mirror of
https://github.com/aaru-dps/Aaru.Checksums.Native.git
synced 2025-12-16 11:14:29 +00:00
194 lines
7.0 KiB
C
194 lines
7.0 KiB
C
/*
|
|
* This file is part of the Aaru Data Preservation Suite.
|
|
* Copyright (c) 2019-2023 Natalia Portillo.
|
|
* Copyright (C) 1995-2011 Mark Adler
|
|
* Copyright (C) Jean-loup Gailly
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
*
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#if defined(__x86_64__) || defined(__amd64) || defined(_M_AMD64) || defined(_M_X64) || defined(__I386__) || \
|
|
defined(__i386__) || defined(__THW_INTEL) || defined(_M_IX86)
|
|
|
|
#include <immintrin.h>
|
|
#include <stdint.h>
|
|
|
|
#include "library.h"
|
|
#include "fletcher16.h"
|
|
#include "simd.h"
|
|
|
|
/**
|
|
* @brief Calculate Fletcher-16 checksum for a given data using NEON instructions.
|
|
*
|
|
* This function calculates the Fletcher-16 checksum for a block of data using NEON vector instructions.
|
|
*
|
|
* @param sum1 Pointer to the variable where the first 8-bit checksum value is stored.
|
|
* @param sum2 Pointer to the variable where the second 8-bit checksum value is stored.
|
|
* @param data Pointer to the data buffer.
|
|
* @param len Length of the data buffer in bytes.
|
|
*/
|
|
AARU_EXPORT TARGET_WITH_AVX2 void AARU_CALL
|
|
fletcher16_avx2(uint8_t *sum1, uint8_t *sum2, const uint8_t *data, long len)
|
|
{
|
|
uint32_t s1 = *sum1;
|
|
uint32_t s2 = *sum2;
|
|
|
|
/*
|
|
* Process the data in blocks.
|
|
*/
|
|
const unsigned BLOCK_SIZE = 1 << 5;
|
|
if(len >= BLOCK_SIZE)
|
|
{
|
|
long blocks = len / BLOCK_SIZE;
|
|
len -= blocks * BLOCK_SIZE;
|
|
|
|
while(blocks)
|
|
{
|
|
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
|
|
|
|
if(n > blocks) n = (unsigned)blocks;
|
|
blocks -= n;
|
|
|
|
const __m256i tap = _mm256_set_epi8(1,
|
|
2,
|
|
3,
|
|
4,
|
|
5,
|
|
6,
|
|
7,
|
|
8,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32);
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
const __m256i ones = _mm256_set1_epi16(1);
|
|
|
|
/*
|
|
* Process n blocks of data. At most NMAX data bytes can be
|
|
* processed before s2 must be reduced modulo BASE.
|
|
*/
|
|
__m256i v_ps = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (s1 * n));
|
|
__m256i v_s2 = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, s2);
|
|
__m256i v_s1 = _mm256_setzero_si256();
|
|
do
|
|
{
|
|
/*
|
|
* Load 32 input bytes.
|
|
*/
|
|
const __m256i bytes = _mm256_lddqu_si256((__m256i *)(data));
|
|
|
|
/*
|
|
* Add previous block byte sum to v_ps.
|
|
*/
|
|
v_ps = _mm256_add_epi32(v_ps, v_s1);
|
|
/*
|
|
* Horizontally add the bytes for s1, multiply-adds the
|
|
* bytes by [ 32, 31, 30, ... ] for s2.
|
|
*/
|
|
v_s1 = _mm256_add_epi32(v_s1, _mm256_sad_epu8(bytes, zero));
|
|
const __m256i mad = _mm256_maddubs_epi16(bytes, tap);
|
|
v_s2 = _mm256_add_epi32(v_s2, _mm256_madd_epi16(mad, ones));
|
|
|
|
data += BLOCK_SIZE;
|
|
}
|
|
while(--n);
|
|
|
|
__m128i sum = _mm_add_epi32(_mm256_castsi256_si128(v_s1), _mm256_extracti128_si256(v_s1, 1));
|
|
__m128i hi = _mm_unpackhi_epi64(sum, sum);
|
|
sum = _mm_add_epi32(hi, sum);
|
|
hi = _mm_shuffle_epi32(sum, 177);
|
|
sum = _mm_add_epi32(sum, hi);
|
|
s1 += _mm_cvtsi128_si32(sum);
|
|
|
|
v_s2 = _mm256_add_epi32(v_s2, _mm256_slli_epi32(v_ps, 5));
|
|
sum = _mm_add_epi32(_mm256_castsi256_si128(v_s2), _mm256_extracti128_si256(v_s2, 1));
|
|
hi = _mm_unpackhi_epi64(sum, sum);
|
|
sum = _mm_add_epi32(hi, sum);
|
|
hi = _mm_shuffle_epi32(sum, 177);
|
|
sum = _mm_add_epi32(sum, hi);
|
|
s2 = _mm_cvtsi128_si32(sum);
|
|
|
|
/*
|
|
* Reduce.
|
|
*/
|
|
s1 %= FLETCHER16_MODULE;
|
|
s2 %= FLETCHER16_MODULE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle leftover data.
|
|
*/
|
|
if(len)
|
|
{
|
|
if(len >= 16)
|
|
{
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
len -= 16;
|
|
}
|
|
while(len--)
|
|
{ s2 += (s1 += *data++); }
|
|
s1 %= FLETCHER16_MODULE;
|
|
s2 %= FLETCHER16_MODULE;
|
|
}
|
|
|
|
/*
|
|
* Return the recombined sums.
|
|
*/
|
|
*sum1 = s1 & 0xFF;
|
|
*sum2 = s2 & 0xFF;
|
|
}
|
|
|
|
#endif
|