mirror of
https://github.com/aaru-dps/Aaru.Compression.Native.git
synced 2025-12-16 11:14:30 +00:00
Added comments from Copilot.
This commit is contained in:
93
zoo/decode.c
93
zoo/decode.c
@@ -3,63 +3,96 @@
|
||||
/***********************************************************
|
||||
decode.c
|
||||
|
||||
Adapted from "ar" archiver written by Haruhiko Okumura.
|
||||
Adapted from Haruhiko Okumura’s “ar” archiver. This
|
||||
version has been modified in 2025 by Natalia Portillo
|
||||
for in-memory decompression.
|
||||
***********************************************************/
|
||||
// Modified for in-memory decompression by Natalia Portillo, 2025
|
||||
|
||||
#include <limits.h>
|
||||
#include <stdint.h>
|
||||
#include <limits.h> // for UCHAR_MAX
|
||||
#include <stdint.h> // for fixed-width integer types
|
||||
|
||||
#include "ar.h"
|
||||
#include "lzh.h"
|
||||
#include "ar.h" // archive format constants
|
||||
#include "lzh.h" // LZH-specific constants (DICSIZ, THRESHOLD, etc.)
|
||||
|
||||
extern int decoded; /* from huf.c */
|
||||
extern int decoded; // flag set by decode_c() when end-of-stream is reached
|
||||
|
||||
static int j; /* remaining bytes to copy */
|
||||
static int j; // number of literal/copy runs remaining from a match
|
||||
|
||||
/*
|
||||
* decode_start()
|
||||
*
|
||||
* Prepare the decoder for a new file:
|
||||
* - Initialize the Huffman bitstream (via huf_decode_start())
|
||||
* - Reset the sliding-window copy counter `j`
|
||||
* - Clear the end-of-data flag `decoded`
|
||||
*/
|
||||
void decode_start()
|
||||
{
|
||||
huf_decode_start();
|
||||
j = 0;
|
||||
decoded = 0;
|
||||
huf_decode_start(); // reset bit-reader state
|
||||
j = 0; // no pending copy runs yet
|
||||
decoded = 0; // not yet at end-of-stream
|
||||
}
|
||||
|
||||
/*
|
||||
decodes; returns no. of chars decoded
|
||||
*/
|
||||
|
||||
* decode(count, buffer)
|
||||
*
|
||||
* Decode up to `count` bytes (usually DICSIZ) into `buffer[]`.
|
||||
* Returns the actual number of bytes written, or 0 if `decoded` is set.
|
||||
*
|
||||
* Sliding‐window logic:
|
||||
* 1. If `j` > 0, we are in the middle of copying a previous match:
|
||||
* - Copy one byte from `buffer[i]` into `buffer[r]`
|
||||
* - Advance `i` (circular within DICSIZ) and `r`
|
||||
* - Decrement `j` and repeat until `j` = 0 or `r` = count
|
||||
* 2. Otherwise, fetch the next symbol `c = decode_c()`:
|
||||
* - If `c <= UCHAR_MAX`, it’s a literal byte: emit it directly
|
||||
* - Else it’s a match:
|
||||
* • compute `j = match_length = c - (UCHAR_MAX + 1 - THRESHOLD)`
|
||||
* • compute `i = (r - match_offset - 1) mod DICSIZ`,
|
||||
* where match_offset = decode_p()
|
||||
* • enter copy loop from step 1
|
||||
*/
|
||||
int decode(uint32_t count, uint8_t *buffer)
|
||||
/* The calling function must keep the number of
|
||||
bytes to be processed. This function decodes
|
||||
either 'count' bytes or 'DICSIZ' bytes, whichever
|
||||
is smaller, into the array 'buffer[]' of size
|
||||
'DICSIZ' or more.
|
||||
Call decode_start() once for each new file
|
||||
before calling this function. */
|
||||
{
|
||||
static uint32_t i;
|
||||
uint32_t r, c;
|
||||
static uint32_t i; // sliding-window read index (circular)
|
||||
uint32_t r; // write position in buffer
|
||||
uint32_t c; // symbol or match code
|
||||
|
||||
r = 0;
|
||||
|
||||
// Step 1: finish any pending copy from a previous match
|
||||
while(--j >= 0)
|
||||
{
|
||||
buffer[r] = buffer[i];
|
||||
i = (i + 1) & (DICSIZ - 1);
|
||||
if(++r == count) return r;
|
||||
buffer[r] = buffer[i]; // copy one byte from history
|
||||
i = (i + 1) & (DICSIZ - 1); // wrap index within [0, DICSIZ)
|
||||
if(++r == count) // if output buffer is full
|
||||
return r; // return bytes written so far
|
||||
}
|
||||
|
||||
// Step 2: decode new symbols until end-of-stream or buffer full
|
||||
for(;;)
|
||||
{
|
||||
c = decode_c();
|
||||
if(decoded) return r;
|
||||
c = decode_c(); // get next Huffman symbol
|
||||
if(decoded) // end-of-stream marker reached
|
||||
return r; // no more bytes to decode
|
||||
|
||||
if(c <= UCHAR_MAX)
|
||||
{
|
||||
buffer[r] = c;
|
||||
// Literal byte: emit it directly
|
||||
buffer[r] = (uint8_t)c;
|
||||
if(++r == count) return r;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Match sequence: compute how many bytes to copy
|
||||
// j = match length
|
||||
j = c - (UCHAR_MAX + 1 - THRESHOLD);
|
||||
|
||||
// i = start position in sliding window:
|
||||
// current output position minus offset minus 1, wrapped
|
||||
i = (r - decode_p() - 1) & (DICSIZ - 1);
|
||||
|
||||
// Copy `j` bytes from history
|
||||
while(--j >= 0)
|
||||
{
|
||||
buffer[r] = buffer[i];
|
||||
@@ -68,4 +101,4 @@ int decode(uint32_t count, uint8_t *buffer)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
159
zoo/huf.c
159
zoo/huf.c
@@ -1,110 +1,148 @@
|
||||
/*$Source: /usr/home/dhesi/zoo/RCS/huf.c,v $*/
|
||||
/*$Id: huf.c,v 1.9 91/07/09 01:39:55 dhesi Exp $*/
|
||||
/***********************************************************
|
||||
huf.c -- static Huffman
|
||||
huf.c -- static Huffman decoding
|
||||
|
||||
Adapted from "ar" archiver written by Haruhiko Okumura.
|
||||
Adapted from Haruhiko Okumura’s “ar” archiver.
|
||||
Modified in 2025 by Natalia Portillo for in-memory I/O.
|
||||
***********************************************************/
|
||||
// Modified for in-memory decompression by Natalia Portillo, 2025
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#include "ar.h"
|
||||
#include "lzh.h"
|
||||
#include <limits.h> // UCHAR_MAX
|
||||
#include "ar.h" // archive format constants
|
||||
#include "lzh.h" // LZH algorithm constants (NC, DICBIT, CODE_BIT, etc.)
|
||||
|
||||
// NP = number of position codes = DICBIT+1
|
||||
// NT = number of tree codes = CODE_BIT+3
|
||||
// PBIT, TBIT = bit‐width to transmit NP/NT in header
|
||||
#define NP (DICBIT + 1)
|
||||
#define NT (CODE_BIT + 3)
|
||||
#define PBIT 4 /* smallest integer such that (1U << PBIT) > NP */
|
||||
#define TBIT 5 /* smallest integer such that (1U << TBIT) > NT */
|
||||
#define PBIT 4 /* smallest bits so (1<<PBIT)>NP */
|
||||
#define TBIT 5 /* smallest bits so (1<<TBIT)>NT */
|
||||
|
||||
// NPT = max(NP,NT) for prefix‐tree lengths
|
||||
#if NT > NP
|
||||
#define NPT NT
|
||||
#else
|
||||
#define NPT NP
|
||||
#endif
|
||||
|
||||
static void read_pt_len(int, int, int);
|
||||
static void read_c_len();
|
||||
// forward declarations of helper routines
|
||||
static void read_pt_len(int nn, int nbit, int i_special);
|
||||
static void read_c_len(void);
|
||||
|
||||
int decoded; /* for use in decode.c */
|
||||
int decoded; // flag set when end-of-stream block is seen
|
||||
|
||||
uint16_t left[2 * NC - 1], right[2 * NC - 1];
|
||||
// Huffman tree storage arrays
|
||||
// left[]/right[] store the binary tree structure for fast decoding
|
||||
uint16_t left[2 * NC - 1], right[2 * NC - 1];
|
||||
|
||||
// c_len[] = code lengths for literal/length tree (NC symbols)
|
||||
// pt_len[] = code lengths for position‐tree / prefix table (NPT symbols)
|
||||
// buf = temporary buffer pointer used during encoding; unused in decode
|
||||
static uint8_t *buf, c_len[NC], pt_len[NPT];
|
||||
|
||||
// size of buf if used, and remaining symbols in current block
|
||||
static uint32_t bufsiz = 0, blocksize;
|
||||
static uint16_t c_freq[2 * NC - 1], c_table[4096], c_code[NC], p_freq[2 * NP - 1], pt_table[256], pt_code[NPT],
|
||||
t_freq[2 * NT - 1];
|
||||
|
||||
/***** decoding *****/
|
||||
// Frequency, code and decode‐table structures
|
||||
static uint16_t c_freq[2 * NC - 1], // literal/length frequency counts
|
||||
c_table[4096], // fast‐lookup table for literal/length decoding
|
||||
c_code[NC], // canonical Huffman codes for literals
|
||||
p_freq[2 * NP - 1], // position frequency counts
|
||||
pt_table[256], // prefix‐tree fast lookup (for reading code lengths)
|
||||
pt_code[NPT], // canonical codes for prefix‐tree
|
||||
t_freq[2 * NT - 1]; // temporary freq for tree of code‐length codes
|
||||
|
||||
/***** decoding helper: read prefix‐tree code-lengths *****/
|
||||
static void read_pt_len(int nn, int nbit, int i_special)
|
||||
{
|
||||
int i, c, n;
|
||||
uint32_t mask;
|
||||
|
||||
// 1) read how many code‐lengths to consume
|
||||
n = getbits(nbit);
|
||||
if(n == 0)
|
||||
{
|
||||
// special case: all code‐lengths are identical
|
||||
c = getbits(nbit);
|
||||
for(i = 0; i < nn; i++) pt_len[i] = 0;
|
||||
for(i = 0; i < 256; i++) pt_table[i] = c;
|
||||
for(i = 0; i < nn; i++) // zero out lengths
|
||||
pt_len[i] = 0;
|
||||
for(i = 0; i < 256; i++) // prefix‐table always returns 'c'
|
||||
pt_table[i] = c;
|
||||
}
|
||||
else
|
||||
{
|
||||
// 2) read code lengths one by one
|
||||
i = 0;
|
||||
while(i < n)
|
||||
{
|
||||
// peek top 3 bits of bitbuf to guess small lengths
|
||||
c = bitbuf >> (BITBUFSIZ - 3);
|
||||
if(c == 7)
|
||||
{
|
||||
mask = (unsigned)1 << (BITBUFSIZ - 1 - 3);
|
||||
// if all three bits are 1, count additional ones
|
||||
mask = 1U << (BITBUFSIZ - 1 - 3);
|
||||
while(mask & bitbuf)
|
||||
{
|
||||
mask >>= 1;
|
||||
c++;
|
||||
mask >>= 1;
|
||||
}
|
||||
}
|
||||
fillbuf((c < 7) ? 3 : c - 3);
|
||||
// consume the actual length bits
|
||||
fillbuf((c < 7) ? 3 : (c - 3));
|
||||
pt_len[i++] = c;
|
||||
|
||||
// at special index, read a small run of zeros
|
||||
if(i == i_special)
|
||||
{
|
||||
c = getbits(2);
|
||||
while(--c >= 0) pt_len[i++] = 0;
|
||||
while(--c >= 0 && i < nn) pt_len[i++] = 0;
|
||||
}
|
||||
}
|
||||
// any remaining symbols get code‐length zero
|
||||
while(i < nn) pt_len[i++] = 0;
|
||||
|
||||
// build fast lookup table from lengths
|
||||
make_table(nn, pt_len, 8, pt_table);
|
||||
}
|
||||
}
|
||||
|
||||
static void read_c_len()
|
||||
/***** decoding helper: read literal/length code‐lengths *****/
|
||||
static void read_c_len(void)
|
||||
{
|
||||
int i, c, n;
|
||||
uint32_t mask;
|
||||
|
||||
// 1) how many literal codes?
|
||||
n = getbits(CBIT);
|
||||
if(n == 0)
|
||||
{
|
||||
// all code‐lengths identical
|
||||
c = getbits(CBIT);
|
||||
for(i = 0; i < NC; i++) c_len[i] = 0;
|
||||
for(i = 0; i < 4096; i++) c_table[i] = c;
|
||||
}
|
||||
else
|
||||
{
|
||||
// 2) read each code length via prefix‐tree
|
||||
i = 0;
|
||||
while(i < n)
|
||||
{
|
||||
// lookup next symbol in prefix‐table
|
||||
c = pt_table[bitbuf >> (BITBUFSIZ - 8)];
|
||||
if(c >= NT)
|
||||
{
|
||||
mask = (unsigned)1 << (BITBUFSIZ - 1 - 8);
|
||||
// if prefix code is non-leaf, walk tree
|
||||
mask = 1U << (BITBUFSIZ - 1 - 8);
|
||||
do {
|
||||
if(bitbuf & mask)
|
||||
c = right[c];
|
||||
else
|
||||
c = left[c];
|
||||
c = (bitbuf & mask) ? right[c] : left[c];
|
||||
mask >>= 1;
|
||||
} while(c >= NT);
|
||||
}
|
||||
// consume code‐length bits
|
||||
fillbuf(pt_len[c]);
|
||||
|
||||
// c ≤ 2: run-length encoding of zeros
|
||||
if(c <= 2)
|
||||
{
|
||||
if(c == 0)
|
||||
@@ -113,75 +151,94 @@ static void read_c_len()
|
||||
c = getbits(4) + 3;
|
||||
else
|
||||
c = getbits(CBIT) + 20;
|
||||
while(--c >= 0) c_len[i++] = 0;
|
||||
while(--c >= 0 && i < NC) c_len[i++] = 0;
|
||||
}
|
||||
else
|
||||
c_len[i++] = c - 2;
|
||||
{
|
||||
// real code-length = c−2
|
||||
c_len[i++] = (uint8_t)(c - 2);
|
||||
}
|
||||
}
|
||||
// fill rest with zero lengths
|
||||
while(i < NC) c_len[i++] = 0;
|
||||
|
||||
// build fast lookup for literal/length codes
|
||||
make_table(NC, c_len, 12, c_table);
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t decode_c()
|
||||
/***** decode next literal/length symbol or end-of-block *****/
|
||||
uint32_t decode_c(void)
|
||||
{
|
||||
uint32_t j, mask;
|
||||
|
||||
// if starting a new block, read its header
|
||||
if(blocksize == 0)
|
||||
{
|
||||
blocksize = getbits(16);
|
||||
blocksize = getbits(16); // block size = number of symbols
|
||||
if(blocksize == 0)
|
||||
{
|
||||
#if 0
|
||||
(void) fprintf(stderr, "block size = 0, decoded\n"); /* debug */
|
||||
#endif
|
||||
{ // zero block → end of data
|
||||
decoded = 1;
|
||||
return 0;
|
||||
}
|
||||
// read three Huffman trees for this block:
|
||||
// 1) code-length codes for literal tree (NT,TBIT,3)
|
||||
read_pt_len(NT, TBIT, 3);
|
||||
// 2) literal/length tree lengths (CBIT)
|
||||
read_c_len();
|
||||
// 3) prefix-tree lengths for positions (NP,PBIT,-1)
|
||||
read_pt_len(NP, PBIT, -1);
|
||||
}
|
||||
|
||||
// consume one symbol from this block
|
||||
blocksize--;
|
||||
|
||||
// fast table lookup: top 12 bits
|
||||
j = c_table[bitbuf >> (BITBUFSIZ - 12)];
|
||||
if(j >= NC)
|
||||
{
|
||||
mask = (unsigned)1 << (BITBUFSIZ - 1 - 12);
|
||||
// need to walk tree if overflow
|
||||
mask = 1U << (BITBUFSIZ - 1 - 12);
|
||||
do {
|
||||
if(bitbuf & mask)
|
||||
j = right[j];
|
||||
else
|
||||
j = left[j];
|
||||
j = (bitbuf & mask) ? right[j] : left[j];
|
||||
mask >>= 1;
|
||||
} while(j >= NC);
|
||||
}
|
||||
|
||||
// remove j’s code length bits from bitbuf
|
||||
fillbuf(c_len[j]);
|
||||
return j;
|
||||
}
|
||||
|
||||
uint32_t decode_p()
|
||||
/***** decode match-position extra bits *****/
|
||||
uint32_t decode_p(void)
|
||||
{
|
||||
uint32_t j, mask;
|
||||
|
||||
// fast table lookup: top 8 bits
|
||||
j = pt_table[bitbuf >> (BITBUFSIZ - 8)];
|
||||
if(j >= NP)
|
||||
{
|
||||
mask = (unsigned)1 << (BITBUFSIZ - 1 - 8);
|
||||
// tree walk for long codes
|
||||
mask = 1U << (BITBUFSIZ - 1 - 8);
|
||||
do {
|
||||
if(bitbuf & mask)
|
||||
j = right[j];
|
||||
else
|
||||
j = left[j];
|
||||
j = (bitbuf & mask) ? right[j] : left[j];
|
||||
mask >>= 1;
|
||||
} while(j >= NP);
|
||||
}
|
||||
|
||||
// consume prefix bits
|
||||
fillbuf(pt_len[j]);
|
||||
if(j != 0) j = ((unsigned)1 << (j - 1)) + getbits((int)(j - 1));
|
||||
|
||||
// if non-zero, read extra bits to form full position
|
||||
if(j != 0) j = (1U << (j - 1)) + getbits((int)(j - 1));
|
||||
|
||||
return j;
|
||||
}
|
||||
|
||||
void huf_decode_start()
|
||||
/***** start a new Huffman decode session *****/
|
||||
void huf_decode_start(void)
|
||||
{
|
||||
init_getbits();
|
||||
blocksize = 0;
|
||||
init_getbits(); // reset bit buffer & subbitbuf state
|
||||
blocksize = 0; // force reading a fresh block header
|
||||
}
|
||||
|
||||
112
zoo/io.c
112
zoo/io.c
@@ -3,103 +3,127 @@
|
||||
/***********************************************************
|
||||
io.c -- input/output (modified for in-memory I/O)
|
||||
|
||||
Adapted from "ar" archiver written by Haruhiko Okumura.
|
||||
This version reads compressed bytes from an input buffer
|
||||
via mem_getc() and writes output bytes to a buffer via
|
||||
mem_putc(), removing all FILE* dependencies for decompression.
|
||||
Adapted from Haruhiko Okumura’s “ar” archiver.
|
||||
This version feeds compressed bytes from a memory buffer
|
||||
(via mem_getc()) and writes decompressed output to a buffer
|
||||
(via mem_putc()), eliminating FILE* dependencies.
|
||||
Modified for in-memory decompression by Natalia Portillo, 2025
|
||||
***********************************************************/
|
||||
// Modified for in-memory decompression by Natalia Portillo, 2025
|
||||
|
||||
#include <limits.h>
|
||||
#include <limits.h> // Provides CHAR_BIT for bit-width operations
|
||||
|
||||
#include "ar.h"
|
||||
#include "lzh.h"
|
||||
#include "ar.h" // Archive format constants (e.g., CODE_BIT, NC)
|
||||
#include "lh5.h" // Declarations for mem_getc(), mem_putc(), buffer state
|
||||
#include "lzh.h" // LZH algorithm constants (e.g., BITBUFSIZ, DICSIZ)
|
||||
|
||||
#include "lh5.h" /* mem_getc(), mem_putc(), in_ptr/in_left, out_ptr/out_left */
|
||||
//-----------------------------------------------------------------------------
|
||||
// Global bit-I/O state
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
uint16_t bitbuf;
|
||||
int unpackable;
|
||||
size_t compsize, origsize;
|
||||
uint32_t subbitbuf;
|
||||
int bitcount;
|
||||
uint16_t bitbuf; // Accumulates bits shifted in from the input stream
|
||||
int unpackable; // Unused in decompression here (was for encode error)
|
||||
// Byte counters (optional diagnostics; not used to gate decompression)
|
||||
size_t compsize; // Count of output bytes produced (for compression mode)
|
||||
size_t origsize; // Count of input bytes consumed (for CRC in file I/O)
|
||||
uint32_t subbitbuf; // Holds the last byte fetched; bits are consumed from here
|
||||
int bitcount; // How many valid bits remain in subbitbuf
|
||||
|
||||
/*
|
||||
* fillbuf(n) -- shift bitbuf left by n bits and read in n new bits
|
||||
* now reads bytes directly from in-memory input buffer
|
||||
*/
|
||||
//-----------------------------------------------------------------------------
|
||||
// fillbuf(n)
|
||||
// Shift the global bitbuf left by n bits, then read in n new bits
|
||||
// from the input buffer (in-memory) to replenish bitbuf.
|
||||
//-----------------------------------------------------------------------------
|
||||
void fillbuf(int n) /* Shift bitbuf n bits left, read n bits */
|
||||
{
|
||||
// Make room for n bits
|
||||
bitbuf <<= n;
|
||||
|
||||
// While we still need more bits than we have in subbitbuf...
|
||||
while(n > bitcount)
|
||||
{
|
||||
// Pull any remaining bits from subbitbuf into bitbuf
|
||||
bitbuf |= subbitbuf << (n -= bitcount);
|
||||
|
||||
/* fetch next compressed byte from in_buf */
|
||||
// Fetch the next compressed byte from input memory
|
||||
{
|
||||
int c = mem_getc();
|
||||
int c = mem_getc(); // read one byte or 0 at EOF
|
||||
subbitbuf = (c == EOF ? 0 : (uint8_t)c);
|
||||
}
|
||||
|
||||
// Reset bitcount: a full new byte is available
|
||||
bitcount = CHAR_BIT;
|
||||
}
|
||||
|
||||
// Finally, consume the last n bits from subbitbuf into bitbuf
|
||||
bitbuf |= subbitbuf >> (bitcount -= n);
|
||||
}
|
||||
|
||||
/*
|
||||
* getbits(n) -- return next n bits from the bit buffer
|
||||
*/
|
||||
//-----------------------------------------------------------------------------
|
||||
// getbits(n)
|
||||
// Return the next n bits from bitbuf (highest-order bits), then
|
||||
// call fillbuf(n) to replace them. Useful for reading variable-length codes.
|
||||
//-----------------------------------------------------------------------------
|
||||
uint32_t getbits(int n)
|
||||
{
|
||||
uint32_t x = bitbuf >> (BITBUFSIZ - n);
|
||||
fillbuf(n);
|
||||
uint32_t x = bitbuf >> (BITBUFSIZ - n); // extract top n bits
|
||||
fillbuf(n); // replenish bitbuf for future reads
|
||||
return x;
|
||||
}
|
||||
|
||||
/*
|
||||
* putbits(n,x) -- write the lowest n bits of x to the bit buffer
|
||||
* now writes bytes directly to in-memory output buffer
|
||||
*/
|
||||
//-----------------------------------------------------------------------------
|
||||
// putbits(n, x)
|
||||
// Write the lowest n bits of x into the output buffer, packing them
|
||||
// into bytes via subbitbuf/bitcount and sending full bytes out
|
||||
// with mem_putc(). Used by the encoder; kept here for completeness.
|
||||
//-----------------------------------------------------------------------------
|
||||
void putbits(int n, uint32_t x) /* Write rightmost n bits of x */
|
||||
{
|
||||
// If we have enough room in subbitbuf, just pack the bits
|
||||
if(n < bitcount) { subbitbuf |= x << (bitcount -= n); }
|
||||
else
|
||||
{
|
||||
/* output first byte */
|
||||
// Output the first full byte when subbitbuf fills
|
||||
{
|
||||
int w = (int)(subbitbuf | (x >> (n -= bitcount)));
|
||||
mem_putc(w);
|
||||
compsize++;
|
||||
compsize++; // increment output counter (for compression)
|
||||
}
|
||||
|
||||
// If remaining bits don't fill a full byte, stash them
|
||||
if(n < CHAR_BIT) { subbitbuf = x << (bitcount = CHAR_BIT - n); }
|
||||
else
|
||||
{
|
||||
/* output second byte */
|
||||
// Otherwise, flush a second full byte
|
||||
{
|
||||
int w2 = (int)(x >> (n - CHAR_BIT));
|
||||
mem_putc(w2);
|
||||
compsize++;
|
||||
}
|
||||
// And stash any leftover bits beyond two bytes
|
||||
subbitbuf = x << (bitcount = 2 * CHAR_BIT - n);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* init_getbits -- initialize bit reader state
|
||||
*/
|
||||
//-----------------------------------------------------------------------------
|
||||
// init_getbits()
|
||||
// Reset the bit-reader state so that fillbuf() will load fresh bits
|
||||
// from the start of the input buffer.
|
||||
//-----------------------------------------------------------------------------
|
||||
void init_getbits()
|
||||
{
|
||||
bitbuf = 0;
|
||||
subbitbuf = 0;
|
||||
bitcount = 0;
|
||||
fillbuf(BITBUFSIZ);
|
||||
bitbuf = 0; // clear accumulated bits
|
||||
subbitbuf = 0; // no pending byte
|
||||
bitcount = 0; // no bits available
|
||||
fillbuf(BITBUFSIZ); // pre-load the bit buffer fully
|
||||
}
|
||||
|
||||
/*
|
||||
* init_putbits -- initialize bit writer state
|
||||
*/
|
||||
//-----------------------------------------------------------------------------
|
||||
// init_putbits()
|
||||
// Reset the bit-writer state so subsequent putbits() calls start fresh.
|
||||
//-----------------------------------------------------------------------------
|
||||
void init_putbits()
|
||||
{
|
||||
bitcount = CHAR_BIT;
|
||||
subbitbuf = 0;
|
||||
bitcount = CHAR_BIT; // subbitbuf is empty but ready for CHAR_BIT bits
|
||||
subbitbuf = 0; // clear any leftover byte data
|
||||
}
|
||||
|
||||
113
zoo/maketbl.c
113
zoo/maketbl.c
@@ -3,75 +3,128 @@
|
||||
/***********************************************************
|
||||
maketbl.c -- make table for decoding
|
||||
|
||||
Adapted from "ar" archiver written by Haruhiko Okumura.
|
||||
Builds a fast lookup table + fallback tree for Huffman
|
||||
codes given code lengths. Used by decode_c() to map
|
||||
input bit patterns to symbols efficiently.
|
||||
|
||||
Adapted from Haruhiko Okumura’s “ar” archiver.
|
||||
Modified for in-memory decompression by Natalia Portillo, 2025
|
||||
***********************************************************/
|
||||
// Modified for in-memory decompression by Natalia Portillo, 2025
|
||||
|
||||
#include "ar.h"
|
||||
#include "lzh.h"
|
||||
#include <stdio.h>
|
||||
#include "ar.h" // provides NC, CODE_BIT, etc.
|
||||
#include "lzh.h" // provides BITBUFSIZ
|
||||
|
||||
/*
|
||||
* make_table(nchar, bitlen, tablebits, table):
|
||||
*
|
||||
* nchar = number of symbols
|
||||
* bitlen[] = array of code lengths for each symbol [0..nchar-1]
|
||||
* tablebits = number of bits for fast direct lookup
|
||||
* table[] = output table of size (1<<tablebits), entries are:
|
||||
* - symbol index if code length ≤ tablebits
|
||||
* - zero or tree node index to follow for longer codes
|
||||
*
|
||||
* Algorithm steps:
|
||||
* 1) Count how many codes of each length (count[1..16]).
|
||||
* 2) Compute 'start' offsets for each length in a 16-bit code space.
|
||||
* 3) Normalize starts to 'tablebits' prefix domain, build 'weight'.
|
||||
* 4) Fill direct-mapped entries for short codes.
|
||||
* 5) Build binary tree (using left[]/right[]) for codes longer than tablebits.
|
||||
*/
|
||||
void make_table(int nchar, uint8_t *bitlen, int tablebits, uint16_t *table)
|
||||
{
|
||||
uint16_t count[17], weight[17], start[18], *p;
|
||||
uint32_t i, k, len, ch, jutbits, avail, nextcode, mask;
|
||||
uint16_t count[17]; // count[L] = number of symbols with length L
|
||||
uint16_t weight[17]; // weight[L] = step size in prefix domain for length L
|
||||
uint16_t start[18]; // start[L] = base code for length L in 16-bit space
|
||||
uint16_t *p; // pointer into 'table' or tree
|
||||
uint32_t i, k, len, ch;
|
||||
uint32_t jutbits; // bits to drop when mapping into tablebits
|
||||
uint32_t avail; // next free node index for left[]/right[] tree
|
||||
uint32_t nextcode; // end-of-range code for current length
|
||||
uint32_t mask; // bitmask for tree insertion
|
||||
|
||||
// 1) Zero counts, then tally code-lengths
|
||||
for(i = 1; i <= 16; i++) count[i] = 0;
|
||||
for(i = 0; i < nchar; i++) count[bitlen[i]]++;
|
||||
for(i = 0; i < (uint32_t)nchar; i++) count[bitlen[i]]++;
|
||||
|
||||
// 2) Compute cumulative start positions in the 16-bit code space
|
||||
start[1] = 0;
|
||||
for(i = 1; i <= 16; i++) start[i + 1] = start[i] + (count[i] << (16 - i));
|
||||
if(start[17] != (uint16_t)((unsigned)1 << 16)) fprintf(stderr, "Bad decode table\n");
|
||||
|
||||
// Validate: sum of all codes must fill 16-bit range
|
||||
if(start[17] != (uint16_t)(1U << 16)) fprintf(stderr, "make_table: Bad decode table\n");
|
||||
|
||||
// Prepare for mapping into tablebits-bit table
|
||||
jutbits = 16 - tablebits;
|
||||
for(i = 1; i <= tablebits; i++)
|
||||
for(i = 1; i <= (uint32_t)tablebits; i++)
|
||||
{
|
||||
// Shrink start[i] into prefix domain
|
||||
start[i] >>= jutbits;
|
||||
weight[i] = (unsigned)1 << (tablebits - i);
|
||||
}
|
||||
while(i <= 16)
|
||||
{
|
||||
weight[i] = (unsigned)1 << (16 - i);
|
||||
i++;
|
||||
// Weight = 2^(tablebits - i)
|
||||
weight[i] = (uint16_t)(1U << (tablebits - i));
|
||||
}
|
||||
// For lengths > tablebits, weight = 2^(16 - length)
|
||||
for(; i <= 16; i++) weight[i] = (uint16_t)(1U << (16 - i));
|
||||
|
||||
// 3) Clear any unused table slots between last short code and end
|
||||
i = start[tablebits + 1] >> jutbits;
|
||||
if(i != (uint16_t)((unsigned)1 << 16))
|
||||
if(i != (uint16_t)(1U << tablebits))
|
||||
{
|
||||
k = 1 << tablebits;
|
||||
while(i != k) table[i++] = 0;
|
||||
k = 1U << tablebits;
|
||||
while(i < k) table[i++] = 0;
|
||||
}
|
||||
|
||||
// Initialize tree node index after the direct table entries
|
||||
avail = nchar;
|
||||
mask = (unsigned)1 << (15 - tablebits);
|
||||
for(ch = 0; ch < nchar; ch++)
|
||||
// Mask for inspecting bits when building tree
|
||||
mask = 1U << (15 - tablebits);
|
||||
|
||||
// 4) For each symbol, place its codes in table or tree
|
||||
for(ch = 0; ch < (uint32_t)nchar; ch++)
|
||||
{
|
||||
if((len = bitlen[ch]) == 0) continue;
|
||||
len = bitlen[ch];
|
||||
if(len == 0) continue; // skip symbols with no code
|
||||
|
||||
// Next code range = [start[len], start[len]+weight[len])
|
||||
nextcode = start[len] + weight[len];
|
||||
|
||||
if(len <= tablebits)
|
||||
{
|
||||
for(i = start[len]; i < nextcode; i++) table[i] = ch;
|
||||
// Direct mapping: fill all table slots in this range
|
||||
for(k = start[len]; k < nextcode; k++) table[k] = (uint16_t)ch;
|
||||
}
|
||||
else
|
||||
{
|
||||
k = start[len];
|
||||
p = &table[k >> jutbits];
|
||||
i = len - tablebits;
|
||||
while(i != 0)
|
||||
// Build or extend tree for longer codes
|
||||
// Start at table index for this prefix
|
||||
k = start[len];
|
||||
p = &table[k >> jutbits];
|
||||
// Number of extra bits beyond tablebits
|
||||
uint32_t extra = len - tablebits;
|
||||
|
||||
// Walk/construct tree nodes bit by bit
|
||||
while(extra-- > 0)
|
||||
{
|
||||
if(*p == 0)
|
||||
{
|
||||
right[avail] = left[avail] = 0;
|
||||
*p = avail++;
|
||||
// allocate a new node for left[]/right[]
|
||||
left[avail] = right[avail] = 0;
|
||||
*p = (uint16_t)avail++;
|
||||
}
|
||||
// branch left or right based on current code bit
|
||||
if(k & mask)
|
||||
p = &right[*p];
|
||||
else
|
||||
p = &left[*p];
|
||||
|
||||
// shift to next bit in code
|
||||
k <<= 1;
|
||||
i--;
|
||||
}
|
||||
*p = ch;
|
||||
// At leaf: assign symbol
|
||||
*p = (uint16_t)ch;
|
||||
}
|
||||
// Advance start[len] for next code of same length
|
||||
start[len] = nextcode;
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user