Enable LZMA compression for secondary DDT and manage memory allocation

This commit is contained in:
2025-10-06 22:03:47 +01:00
parent c7ef4e3185
commit c85bba7177

View File

@@ -59,8 +59,8 @@
* index is updated by removing any previous index entry for the same secondary table offset
* and inserting a new one for the freshly written table.
*
* CRC64 is computed for the serialized table contents and stored in both crc64 and cmpCrc64
* fields of the written DdtHeader2 (no compression is applied).
* CRC64 is computed for the serialized table contents and stored in crc64; cmpCrc64 stores
* the checksum of compressed data or equals crc64 if compression is not applied or not effective.
*
* On return the cached secondary table buffers and bookkeeping fields (cachedSecondaryDdtSmall,
* cachedSecondaryDdtBig, cachedDdtOffset) are cleared.
@@ -109,7 +109,7 @@ static int32_t write_cached_secondary_ddt(aaruformatContext *ctx)
DdtHeader2 ddt_header = {0};
ddt_header.identifier = DeDuplicationTable2;
ddt_header.type = UserData;
ddt_header.compression = None;
ddt_header.compression = ctx->compression_enabled ? Lzma : None;
ddt_header.levels = ctx->userDataDdtHeader.levels;
ddt_header.tableLevel = ctx->userDataDdtHeader.tableLevel + 1;
ddt_header.previousLevelOffset = ctx->primaryDdtOffset;
@@ -131,37 +131,79 @@ static int32_t write_cached_secondary_ddt(aaruformatContext *ctx)
else
ddt_header.length = items_per_ddt_entry * sizeof(uint32_t);
ddt_header.cmpLength = ddt_header.length;
// Calculate CRC64 of the data
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtSmall, ddt_header.length);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtSmall, (uint32_t)ddt_header.length);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtBig, ddt_header.length);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtBig, (uint32_t)ddt_header.length);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
ddt_header.crc64 = crc64;
ddt_header.cmpCrc64 = crc64;
}
uint8_t *buffer = NULL;
uint8_t lzma_properties[LZMA_PROPERTIES_LENGTH] = {0};
if(ddt_header.compression == None)
{
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
buffer = (uint8_t *)ctx->cachedSecondaryDdtSmall;
else
buffer = (uint8_t *)ctx->cachedSecondaryDdtBig;
ddt_header.cmpCrc64 = ddt_header.crc64;
}
else
{
buffer = malloc((size_t)ddt_header.length * 2); // Allocate double size for compression
if(buffer == NULL)
{
TRACE("Failed to allocate memory for secondary DDT v2 compression");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
size_t dst_size = (size_t)ddt_header.length * 2 * 2;
size_t props_size = LZMA_PROPERTIES_LENGTH;
aaruf_lzma_encode_buffer(
buffer, &dst_size,
ctx->userDataDdtHeader.sizeType == SmallDdtSizeType ? (uint8_t *)ctx->cachedSecondaryDdtSmall
: (uint8_t *)ctx->cachedSecondaryDdtBig,
ddt_header.length, lzma_properties, &props_size, 9, ctx->lzma_dict_size, 4, 0, 2, 273, 8);
ddt_header.cmpLength = (uint32_t)dst_size;
if(ddt_header.cmpLength >= ddt_header.length)
{
ddt_header.compression = None;
free(buffer);
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
buffer = (uint8_t *)ctx->cachedSecondaryDdtSmall;
else
buffer = (uint8_t *)ctx->cachedSecondaryDdtBig;
}
}
if(ddt_header.compression == None)
{
ddt_header.cmpLength = ddt_header.length;
ddt_header.cmpCrc64 = ddt_header.crc64;
}
else
ddt_header.cmpCrc64 = aaruf_crc64_data(buffer, ddt_header.cmpLength);
if(ddt_header.compression == Lzma) ddt_header.cmpLength += LZMA_PROPERTIES_LENGTH;
// Write header
if(fwrite(&ddt_header, sizeof(DdtHeader2), 1, ctx->imageStream) == 1)
{
// Write data
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
written_bytes = fwrite(ctx->cachedSecondaryDdtSmall, ddt_header.length, 1, ctx->imageStream);
else
written_bytes = fwrite(ctx->cachedSecondaryDdtBig, ddt_header.length, 1, ctx->imageStream);
if(written_bytes == 1)
if(fwrite(buffer, ddt_header.cmpLength, 1, ctx->imageStream) == 1)
{
// Update primary table entry to point to new location
uint64_t new_secondary_table_block_offset = end_of_file >> ctx->userDataDdtHeader.blockAlignmentShift;
const uint64_t new_secondary_table_block_offset = end_of_file >> ctx->userDataDdtHeader.blockAlignmentShift;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
ctx->userDataDdtMini[ctx->cachedDdtPosition] = (uint16_t)new_secondary_table_block_offset;
@@ -175,7 +217,7 @@ static int32_t write_cached_secondary_ddt(aaruformatContext *ctx)
if(ctx->cachedDdtOffset != 0)
{
TRACE("Removing old index entry for DDT at offset %" PRIu64, ctx->cachedDdtOffset);
IndexEntry *entry = NULL;
const IndexEntry *entry = NULL;
// Find and remove the old index entry
for(unsigned int k = 0; k < utarray_len(ctx->indexEntries); k++)
@@ -243,6 +285,8 @@ static int32_t write_cached_secondary_ddt(aaruformatContext *ctx)
// Set position
fseek(ctx->imageStream, 0, SEEK_END);
if(ddt_header.compression == Lzma) free(buffer);
return AARUF_STATUS_OK;
}