uint16_t *sum2, const uint8_t
*/
uint32_t s1 = *sum1;
uint32_t s2 = *sum2;
/*
* Serially compute s1 & s2, until the data is 16-byte aligned.
*/
if((uintptr_t)data & 15)
{
while((uintptr_t)data & 15)
{
s2 += (s1 += *data++);
--len;
}
if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
/*
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
uint32_t blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
if(len >= BLOCK_SIZE)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo ADLER_MODULE.
* Serially compute s1 & s2, until the data is 16-byte aligned.
*/
#ifdef _MSC_VER
uint32x4_t v_s2 = {.n128_u32 = {0, 0, 0, s1 * n}};
uint32x4_t v_s1 = {.n128_u32 = {0, 0, 0, 0}};
#else
uint32x4_t v_s2 = (uint32x4_t){0, 0, 0, s1 * n};
uint32x4_t v_s1 = (uint32x4_t){0, 0, 0, 0};
#endif
uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
do
if((uintptr_t)data & 15)
{
/*
* Load 32 input bytes.
*/
const uint8x16_t bytes1 = vld1q_u8((uint8_t *)(data));
const uint8x16_t bytes2 = vld1q_u8((uint8_t *)(data + 16));
/*
* Add previous block byte sum to v_s2.
*/
v_s2 = vaddq_u32(v_s2, v_s1);
/*
* Horizontally add the bytes for s1.
*/
v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
/*
* Vertically add the bytes for s2.
*/
v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8(bytes1));
v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8(bytes2));
v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
data += BLOCK_SIZE;
while((uintptr_t)data & 15)
{
s2 += (s1 += *data++);
--len;
}
if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
while(--n);
v_s2 = vshlq_n_u32(v_s2, 5);
/*
* Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
*/
uint32_t blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo ADLER_MODULE.
*/
#ifdef _MSC_VER
uint32x4_t v_s2 = {.n128_u32 = {0, 0, 0, s1 * n}};
uint32x4_t v_s1 = {.n128_u32 = {0, 0, 0, 0}};
#else
uint32x4_t v_s2 = (uint32x4_t){0, 0, 0, s1 * n};
uint32x4_t v_s1 = (uint32x4_t){0, 0, 0, 0};
#endif
uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
do
{
/*
* Load 32 input bytes.
*/
const uint8x16_t bytes1 = vld1q_u8((uint8_t *)(data));
const uint8x16_t bytes2 = vld1q_u8((uint8_t *)(data + 16));
/*
* Add previous block byte sum to v_s2.
*/
v_s2 = vaddq_u32(v_s2, v_s1);
/*
* Horizontally add the bytes for s1.
*/
v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
/*
* Vertically add the bytes for s2.
*/
v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8(bytes1));
v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8(bytes2));
v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
data += BLOCK_SIZE;
}
while(--n);
v_s2 = vshlq_n_u32(v_s2, 5);
/*
* Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
*/
#ifdef _MSC_VER
#ifdef _M_ARM64
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){32, 31, 30, 29}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){28, 27, 26, 25}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){24, 23, 22, 21}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){20, 19, 18, 17}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){16, 15, 14, 13}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){12, 11, 10, 9}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){8, 7, 6, 5}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){4, 3, 2, 1}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){32, 31, 30, 29}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){28, 27, 26, 25}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){24, 23, 22, 21}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){20, 19, 18, 17}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){16, 15, 14, 13}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){12, 11, 10, 9}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){8, 7, 6, 5}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){4, 3, 2, 1}));
#else
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), vld1_u16(((uint16_t[]){32, 31, 30, 29})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), vld1_u16(((uint16_t[]){28, 27, 26, 25})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), vld1_u16(((uint16_t[]){24, 23, 22, 21})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), vld1_u16(((uint16_t[]){20, 19, 18, 17})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), vld1_u16(((uint16_t[]){16, 15, 14, 13})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), vld1_u16(((uint16_t[]){12, 11, 10, 9})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), vld1_u16(((uint16_t[]){8, 7, 6, 5})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), vld1_u16(((uint16_t[]){4, 3, 2, 1})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), vld1_u16(((uint16_t[]){32, 31, 30, 29})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), vld1_u16(((uint16_t[]){28, 27, 26, 25})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), vld1_u16(((uint16_t[]){24, 23, 22, 21})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), vld1_u16(((uint16_t[]){20, 19, 18, 17})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), vld1_u16(((uint16_t[]){16, 15, 14, 13})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), vld1_u16(((uint16_t[]){12, 11, 10, 9})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), vld1_u16(((uint16_t[]){8, 7, 6, 5})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), vld1_u16(((uint16_t[]){4, 3, 2, 1})));
#endif
#else
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), (uint16x4_t){32, 31, 30, 29});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), (uint16x4_t){28, 27, 26, 25});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), (uint16x4_t){24, 23, 22, 21});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), (uint16x4_t){20, 19, 18, 17});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), (uint16x4_t){16, 15, 14, 13});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), (uint16x4_t){12, 11, 10, 9});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), (uint16x4_t){8, 7, 6, 5});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), (uint16x4_t){4, 3, 2, 1});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), (uint16x4_t){32, 31, 30, 29});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), (uint16x4_t){28, 27, 26, 25});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), (uint16x4_t){24, 23, 22, 21});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), (uint16x4_t){20, 19, 18, 17});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), (uint16x4_t){16, 15, 14, 13});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), (uint16x4_t){12, 11, 10, 9});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), (uint16x4_t){8, 7, 6, 5});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), (uint16x4_t){4, 3, 2, 1});
#endif
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
uint32x2_t t_s1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
uint32x2_t t_s2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
uint32x2_t s1s2 = vpadd_u32(t_s1, t_s2);
s1 += vget_lane_u32(s1s2, 0);
s2 += vget_lane_u32(s1s2, 1);
/*
* Reduce.
*/
s1 %= ADLER_MODULE;
s2 %= ADLER_MODULE;
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
uint32x2_t t_s1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
uint32x2_t t_s2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
uint32x2_t s1s2 = vpadd_u32(t_s1, t_s2);
s1 += vget_lane_u32(s1s2, 0);
s2 += vget_lane_u32(s1s2, 1);
/*
* Reduce.
*/
s1 %= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
}
/*
* Handle leftover data.
*/
@@ -197,6 +203,7 @@ TARGET_WITH_NEON void adler32_neon(uint16_t *sum1, uint16_t *sum2, const uint8_t
if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
/*
* Return the recombined sums.
*/

View File

@@ -60,68 +60,72 @@ adler32_ssse3(uint16_t *sum1, uint16_t *sum2, const uint8_t *data, long len)
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
if(len >= BLOCK_SIZE)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m128i tap1 = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
const __m128i tap2 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
const __m128i zero = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
const __m128i ones = _mm_set_epi16(1, 1, 1, 1, 1, 1, 1, 1);
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
__m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n);
__m128i v_s2 = _mm_set_epi32(0, 0, 0, s2);
__m128i v_s1 = _mm_set_epi32(0, 0, 0, 0);
do
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m128i tap1 = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
const __m128i tap2 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
const __m128i zero = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
const __m128i ones = _mm_set_epi16(1, 1, 1, 1, 1, 1, 1, 1);
/*
* Load 32 input bytes.
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
const __m128i bytes1 = _mm_loadu_si128((__m128i *)(data));
const __m128i bytes2 = _mm_loadu_si128((__m128i *)(data + 16));
__m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n);
__m128i v_s2 = _mm_set_epi32(0, 0, 0, s2);
__m128i v_s1 = _mm_set_epi32(0, 0, 0, 0);
do
{
/*
* Load 32 input bytes.
*/
const __m128i bytes1 = _mm_loadu_si128((__m128i *)(data));
const __m128i bytes2 = _mm_loadu_si128((__m128i *)(data + 16));
/*
* Add previous block byte sum to v_ps.
*/
v_ps = _mm_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero));
const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones));
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero));
const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones));
data += BLOCK_SIZE;
}
while(--n);
v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5));
/*
* Add previous block byte sum to v_ps.
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
v_ps = _mm_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero));
const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones));
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero));
const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones));
data += BLOCK_SIZE;
}
while(--n);
v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5));
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
#define S23O1 _MM_SHUFFLE(2, 3, 0, 1) /* A B C D -> B A D C */
#define S1O32 _MM_SHUFFLE(1, 0, 3, 2) /* A B C D -> C D A B */
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1));
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32));
s1 += _mm_cvtsi128_si32(v_s1);
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1));
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32));
s2 = _mm_cvtsi128_si32(v_s2);
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1));
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32));
s1 += _mm_cvtsi128_si32(v_s1);
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1));
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32));
s2 = _mm_cvtsi128_si32(v_s2);
#undef S23O1
#undef S1O32
/*
* Reduce.
*/
s1 %= ADLER_MODULE;
s2 %= ADLER_MODULE;
/*
* Reduce.
*/
s1 %= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
}
/*
* Handle leftover data.
*/
@@ -152,6 +156,7 @@ adler32_ssse3(uint16_t *sum1, uint16_t *sum2, const uint8_t *data, long len)
if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
/*
* Return the recombined sums.
*/

View File

@@ -52,101 +52,104 @@ fletcher16_avx2(uint8_t *sum1, uint8_t *sum2, const uint8_t *data, long len)
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
if(len >= BLOCK_SIZE)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m256i tap = _mm256_set_epi8(1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32);
const __m256i zero = _mm256_setzero_si256();
const __m256i ones = _mm256_set1_epi16(1);
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
__m256i v_ps = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (s1 * n));
__m256i v_s2 = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, s2);
__m256i v_s1 = _mm256_setzero_si256();
do
while(blocks)
{
/*
* Load 32 input bytes.
*/
const __m256i bytes = _mm256_lddqu_si256((__m256i *)(data));
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m256i tap = _mm256_set_epi8(1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32);
const __m256i zero = _mm256_setzero_si256();
const __m256i ones = _mm256_set1_epi16(1);
/*
* Add previous block byte sum to v_ps.
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
v_ps = _mm256_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm256_add_epi32(v_s1, _mm256_sad_epu8(bytes, zero));
const __m256i mad = _mm256_maddubs_epi16(bytes, tap);
v_s2 = _mm256_add_epi32(v_s2, _mm256_madd_epi16(mad, ones));
__m256i v_ps = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (s1 * n));
__m256i v_s2 = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, s2);
__m256i v_s1 = _mm256_setzero_si256();
do
{
/*
* Load 32 input bytes.
*/
const __m256i bytes = _mm256_lddqu_si256((__m256i *)(data));
data += BLOCK_SIZE;
/*
* Add previous block byte sum to v_ps.
*/
v_ps = _mm256_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm256_add_epi32(v_s1, _mm256_sad_epu8(bytes, zero));
const __m256i mad = _mm256_maddubs_epi16(bytes, tap);
v_s2 = _mm256_add_epi32(v_s2, _mm256_madd_epi16(mad, ones));
data += BLOCK_SIZE;
}
while(--n);
__m128i sum = _mm_add_epi32(_mm256_castsi256_si128(v_s1), _mm256_extracti128_si256(v_s1, 1));
__m128i hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s1 += _mm_cvtsi128_si32(sum);
v_s2 = _mm256_add_epi32(v_s2, _mm256_slli_epi32(v_ps, 5));
sum = _mm_add_epi32(_mm256_castsi256_si128(v_s2), _mm256_extracti128_si256(v_s2, 1));
hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s2 = _mm_cvtsi128_si32(sum);
/*
* Reduce.
*/
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
}
while(--n);
__m128i sum = _mm_add_epi32(_mm256_castsi256_si128(v_s1), _mm256_extracti128_si256(v_s1, 1));
__m128i hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s1 += _mm_cvtsi128_si32(sum);
v_s2 = _mm256_add_epi32(v_s2, _mm256_slli_epi32(v_ps, 5));
sum = _mm_add_epi32(_mm256_castsi256_si128(v_s2), _mm256_extracti128_si256(v_s2, 1));
hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s2 = _mm_cvtsi128_si32(sum);
/*
* Reduce.
*/
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
}
/*
@@ -179,6 +182,7 @@ fletcher16_avx2(uint8_t *sum1, uint8_t *sum2, const uint8_t *data, long len)
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
}
/*
* Return the recombined sums.
*/

View File

@@ -48,123 +48,131 @@
* @param data Pointer to the data buffer.
* @param len Length of the data buffer in bytes.
*/
TARGET_WITH_NEON void fletcher16_neon(uint8_t* sum1, uint8_t* sum2, const uint8_t* data, uint32_t len)
TARGET_WITH_NEON void fletcher16_neon(uint8_t *sum1, uint8_t *sum2, const uint8_t *data, uint32_t len)
{
/*
* Split Fletcher-16 into component sums.
*/
uint32_t s1 = *sum1;
uint32_t s2 = *sum2;
/*
* Serially compute s1 & s2, until the data is 16-byte aligned.
*/
if((uintptr_t)data & 15)
{
while((uintptr_t)data & 15)
{
s2 += (s1 += *data++);
--len;
}
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
}
/*
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
uint32_t blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
if(len >= BLOCK_SIZE)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo FLETCHER16_MODULE.
* Serially compute s1 & s2, until the data is 16-byte aligned.
*/
if((uintptr_t)data & 15)
{
while((uintptr_t)data & 15)
{
s2 += (s1 += *data++);
--len;
}
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
}
uint32_t blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo FLETCHER16_MODULE.
*/
#ifdef _MSC_VER
uint32x4_t v_s2 = {.n128_u32 = {0, 0, 0, s1 * n}};
uint32x4_t v_s1 = {.n128_u32 = {0, 0, 0, 0}};
uint32x4_t v_s2 = {.n128_u32 = {0, 0, 0, s1 * n}};
uint32x4_t v_s1 = {.n128_u32 = {0, 0, 0, 0}};
#else
uint32x4_t v_s2 = (uint32x4_t){0, 0, 0, s1 * n};
uint32x4_t v_s1 = (uint32x4_t){0, 0, 0, 0};
uint32x4_t v_s2 = (uint32x4_t){0, 0, 0, s1 * n};
uint32x4_t v_s1 = (uint32x4_t){0, 0, 0, 0};
#endif
uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
do {
uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
do
{
/*
* Load 32 input bytes.
*/
const uint8x16_t bytes1 = vld1q_u8((uint8_t *)(data));
const uint8x16_t bytes2 = vld1q_u8((uint8_t *)(data + 16));
/*
* Add previous block byte sum to v_s2.
*/
v_s2 = vaddq_u32(v_s2, v_s1);
/*
* Horizontally add the bytes for s1.
*/
v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
/*
* Vertically add the bytes for s2.
*/
v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8(bytes1));
v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8(bytes2));
v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
data += BLOCK_SIZE;
}
while(--n);
v_s2 = vshlq_n_u32(v_s2, 5);
/*
* Load 32 input bytes.
* Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
*/
const uint8x16_t bytes1 = vld1q_u8((uint8_t*)(data));
const uint8x16_t bytes2 = vld1q_u8((uint8_t*)(data + 16));
/*
* Add previous block byte sum to v_s2.
*/
v_s2 = vaddq_u32(v_s2, v_s1);
/*
* Horizontally add the bytes for s1.
*/
v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
/*
* Vertically add the bytes for s2.
*/
v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8(bytes1));
v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8(bytes2));
v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
data += BLOCK_SIZE;
} while(--n);
v_s2 = vshlq_n_u32(v_s2, 5);
/*
* Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
*/
#ifdef _MSC_VER
#ifdef _M_ARM64
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){32, 31, 30, 29}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){28, 27, 26, 25}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){24, 23, 22, 21}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){20, 19, 18, 17}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){16, 15, 14, 13}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){12, 11, 10, 9}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){8, 7, 6, 5}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){4, 3, 2, 1}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){32, 31, 30, 29}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){28, 27, 26, 25}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){24, 23, 22, 21}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){20, 19, 18, 17}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){16, 15, 14, 13}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){12, 11, 10, 9}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){8, 7, 6, 5}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){4, 3, 2, 1}));
#else
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), vld1_u16(((uint16_t[]){32, 31, 30, 29})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), vld1_u16(((uint16_t[]){28, 27, 26, 25})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), vld1_u16(((uint16_t[]){24, 23, 22, 21})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), vld1_u16(((uint16_t[]){20, 19, 18, 17})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), vld1_u16(((uint16_t[]){16, 15, 14, 13})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), vld1_u16(((uint16_t[]){12, 11, 10, 9})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), vld1_u16(((uint16_t[]){8, 7, 6, 5})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), vld1_u16(((uint16_t[]){4, 3, 2, 1})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), vld1_u16(((uint16_t[]){32, 31, 30, 29})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), vld1_u16(((uint16_t[]){28, 27, 26, 25})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), vld1_u16(((uint16_t[]){24, 23, 22, 21})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), vld1_u16(((uint16_t[]){20, 19, 18, 17})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), vld1_u16(((uint16_t[]){16, 15, 14, 13})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), vld1_u16(((uint16_t[]){12, 11, 10, 9})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), vld1_u16(((uint16_t[]){8, 7, 6, 5})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), vld1_u16(((uint16_t[]){4, 3, 2, 1})));
#endif
#else
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), (uint16x4_t){32, 31, 30, 29});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), (uint16x4_t){28, 27, 26, 25});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), (uint16x4_t){24, 23, 22, 21});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), (uint16x4_t){20, 19, 18, 17});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), (uint16x4_t){16, 15, 14, 13});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), (uint16x4_t){12, 11, 10, 9});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), (uint16x4_t){8, 7, 6, 5});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), (uint16x4_t){4, 3, 2, 1});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), (uint16x4_t){32, 31, 30, 29});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), (uint16x4_t){28, 27, 26, 25});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), (uint16x4_t){24, 23, 22, 21});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), (uint16x4_t){20, 19, 18, 17});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), (uint16x4_t){16, 15, 14, 13});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), (uint16x4_t){12, 11, 10, 9});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), (uint16x4_t){8, 7, 6, 5});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), (uint16x4_t){4, 3, 2, 1});
#endif
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
uint32x2_t s1s2 = vpadd_u32(sum1, sum2);
s1 += vget_lane_u32(s1s2, 0);
s2 += vget_lane_u32(s1s2, 1);
/*
* Reduce.
*/
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
uint32x2_t s1s2 = vpadd_u32(sum1, sum2);
s1 += vget_lane_u32(s1s2, 0);
s2 += vget_lane_u32(s1s2, 1);
/*
* Reduce.
*/
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
}
}
/*
* Handle leftover data.
*/
@@ -190,10 +198,12 @@ TARGET_WITH_NEON void fletcher16_neon(uint8_t* sum1, uint8_t* sum2, const uint8_
s2 += (s1 += *data++);
len -= 16;
}
while(len--) { s2 += (s1 += *data++); }
while(len--)
{ s2 += (s1 += *data++); }
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
}
/*
* Return the recombined sums.
*/

View File

@@ -59,68 +59,72 @@ fletcher16_ssse3(uint8_t *sum1, uint8_t *sum2, const uint8_t *data, long len)
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
if(len >= BLOCK_SIZE)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m128i tap1 = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
const __m128i tap2 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
const __m128i zero = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
const __m128i ones = _mm_set_epi16(1, 1, 1, 1, 1, 1, 1, 1);
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
__m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n);
__m128i v_s2 = _mm_set_epi32(0, 0, 0, s2);
__m128i v_s1 = _mm_set_epi32(0, 0, 0, 0);
do
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m128i tap1 = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
const __m128i tap2 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
const __m128i zero = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
const __m128i ones = _mm_set_epi16(1, 1, 1, 1, 1, 1, 1, 1);
/*
* Load 32 input bytes.
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
const __m128i bytes1 = _mm_loadu_si128((__m128i *)(data));
const __m128i bytes2 = _mm_loadu_si128((__m128i *)(data + 16));
__m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n);
__m128i v_s2 = _mm_set_epi32(0, 0, 0, s2);
__m128i v_s1 = _mm_set_epi32(0, 0, 0, 0);
do
{
/*
* Load 32 input bytes.
*/
const __m128i bytes1 = _mm_loadu_si128((__m128i *)(data));
const __m128i bytes2 = _mm_loadu_si128((__m128i *)(data + 16));
/*
* Add previous block byte sum to v_ps.
*/
v_ps = _mm_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero));
const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones));
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero));
const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones));
data += BLOCK_SIZE;
}
while(--n);
v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5));
/*
* Add previous block byte sum to v_ps.
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
v_ps = _mm_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero));
const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones));
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero));
const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones));
data += BLOCK_SIZE;
}
while(--n);
v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5));
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
#define S23O1 _MM_SHUFFLE(2, 3, 0, 1) /* A B C D -> B A D C */
#define S1O32 _MM_SHUFFLE(1, 0, 3, 2) /* A B C D -> C D A B */
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1));
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32));
s1 += _mm_cvtsi128_si32(v_s1);
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1));
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32));
s2 = _mm_cvtsi128_si32(v_s2);
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1));
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32));
s1 += _mm_cvtsi128_si32(v_s1);
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1));
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32));
s2 = _mm_cvtsi128_si32(v_s2);
#undef S23O1
#undef S1O32
/*
* Reduce.
*/
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
/*
* Reduce.
*/
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
}
}
/*
* Handle leftover data.
*/
@@ -151,6 +155,7 @@ fletcher16_ssse3(uint8_t *sum1, uint8_t *sum2, const uint8_t *data, long len)
s1 %= FLETCHER16_MODULE;
s2 %= FLETCHER16_MODULE;
}
/*
* Return the recombined sums.
*/

View File

@@ -52,101 +52,104 @@ fletcher32_avx2(uint16_t *sum1, uint16_t *sum2, const uint8_t *data, long len)
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
if(len >= BLOCK_SIZE)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m256i tap = _mm256_set_epi8(1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32);
const __m256i zero = _mm256_setzero_si256();
const __m256i ones = _mm256_set1_epi16(1);
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
__m256i v_ps = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (s1 * n));
__m256i v_s2 = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, s2);
__m256i v_s1 = _mm256_setzero_si256();
do
while(blocks)
{
/*
* Load 32 input bytes.
*/
const __m256i bytes = _mm256_lddqu_si256((__m256i *)(data));
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m256i tap = _mm256_set_epi8(1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32);
const __m256i zero = _mm256_setzero_si256();
const __m256i ones = _mm256_set1_epi16(1);
/*
* Add previous block byte sum to v_ps.
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
v_ps = _mm256_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm256_add_epi32(v_s1, _mm256_sad_epu8(bytes, zero));
const __m256i mad = _mm256_maddubs_epi16(bytes, tap);
v_s2 = _mm256_add_epi32(v_s2, _mm256_madd_epi16(mad, ones));
__m256i v_ps = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (s1 * n));
__m256i v_s2 = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, s2);
__m256i v_s1 = _mm256_setzero_si256();
do
{
/*
* Load 32 input bytes.
*/
const __m256i bytes = _mm256_lddqu_si256((__m256i *)(data));
data += BLOCK_SIZE;
/*
* Add previous block byte sum to v_ps.
*/
v_ps = _mm256_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm256_add_epi32(v_s1, _mm256_sad_epu8(bytes, zero));
const __m256i mad = _mm256_maddubs_epi16(bytes, tap);
v_s2 = _mm256_add_epi32(v_s2, _mm256_madd_epi16(mad, ones));
data += BLOCK_SIZE;
}
while(--n);
__m128i sum = _mm_add_epi32(_mm256_castsi256_si128(v_s1), _mm256_extracti128_si256(v_s1, 1));
__m128i hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s1 += _mm_cvtsi128_si32(sum);
v_s2 = _mm256_add_epi32(v_s2, _mm256_slli_epi32(v_ps, 5));
sum = _mm_add_epi32(_mm256_castsi256_si128(v_s2), _mm256_extracti128_si256(v_s2, 1));
hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s2 = _mm_cvtsi128_si32(sum);
/*
* Reduce.
*/
s1 %= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
while(--n);
__m128i sum = _mm_add_epi32(_mm256_castsi256_si128(v_s1), _mm256_extracti128_si256(v_s1, 1));
__m128i hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s1 += _mm_cvtsi128_si32(sum);
v_s2 = _mm256_add_epi32(v_s2, _mm256_slli_epi32(v_ps, 5));
sum = _mm_add_epi32(_mm256_castsi256_si128(v_s2), _mm256_extracti128_si256(v_s2, 1));
hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s2 = _mm_cvtsi128_si32(sum);
/*
* Reduce.
*/
s1 %= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
/*
@@ -179,6 +182,7 @@ fletcher32_avx2(uint16_t *sum1, uint16_t *sum2, const uint8_t *data, long len)
if(s1 >= FLETCHER32_MODULE) s1 -= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
/*
* Return the recombined sums.
*/

View File

@@ -55,118 +55,124 @@ TARGET_WITH_NEON void fletcher32_neon(uint16_t *sum1, uint16_t *sum2, const uint
*/
uint32_t s1 = *sum1;
uint32_t s2 = *sum2;
/*
* Serially compute s1 & s2, until the data is 16-byte aligned.
*/
if((uintptr_t)data & 15)
{
while((uintptr_t)data & 15)
{
s2 += (s1 += *data++);
--len;
}
if(s1 >= FLETCHER32_MODULE) s1 -= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
/*
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
uint32_t blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
if(len >= BLOCK_SIZE)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo FLETCHER32_MODULE.
* Serially compute s1 & s2, until the data is 16-byte aligned.
*/
#ifdef _MSC_VER
uint32x4_t v_s2 = {.n128_u32 = {0, 0, 0, s1 * n}};
uint32x4_t v_s1 = {.n128_u32 = {0, 0, 0, 0}};
#else
uint32x4_t v_s2 = (uint32x4_t){0, 0, 0, s1 * n};
uint32x4_t v_s1 = (uint32x4_t){0, 0, 0, 0};
#endif
uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
do
if((uintptr_t)data & 15)
{
/*
* Load 32 input bytes.
*/
const uint8x16_t bytes1 = vld1q_u8((uint8_t *)(data));
const uint8x16_t bytes2 = vld1q_u8((uint8_t *)(data + 16));
/*
* Add previous block byte sum to v_s2.
*/
v_s2 = vaddq_u32(v_s2, v_s1);
/*
* Horizontally add the bytes for s1.
*/
v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
/*
* Vertically add the bytes for s2.
*/
v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8(bytes1));
v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8(bytes2));
v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
data += BLOCK_SIZE;
while((uintptr_t)data & 15)
{
s2 += (s1 += *data++);
--len;
}
if(s1 >= FLETCHER32_MODULE) s1 -= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
while(--n);
v_s2 = vshlq_n_u32(v_s2, 5);
/*
* Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
*/
uint32_t blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo FLETCHER32_MODULE.
*/
#ifdef _MSC_VER
uint32x4_t v_s2 = {.n128_u32 = {0, 0, 0, s1 * n}};
uint32x4_t v_s1 = {.n128_u32 = {0, 0, 0, 0}};
#else
uint32x4_t v_s2 = (uint32x4_t){0, 0, 0, s1 * n};
uint32x4_t v_s1 = (uint32x4_t){0, 0, 0, 0};
#endif
uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
do
{
/*
* Load 32 input bytes.
*/
const uint8x16_t bytes1 = vld1q_u8((uint8_t *)(data));
const uint8x16_t bytes2 = vld1q_u8((uint8_t *)(data + 16));
/*
* Add previous block byte sum to v_s2.
*/
v_s2 = vaddq_u32(v_s2, v_s1);
/*
* Horizontally add the bytes for s1.
*/
v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
/*
* Vertically add the bytes for s2.
*/
v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8(bytes1));
v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8(bytes2));
v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
data += BLOCK_SIZE;
}
while(--n);
v_s2 = vshlq_n_u32(v_s2, 5);
/*
* Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
*/
#ifdef _MSC_VER
#ifdef _M_ARM64
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){32, 31, 30, 29}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){28, 27, 26, 25}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){24, 23, 22, 21}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){20, 19, 18, 17}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){16, 15, 14, 13}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){12, 11, 10, 9}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){8, 7, 6, 5}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){4, 3, 2, 1}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){32, 31, 30, 29}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]){28, 27, 26, 25}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){24, 23, 22, 21}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]){20, 19, 18, 17}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){16, 15, 14, 13}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]){12, 11, 10, 9}));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){8, 7, 6, 5}));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]){4, 3, 2, 1}));
#else
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), vld1_u16(((uint16_t[]){32, 31, 30, 29})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), vld1_u16(((uint16_t[]){28, 27, 26, 25})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), vld1_u16(((uint16_t[]){24, 23, 22, 21})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), vld1_u16(((uint16_t[]){20, 19, 18, 17})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), vld1_u16(((uint16_t[]){16, 15, 14, 13})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), vld1_u16(((uint16_t[]){12, 11, 10, 9})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), vld1_u16(((uint16_t[]){8, 7, 6, 5})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), vld1_u16(((uint16_t[]){4, 3, 2, 1})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), vld1_u16(((uint16_t[]){32, 31, 30, 29})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), vld1_u16(((uint16_t[]){28, 27, 26, 25})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), vld1_u16(((uint16_t[]){24, 23, 22, 21})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), vld1_u16(((uint16_t[]){20, 19, 18, 17})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), vld1_u16(((uint16_t[]){16, 15, 14, 13})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), vld1_u16(((uint16_t[]){12, 11, 10, 9})));
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), vld1_u16(((uint16_t[]){8, 7, 6, 5})));
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), vld1_u16(((uint16_t[]){4, 3, 2, 1})));
#endif
#else
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), (uint16x4_t){32, 31, 30, 29});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), (uint16x4_t){28, 27, 26, 25});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), (uint16x4_t){24, 23, 22, 21});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), (uint16x4_t){20, 19, 18, 17});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), (uint16x4_t){16, 15, 14, 13});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), (uint16x4_t){12, 11, 10, 9});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), (uint16x4_t){8, 7, 6, 5});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), (uint16x4_t){4, 3, 2, 1});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), (uint16x4_t){32, 31, 30, 29});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), (uint16x4_t){28, 27, 26, 25});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), (uint16x4_t){24, 23, 22, 21});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), (uint16x4_t){20, 19, 18, 17});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), (uint16x4_t){16, 15, 14, 13});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), (uint16x4_t){12, 11, 10, 9});
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), (uint16x4_t){8, 7, 6, 5});
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), (uint16x4_t){4, 3, 2, 1});
#endif
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
uint32x2_t s1s2 = vpadd_u32(sum1, sum2);
s1 += vget_lane_u32(s1s2, 0);
s2 += vget_lane_u32(s1s2, 1);
/*
* Reduce.
*/
s1 %= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
uint32x2_t s1s2 = vpadd_u32(sum1, sum2);
s1 += vget_lane_u32(s1s2, 0);
s2 += vget_lane_u32(s1s2, 1);
/*
* Reduce.
*/
s1 %= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
}
/*
* Handle leftover data.
*/
@@ -197,6 +203,7 @@ TARGET_WITH_NEON void fletcher32_neon(uint16_t *sum1, uint16_t *sum2, const uint
if(s1 >= FLETCHER32_MODULE) s1 -= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
/*
* Return the recombined sums.
*/

View File

@@ -59,68 +59,72 @@ fletcher32_ssse3(uint16_t *sum1, uint16_t *sum2, const uint8_t *data, long len)
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
if(len >= BLOCK_SIZE)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m128i tap1 = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
const __m128i tap2 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
const __m128i zero = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
const __m128i ones = _mm_set_epi16(1, 1, 1, 1, 1, 1, 1, 1);
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
__m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n);
__m128i v_s2 = _mm_set_epi32(0, 0, 0, s2);
__m128i v_s1 = _mm_set_epi32(0, 0, 0, 0);
do
long blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m128i tap1 = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
const __m128i tap2 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
const __m128i zero = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
const __m128i ones = _mm_set_epi16(1, 1, 1, 1, 1, 1, 1, 1);
/*
* Load 32 input bytes.
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
const __m128i bytes1 = _mm_loadu_si128((__m128i *)(data));
const __m128i bytes2 = _mm_loadu_si128((__m128i *)(data + 16));
__m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n);
__m128i v_s2 = _mm_set_epi32(0, 0, 0, s2);
__m128i v_s1 = _mm_set_epi32(0, 0, 0, 0);
do
{
/*
* Load 32 input bytes.
*/
const __m128i bytes1 = _mm_loadu_si128((__m128i *)(data));
const __m128i bytes2 = _mm_loadu_si128((__m128i *)(data + 16));
/*
* Add previous block byte sum to v_ps.
*/
v_ps = _mm_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero));
const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones));
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero));
const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones));
data += BLOCK_SIZE;
}
while(--n);
v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5));
/*
* Add previous block byte sum to v_ps.
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
v_ps = _mm_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero));
const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones));
v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero));
const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2);
v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones));
data += BLOCK_SIZE;
}
while(--n);
v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5));
/*
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
*/
#define S23O1 _MM_SHUFFLE(2, 3, 0, 1) /* A B C D -> B A D C */
#define S1O32 _MM_SHUFFLE(1, 0, 3, 2) /* A B C D -> C D A B */
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1));
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32));
s1 += _mm_cvtsi128_si32(v_s1);
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1));
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32));
s2 = _mm_cvtsi128_si32(v_s2);
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1));
v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32));
s1 += _mm_cvtsi128_si32(v_s1);
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1));
v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32));
s2 = _mm_cvtsi128_si32(v_s2);
#undef S23O1
#undef S1O32
/*
* Reduce.
*/
s1 %= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
/*
* Reduce.
*/
s1 %= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
}
/*
* Handle leftover data.
*/
@@ -151,6 +155,7 @@ fletcher32_ssse3(uint16_t *sum1, uint16_t *sum2, const uint8_t *data, long len)
if(s1 >= FLETCHER32_MODULE) s1 -= FLETCHER32_MODULE;
s2 %= FLETCHER32_MODULE;
}
/*
* Return the recombined sums.
*/