Files
libaaruformat/src/ddt/ddt_v2.c

366 lines
14 KiB
C
Raw Normal View History

2025-08-04 16:31:29 +01:00
/*
* This file is part of the Aaru Data Preservation Suite.
* Copyright (c) 2019-2025 Natalia Portillo.
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#ifdef __linux__
#include <sys/mman.h>
#endif
#include "aaruformat.h"
int32_t process_ddt_v2(aaruformatContext *ctx, IndexEntry *entry, bool *foundUserDataDdt)
{
int pos = 0;
size_t readBytes = 0;
DdtHeader2 ddtHeader;
uint8_t * cmpData = NULL;
uint32_t * cdDdt = NULL;
uint8_t lzmaProperties[LZMA_PROPERTIES_LENGTH];
size_t lzmaSize = 0;
int errorNo = 0;
crc64_ctx *crc64_context = NULL;
uint64_t crc64 = 0;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
fprintf(stderr, "Invalid context or image stream.\n");
return AARUF_ERROR_NOT_AARUFORMAT;
}
// Seek to block
pos = fseek(ctx->imageStream, entry->offset, SEEK_SET);
if(pos < 0 || ftell(ctx->imageStream) != entry->offset)
{
fprintf(stderr, "libaaruformat: Could not seek to %" PRIu64 " as indicated by index entry...\n", entry->offset);
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
// Even if those two checks shall have been done before
readBytes = fread(&ddtHeader, 1, sizeof(DdtHeader2), ctx->imageStream);
if(readBytes != sizeof(DdtHeader2))
{
fprintf(stderr, "libaaruformat: Could not read block header at %" PRIu64 "\n", entry->offset);
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
*foundUserDataDdt = false;
ctx->imageInfo.ImageSize += ddtHeader.cmpLength;
if(entry->dataType == UserData)
{
// User area sectors is blocks stored in DDT minus the negative and overflow displacement blocks
ctx->imageInfo.Sectors = ddtHeader.blocks - ddtHeader.negative - ddtHeader.overflow;
// We need the header later for the shift calculations
ctx->userDataDdtHeader = ddtHeader;
ctx->ddtVersion = 2;
// Check for DDT compression
switch(ddtHeader.compression)
{
case Lzma:
lzmaSize = ddtHeader.cmpLength - LZMA_PROPERTIES_LENGTH;
cmpData = (uint8_t *)malloc(lzmaSize);
if(cmpData == NULL)
{
fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n");
break;
}
ctx->userDataDdt = (uint64_t *)malloc(ddtHeader.length);
if(ctx->userDataDdt == NULL)
{
fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n");
free(cmpData);
break;
}
readBytes = fread(lzmaProperties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(readBytes != LZMA_PROPERTIES_LENGTH)
{
fprintf(stderr, "Could not read LZMA properties, continuing...\n");
free(cmpData);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
break;
}
readBytes = fread(cmpData, 1, lzmaSize, ctx->imageStream);
if(readBytes != lzmaSize)
{
fprintf(stderr, "Could not read compressed block, continuing...\n");
free(cmpData);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
break;
}
readBytes = ddtHeader.length;
errorNo = aaruf_lzma_decode_buffer((uint8_t *)ctx->userDataDdt, &readBytes, cmpData, &lzmaSize,
lzmaProperties, LZMA_PROPERTIES_LENGTH);
if(errorNo != 0)
{
fprintf(stderr, "Got error %d from LZMA, stopping...\n", errorNo);
free(cmpData);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(readBytes != ddtHeader.length)
{
fprintf(stderr, "Error decompressing block, should be {0} bytes but got {1} bytes., stopping...\n");
free(cmpData);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
free(cmpData);
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
fprintf(stderr, "Could not initialize CRC64.\n");
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdt, readBytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddtHeader.crc64)
{
fprintf(stderr, "Expected DDT CRC 0x%16lX but got 0x%16lX.\n", ddtHeader.crc64, crc64);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
ctx->inMemoryDdt = true;
*foundUserDataDdt = true;
break;
case None:
ctx->userDataDdt = (uint64_t *)malloc(ddtHeader.length);
if(ctx->userDataDdt == NULL)
{
fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n");
free(cmpData);
break;
}
readBytes = fread(ctx->userDataDdt, 1, ddtHeader.entries * sizeof(uint32_t), ctx->imageStream);
if(readBytes != ddtHeader.entries * sizeof(uint32_t))
{
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
fprintf(stderr, "libaaruformat: Could not read deduplication table, continuing...\n");
break;
}
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
fprintf(stderr, "Could not initialize CRC64.\n");
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdt, readBytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddtHeader.crc64)
{
fprintf(stderr, "Expected DDT CRC 0x%16lX but got 0x%16lX.\n", ddtHeader.crc64, crc64);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
ctx->inMemoryDdt = true;
*foundUserDataDdt = true;
break;
default:
fprintf(stderr, "libaaruformat: Found unknown compression type %d, continuing...\n",
ddtHeader.compression);
*foundUserDataDdt = false;
break;
}
}
else if(entry->dataType == CdSectorPrefixCorrected || entry->dataType == CdSectorSuffixCorrected)
{
switch(ddtHeader.compression)
{
case Lzma:
lzmaSize = ddtHeader.cmpLength - LZMA_PROPERTIES_LENGTH;
cmpData = (uint8_t *)malloc(lzmaSize);
if(cmpData == NULL)
{
fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n");
break;
}
cdDdt = (uint32_t *)malloc(ddtHeader.length);
if(cdDdt == NULL)
{
fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n");
free(cmpData);
break;
}
readBytes = fread(lzmaProperties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(readBytes != LZMA_PROPERTIES_LENGTH)
{
fprintf(stderr, "Could not read LZMA properties, continuing...\n");
free(cmpData);
free(cdDdt);
ctx->userDataDdt = NULL;
break;
}
readBytes = fread(cmpData, 1, lzmaSize, ctx->imageStream);
if(readBytes != lzmaSize)
{
fprintf(stderr, "Could not read compressed block, continuing...\n");
free(cmpData);
free(cdDdt);
ctx->userDataDdt = NULL;
break;
}
readBytes = ddtHeader.length;
errorNo = aaruf_lzma_decode_buffer((uint8_t *)cdDdt, &readBytes, cmpData, &lzmaSize, lzmaProperties,
LZMA_PROPERTIES_LENGTH);
if(errorNo != 0)
{
fprintf(stderr, "Got error %d from LZMA, stopping...\n", errorNo);
free(cmpData);
free(cdDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(readBytes != ddtHeader.length)
{
fprintf(stderr, "Error decompressing block, should be {0} bytes but got {1} bytes., stopping...\n");
free(cmpData);
free(cdDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
fprintf(stderr, "Could not initialize CRC64.\n");
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, (uint8_t *)cdDdt, readBytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddtHeader.crc64)
{
fprintf(stderr, "Expected DDT CRC 0x%16lX but got 0x%16lX.\n", ddtHeader.crc64, crc64);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
if(entry->dataType == CdSectorPrefixCorrected) ctx->sectorPrefixDdt = cdDdt;
else if(entry->dataType == CdSectorSuffixCorrected) ctx->sectorSuffixDdt = cdDdt;
else free(cdDdt);
break;
case None:
cdDdt = (uint32_t *)malloc(ddtHeader.entries * sizeof(uint32_t));
if(cdDdt == NULL)
{
fprintf(stderr, "libaaruformat: Cannot allocate memory for deduplication table.\n");
break;
}
readBytes = fread(cdDdt, 1, ddtHeader.entries * sizeof(uint32_t), ctx->imageStream);
if(readBytes != ddtHeader.entries * sizeof(uint32_t))
{
free(cdDdt);
fprintf(stderr, "libaaruformat: Could not read deduplication table, continuing...\n");
break;
}
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
fprintf(stderr, "Could not initialize CRC64.\n");
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, (uint8_t *)cdDdt, readBytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddtHeader.crc64)
{
fprintf(stderr, "Expected DDT CRC 0x%16lX but got 0x%16lX.\n", ddtHeader.crc64, crc64);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
if(entry->dataType == CdSectorPrefixCorrected) ctx->sectorPrefixDdt = cdDdt;
else if(entry->dataType == CdSectorSuffixCorrected) ctx->sectorSuffixDdt = cdDdt;
else free(cdDdt);
break;
default:
fprintf(stderr, "libaaruformat: Found unknown compression type %d, continuing...\n",
ddtHeader.compression);
break;
}
}
return AARUF_STATUS_OK;
}