Files
libaaruformat/src/close.c

610 lines
26 KiB
C
Raw Normal View History

2022-05-28 12:57:21 +01:00
/*
* This file is part of the Aaru Data Preservation Suite.
2025-08-01 21:19:45 +01:00
* Copyright (c) 2019-2025 Natalia Portillo.
2022-05-28 12:57:21 +01:00
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <errno.h>
2019-03-31 20:52:06 +01:00
#include <stdio.h>
2022-10-03 18:15:13 +01:00
#include <stdlib.h>
#ifdef __linux__
#include <sys/mman.h>
#endif
2022-05-28 12:10:04 +01:00
#include <aaruformat.h>
#include "internal.h"
#include "log.h"
/**
* @brief Closes an AaruFormat image context and frees resources.
*
* Closes the image file, frees memory, and releases all resources associated with the context.
*
* @param context Pointer to the aaruformat context to close.
* @return 0 on success, or -1 on error.
*/
2024-04-30 15:51:32 +01:00
int aaruf_close(void *context)
{
TRACE("Entering aaruf_close(%p)", context);
int i = 0;
mediaTagEntry *mediaTag = NULL;
mediaTagEntry *tmpMediaTag = NULL;
2019-08-03 02:11:36 +01:00
if(context == NULL)
{
FATAL("Invalid context");
errno = EINVAL;
return -1;
}
2024-04-30 15:51:32 +01:00
aaruformatContext *ctx = context;
2020-03-01 19:51:13 +00:00
// Not a libaaruformat context
2020-03-01 19:58:09 +00:00
if(ctx->magic != AARU_MAGIC)
{
FATAL("Invalid context");
errno = EINVAL;
return -1;
}
if(ctx->isWriting)
{
TRACE("File is writing");
TRACE("Seeking to start of image");
// Write the header at the beginning of the file
fseek(ctx->imageStream, 0, SEEK_SET);
TRACE("Writing header at position 0");
if(fwrite(&ctx->header, sizeof(AaruHeaderV2), 1, ctx->imageStream) != 1)
{
fclose(ctx->imageStream);
ctx->imageStream = NULL;
errno = AARUF_ERROR_CANNOT_WRITE_HEADER;
return -1;
}
// Close current block first
TRACE("Closing current block if any");
if(ctx->writingBuffer != NULL)
{
int error = aaruf_close_current_block(ctx);
if(error != AARUF_STATUS_OK) return error;
}
// Write cached secondary table to file end and update primary table entry with its position
// Check if we have a cached table that needs to be written (either it has an offset or exists in memory)
bool hasCachedSecondaryDdt = (ctx->userDataDdtHeader.tableShift > 0) &&
((ctx->cachedDdtOffset != 0) ||
(ctx->cachedSecondaryDdtSmall != NULL || ctx->cachedSecondaryDdtBig != NULL));
if(hasCachedSecondaryDdt)
{
TRACE("Writing cached secondary DDT table to file");
fseek(ctx->imageStream, 0, SEEK_END);
long endOfFile = ftell(ctx->imageStream);
// Align the position according to block alignment shift
uint64_t alignmentMask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(endOfFile & alignmentMask)
{
// Calculate the next aligned position
uint64_t alignedPosition = (endOfFile + alignmentMask) & ~alignmentMask;
// Seek to the aligned position and pad with zeros if necessary
fseek(ctx->imageStream, alignedPosition, SEEK_SET);
endOfFile = alignedPosition;
TRACE("Aligned DDT write position from %ld to %" PRIu64 " (alignment shift: %d)",
ftell(ctx->imageStream) - (alignedPosition - endOfFile), alignedPosition,
ctx->userDataDdtHeader.blockAlignmentShift);
}
// Prepare DDT header for the cached table
DdtHeader2 ddtHeader = {0};
ddtHeader.identifier = DeDuplicationTable2;
ddtHeader.type = UserData;
ddtHeader.compression = None;
ddtHeader.levels = ctx->userDataDdtHeader.levels;
ddtHeader.tableLevel = ctx->userDataDdtHeader.tableLevel + 1;
ddtHeader.previousLevelOffset = ctx->primaryDdtOffset;
ddtHeader.negative = ctx->userDataDdtHeader.negative;
ddtHeader.overflow = ctx->userDataDdtHeader.overflow;
ddtHeader.blockAlignmentShift = ctx->userDataDdtHeader.blockAlignmentShift;
ddtHeader.dataShift = ctx->userDataDdtHeader.dataShift;
ddtHeader.tableShift = 0; // Secondary tables are single level
ddtHeader.sizeType = ctx->userDataDdtHeader.sizeType;
uint64_t itemsPerDdtEntry = 1 << ctx->userDataDdtHeader.tableShift;
ddtHeader.blocks = itemsPerDdtEntry;
ddtHeader.entries = itemsPerDdtEntry;
ddtHeader.start = ctx->cachedDdtPosition * itemsPerDdtEntry;
// Calculate data size
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
ddtHeader.length = itemsPerDdtEntry * sizeof(uint16_t);
else
ddtHeader.length = itemsPerDdtEntry * sizeof(uint32_t);
ddtHeader.cmpLength = ddtHeader.length;
// Calculate CRC64 of the data
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtSmall, ddtHeader.length);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtBig, ddtHeader.length);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
ddtHeader.crc64 = crc64;
ddtHeader.cmpCrc64 = crc64;
}
// Write header
if(fwrite(&ddtHeader, sizeof(DdtHeader2), 1, ctx->imageStream) == 1)
{
// Write data
size_t writtenBytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
writtenBytes = fwrite(ctx->cachedSecondaryDdtSmall, ddtHeader.length, 1, ctx->imageStream);
else
writtenBytes = fwrite(ctx->cachedSecondaryDdtBig, ddtHeader.length, 1, ctx->imageStream);
if(writtenBytes == 1)
{
// Update primary table entry to point to new location
uint64_t newSecondaryTableBlockOffset = endOfFile >> ctx->userDataDdtHeader.blockAlignmentShift;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
ctx->userDataDdtMini[ctx->cachedDdtPosition] = (uint16_t)newSecondaryTableBlockOffset;
else
ctx->userDataDdtBig[ctx->cachedDdtPosition] = (uint32_t)newSecondaryTableBlockOffset;
// Update index: remove old entry for cached DDT and add new one
TRACE("Updating index for cached secondary DDT");
// Remove old index entry for the cached DDT
if(ctx->cachedDdtOffset != 0)
{
TRACE("Removing old index entry for DDT at offset %" PRIu64, ctx->cachedDdtOffset);
IndexEntry *entry = NULL;
// Find and remove the old index entry
for(unsigned int k = 0; k < utarray_len(ctx->indexEntries); k++)
{
entry = (IndexEntry *)utarray_eltptr(ctx->indexEntries, k);
if(entry && entry->offset == ctx->cachedDdtOffset &&
entry->blockType == DeDuplicationTable2)
{
TRACE("Found old DDT index entry at position %u, removing", k);
utarray_erase(ctx->indexEntries, k, 1);
break;
}
}
}
// Add new index entry for the newly written secondary DDT
IndexEntry newDdtEntry;
newDdtEntry.blockType = DeDuplicationTable2;
newDdtEntry.dataType = UserData;
newDdtEntry.offset = endOfFile;
utarray_push_back(ctx->indexEntries, &newDdtEntry);
TRACE("Added new DDT index entry at offset %" PRIu64, endOfFile);
// Write the updated primary table back to its original position in the file
long savedPos = ftell(ctx->imageStream);
fseek(ctx->imageStream, ctx->primaryDdtOffset + sizeof(DdtHeader2), SEEK_SET);
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primaryWrittenBytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
primaryWrittenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream);
else
primaryWrittenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream);
if(primaryWrittenBytes != 1)
{
TRACE("Could not flush primary DDT table to file.");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
fseek(ctx->imageStream, savedPos, SEEK_SET);
}
else
TRACE("Failed to write cached secondary DDT data");
}
else
TRACE("Failed to write cached secondary DDT header");
// Free the cached table
if(ctx->cachedSecondaryDdtSmall != NULL)
{
free(ctx->cachedSecondaryDdtSmall);
ctx->cachedSecondaryDdtSmall = NULL;
}
if(ctx->cachedSecondaryDdtBig != NULL)
{
free(ctx->cachedSecondaryDdtBig);
ctx->cachedSecondaryDdtBig = NULL;
}
ctx->cachedDdtOffset = 0;
// Set position
fseek(ctx->imageStream, 0, SEEK_END);
}
// Write the cached primary DDT table back to its position in the file
if(ctx->userDataDdtHeader.tableShift > 0 && (ctx->userDataDdtMini != NULL || ctx->userDataDdtBig != NULL))
{
TRACE("Writing cached primary DDT table back to file");
// Calculate CRC64 of the primary DDT table data first
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primaryTableSize);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primaryTableSize);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
// Properly populate all header fields for multi-level DDT primary table
ctx->userDataDdtHeader.identifier = DeDuplicationTable2;
ctx->userDataDdtHeader.type = UserData;
ctx->userDataDdtHeader.compression = None;
// levels, tableLevel, previousLevelOffset, negative, overflow, blockAlignmentShift,
// dataShift, tableShift, sizeType, entries, blocks, start are already set during creation
ctx->userDataDdtHeader.crc64 = crc64;
ctx->userDataDdtHeader.cmpCrc64 = crc64;
ctx->userDataDdtHeader.length = primaryTableSize;
ctx->userDataDdtHeader.cmpLength = primaryTableSize;
TRACE("Calculated CRC64 for primary DDT: 0x%16lX", crc64);
}
// First write the DDT header
fseek(ctx->imageStream, ctx->primaryDdtOffset, SEEK_SET);
size_t headerWritten = fwrite(&ctx->userDataDdtHeader, sizeof(DdtHeader2), 1, ctx->imageStream);
if(headerWritten != 1)
{
TRACE("Failed to write primary DDT header to file");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
// Then write the table data (position is already after the header)
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
// Write the primary table data
size_t writtenBytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
writtenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream);
else
writtenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream);
if(writtenBytes == 1)
{
TRACE("Successfully wrote primary DDT header and table to file (%" PRIu64 " entries, %zu bytes)",
ctx->userDataDdtHeader.entries, primaryTableSize);
// Add primary DDT to index
TRACE("Adding primary DDT to index");
IndexEntry primaryDdtEntry;
primaryDdtEntry.blockType = DeDuplicationTable2;
primaryDdtEntry.dataType = UserData;
primaryDdtEntry.offset = ctx->primaryDdtOffset;
utarray_push_back(ctx->indexEntries, &primaryDdtEntry);
TRACE("Added primary DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset);
}
else
TRACE("Failed to write primary DDT table to file");
}
// Write the single level DDT table block aligned just after the header
if(ctx->userDataDdtHeader.tableShift == 0 && (ctx->userDataDdtMini != NULL || ctx->userDataDdtBig != NULL))
{
TRACE("Writing single-level DDT table to file");
// Calculate CRC64 of the primary DDT table data
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primaryTableSize);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primaryTableSize);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
// Properly populate all header fields
ctx->userDataDdtHeader.identifier = DeDuplicationTable2;
ctx->userDataDdtHeader.type = UserData;
ctx->userDataDdtHeader.compression = None;
ctx->userDataDdtHeader.levels = 1; // Single level
ctx->userDataDdtHeader.tableLevel = 0; // Top level
ctx->userDataDdtHeader.previousLevelOffset = 0; // No previous level for single-level DDT
// negative and overflow are already set during creation
// blockAlignmentShift, dataShift, tableShift, sizeType, entries, blocks, start are already set
ctx->userDataDdtHeader.crc64 = crc64;
ctx->userDataDdtHeader.cmpCrc64 = crc64;
ctx->userDataDdtHeader.length = primaryTableSize;
ctx->userDataDdtHeader.cmpLength = primaryTableSize;
TRACE("Calculated CRC64 for single-level DDT: 0x%16lX", crc64);
}
// Write the DDT header first
fseek(ctx->imageStream, ctx->primaryDdtOffset, SEEK_SET);
size_t headerWritten = fwrite(&ctx->userDataDdtHeader, sizeof(DdtHeader2), 1, ctx->imageStream);
if(headerWritten != 1)
{
TRACE("Failed to write single-level DDT header to file");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
// Then write the table data (position is already after the header)
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
// Write the primary table data
size_t writtenBytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
writtenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream);
else
writtenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream);
if(writtenBytes == 1)
{
TRACE("Successfully wrote single-level DDT header and table to file (%" PRIu64 " entries, %zu bytes)",
ctx->userDataDdtHeader.entries, primaryTableSize);
// Add single-level DDT to index
TRACE("Adding single-level DDT to index");
IndexEntry singleDdtEntry;
singleDdtEntry.blockType = DeDuplicationTable2;
singleDdtEntry.dataType = UserData;
singleDdtEntry.offset = ctx->primaryDdtOffset;
utarray_push_back(ctx->indexEntries, &singleDdtEntry);
TRACE("Added single-level DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset);
}
else
TRACE("Failed to write single-level DDT table data to file");
}
// Write the complete index at the end of the file
TRACE("Writing index at the end of the file");
fseek(ctx->imageStream, 0, SEEK_END);
long indexPosition = ftell(ctx->imageStream);
// Align index position to block boundary if needed
uint64_t alignmentMask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(indexPosition & alignmentMask)
{
uint64_t alignedPosition = (indexPosition + alignmentMask) & ~alignmentMask;
fseek(ctx->imageStream, alignedPosition, SEEK_SET);
indexPosition = alignedPosition;
TRACE("Aligned index position to %" PRIu64, alignedPosition);
}
// Prepare index header
IndexHeader3 indexHeader;
indexHeader.identifier = IndexBlock3;
indexHeader.entries = utarray_len(ctx->indexEntries);
indexHeader.previous = 0; // No previous index for now
TRACE("Writing index with %" PRIu64 " entries at position %ld", indexHeader.entries, indexPosition);
// Calculate CRC64 of index entries
crc64_ctx *indexCrc64Context = aaruf_crc64_init();
if(indexCrc64Context != NULL && indexHeader.entries > 0)
{
size_t indexDataSize = indexHeader.entries * sizeof(IndexEntry);
aaruf_crc64_update(indexCrc64Context, (uint8_t *)utarray_front(ctx->indexEntries), indexDataSize);
aaruf_crc64_final(indexCrc64Context, &indexHeader.crc64);
TRACE("Calculated index CRC64: 0x%16lX", indexHeader.crc64);
}
else { indexHeader.crc64 = 0; }
// Write index header
if(fwrite(&indexHeader, sizeof(IndexHeader3), 1, ctx->imageStream) == 1)
{
TRACE("Successfully wrote index header");
// Write index entries
if(indexHeader.entries > 0)
{
size_t entriesWritten = 0;
IndexEntry *entry = NULL;
for(entry = (IndexEntry *)utarray_front(ctx->indexEntries); entry != NULL;
entry = (IndexEntry *)utarray_next(ctx->indexEntries, entry))
{
if(fwrite(entry, sizeof(IndexEntry), 1, ctx->imageStream) == 1)
{
entriesWritten++;
TRACE("Wrote index entry: blockType=0x%08X dataType=%u offset=%" PRIu64, entry->blockType,
entry->dataType, entry->offset);
}
else
{
TRACE("Failed to write index entry %zu", entriesWritten);
break;
}
}
if(entriesWritten == indexHeader.entries)
{
TRACE("Successfully wrote all %zu index entries", entriesWritten);
// Update header with index offset and rewrite it
ctx->header.indexOffset = indexPosition;
TRACE("Updating header with index offset: %" PRIu64, ctx->header.indexOffset);
// Seek back to beginning and rewrite header
fseek(ctx->imageStream, 0, SEEK_SET);
if(fwrite(&ctx->header, sizeof(AaruHeaderV2), 1, ctx->imageStream) == 1)
{
TRACE("Successfully updated header with index offset");
}
else
{
TRACE("Failed to update header with index offset");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
}
else
{
TRACE("Failed to write all index entries (wrote %zu of %" PRIu64 ")", entriesWritten,
indexHeader.entries);
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
}
}
else
{
TRACE("Failed to write index header");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
}
TRACE("Freeing memory pointers");
// This may do nothing if imageStream is NULL, but as the behaviour is undefined, better sure than sorry
if(ctx->imageStream != NULL)
{
fclose(ctx->imageStream);
ctx->imageStream = NULL;
}
// Free index entries array
if(ctx->indexEntries != NULL)
{
utarray_free(ctx->indexEntries);
ctx->indexEntries = NULL;
}
free(ctx->sectorPrefix);
ctx->sectorPrefix = NULL;
free(ctx->sectorPrefixCorrected);
ctx->sectorPrefixCorrected = NULL;
free(ctx->sectorSuffix);
ctx->sectorSuffix = NULL;
free(ctx->sectorSuffixCorrected);
ctx->sectorSuffixCorrected = NULL;
free(ctx->sectorSubchannel);
ctx->sectorSubchannel = NULL;
free(ctx->mode2Subheaders);
ctx->mode2Subheaders = NULL;
TRACE("Freeing media tags");
if(ctx->mediaTags != NULL) HASH_ITER(hh, ctx->mediaTags, mediaTag, tmpMediaTag)
2019-03-17 23:01:54 +00:00
{
2022-10-04 20:32:26 +01:00
HASH_DEL(ctx->mediaTags, mediaTag);
2019-03-17 23:01:54 +00:00
free(mediaTag->data);
2022-10-04 20:32:26 +01:00
free(mediaTag);
2019-03-17 23:01:54 +00:00
}
2024-04-30 15:51:32 +01:00
#ifdef __linux__ // TODO: Implement
TRACE("Unmapping user data DDT if it is not in memory");
if(!ctx->inMemoryDdt)
{
munmap(ctx->userDataDdt, ctx->mappedMemoryDdtSize);
ctx->userDataDdt = NULL;
}
#endif
2019-03-17 23:25:45 +00:00
free(ctx->sectorPrefixDdt);
ctx->sectorPrefixDdt = NULL;
2019-03-17 23:25:45 +00:00
free(ctx->sectorSuffixDdt);
ctx->sectorSuffixDdt = NULL;
2019-03-17 23:25:45 +00:00
2019-03-17 23:41:07 +00:00
free(ctx->metadataBlock);
ctx->metadataBlock = NULL;
2019-03-18 00:10:24 +00:00
free(ctx->trackEntries);
ctx->trackEntries = NULL;
2019-03-18 22:06:10 +00:00
free(ctx->cicmBlock);
ctx->cicmBlock = NULL;
2019-03-17 23:41:07 +00:00
2019-03-20 00:23:30 +00:00
if(ctx->dumpHardwareEntriesWithData != NULL)
{
2019-08-03 02:11:36 +01:00
for(i = 0; i < ctx->dumpHardwareHeader.entries; i++)
2019-03-20 00:23:30 +00:00
{
free(ctx->dumpHardwareEntriesWithData[i].extents);
ctx->dumpHardwareEntriesWithData[i].extents = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].manufacturer);
ctx->dumpHardwareEntriesWithData[i].manufacturer = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].model);
ctx->dumpHardwareEntriesWithData[i].model = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].revision);
ctx->dumpHardwareEntriesWithData[i].revision = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].firmware);
ctx->dumpHardwareEntriesWithData[i].firmware = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].serial);
ctx->dumpHardwareEntriesWithData[i].serial = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].softwareName);
ctx->dumpHardwareEntriesWithData[i].softwareName = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].softwareVersion);
ctx->dumpHardwareEntriesWithData[i].softwareVersion = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].softwareOperatingSystem);
ctx->dumpHardwareEntriesWithData[i].softwareOperatingSystem = NULL;
2019-03-20 00:23:30 +00:00
}
ctx->dumpHardwareEntriesWithData = NULL;
2019-03-20 00:23:30 +00:00
}
2019-03-31 14:56:03 +01:00
free(ctx->readableSectorTags);
ctx->readableSectorTags = NULL;
2022-10-03 19:32:25 +01:00
free(ctx->eccCdContext);
ctx->eccCdContext = NULL;
2022-10-04 19:44:34 +01:00
free(ctx->checksums.spamsum);
ctx->checksums.spamsum = NULL;
// TODO: Free caches
2019-03-31 14:56:03 +01:00
free(context);
TRACE("Exiting aaruf_close() = 0");
return 0;
}