Files
libaaruformat/src/ddt/ddt_v2.c

1834 lines
81 KiB
C

/*
* This file is part of the Aaru Data Preservation Suite.
* Copyright (c) 2019-2025 Natalia Portillo.
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "aaruformat.h"
#include "internal.h"
#include "log.h"
/**
* @brief Processes a DDT v2 block from the image stream.
*
* Reads and decompresses (if needed) a DDT v2 block, verifies its CRC, and loads it into memory.
* This function handles both user data DDT blocks and CD sector prefix/suffix corrected DDT blocks,
* supporting both LZMA compression and uncompressed formats. It performs CRC64 validation and
* stores the processed DDT data in the appropriate context fields based on size type (small/big).
*
* @param ctx Pointer to the aaruformat context.
* @param entry Pointer to the index entry describing the DDT block.
* @param found_user_data_ddt Pointer to a boolean that will be set to true if a user data DDT was found and loaded.
*
* @return Returns one of the following status codes:
* @retval AARUF_STATUS_OK (0) Successfully processed the DDT block. This is returned when:
* - The DDT block is successfully read, decompressed (if needed), and loaded into memory
* - CRC64 validation passes for the DDT data
* - User data DDT blocks are processed and context is properly updated
* - CD sector prefix/suffix corrected DDT blocks are processed successfully
* - Memory allocation failures occur for non-critical operations (processing continues)
* - File reading errors occur for compressed data or LZMA properties (processing continues)
* - Unknown compression types are encountered (block is skipped)
*
* @retval AARUF_ERROR_NOT_AARUFORMAT (-1) The context or image stream is invalid (NULL pointers).
*
* @retval AARUF_ERROR_CANNOT_READ_BLOCK (-7) Failed to access the DDT block in the image stream. This occurs when:
* - fseek() fails to position at the DDT block offset
* - The file position doesn't match the expected offset after seeking
* - Failed to read the DDT header from the image stream
* - The number of bytes read for the DDT header is insufficient
* - CRC64 context initialization fails (internal error)
*
* @retval AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK (-17) LZMA decompression failed. This can happen when:
* - The LZMA decoder returns a non-zero error code during decompression
* - The decompressed data size doesn't match the expected DDT block length
* - This error causes immediate function termination and memory cleanup
*
* @retval AARUF_ERROR_INVALID_BLOCK_CRC (-18) CRC64 validation failed. This occurs when:
* - Calculated CRC64 doesn't match the expected CRC64 in the DDT header
* - Data corruption is detected in the DDT block
* - This applies to both compressed and uncompressed DDT blocks
*
* @note Error Handling Strategy:
* - Critical errors (seek failures, header read failures, decompression failures, CRC failures) cause immediate
* return
* - Non-critical errors (memory allocation failures, unknown compression types) allow processing to continue
* - The found_user_data_ddt flag is updated to reflect the success of user data DDT loading
*
* @note DDT v2 Features:
* - Handles multi-level DDT hierarchies with tableShift parameter
* - Updates context with sector counts, DDT version, and primary DDT offset
* - Stores DDT data in size-appropriate context fields (userDataDdtMini/Big, sectorPrefixDdt, etc.)
*
* @note Memory Management:
* - Allocated DDT data is stored in the context and becomes part of the context lifecycle
* - Memory is automatically cleaned up on decompression or CRC validation errors
* - Buffer memory is reused for the final DDT data storage (no double allocation)
*
* @note CRC Validation:
* - All DDT blocks undergo CRC64 validation regardless of compression type
* - CRC is calculated on the final decompressed data
* - Uses standard CRC64 calculation (no version-specific endianness conversion like v1)
*
* @warning The function modifies context state including sector count, DDT version, and primary DDT offset.
* Ensure proper context cleanup when the function completes.
*
* @warning Memory allocated for DDT data becomes part of the context and should not be freed separately.
* The context cleanup functions will handle DDT memory deallocation.
*/
int32_t process_ddt_v2(aaruformat_context *ctx, IndexEntry *entry, bool *found_user_data_ddt)
{
TRACE("Entering process_ddt_v2(%p, %p, %d)", ctx, entry, *found_user_data_ddt);
int pos = 0;
size_t read_bytes = 0;
DdtHeader2 ddt_header;
uint8_t *cmp_data = NULL;
uint8_t lzma_properties[LZMA_PROPERTIES_LENGTH];
size_t lzma_size = 0;
int error_no = 0;
crc64_ctx *crc64_context = NULL;
uint64_t crc64 = 0;
uint8_t *buffer = NULL;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
FATAL("Invalid context or image stream.");
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
// Seek to block
pos = fseek(ctx->imageStream, entry->offset, SEEK_SET);
if(pos < 0 || ftell(ctx->imageStream) != entry->offset)
{
FATAL("Could not seek to %" PRIu64 " as indicated by index entry...", entry->offset);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
// Even if those two checks shall have been done before
TRACE("Reading DDT block header at position %" PRIu64, entry->offset);
read_bytes = fread(&ddt_header, 1, sizeof(DdtHeader2), ctx->imageStream);
if(read_bytes != sizeof(DdtHeader2))
{
FATAL("Could not read block header at %" PRIu64 "", entry->offset);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
ctx->image_info.ImageSize += ddt_header.cmpLength;
if(entry->dataType == UserData)
{
// User area sectors is blocks stored in DDT minus the negative and overflow displacement blocks
ctx->image_info.Sectors = ddt_header.blocks - ddt_header.negative - ddt_header.overflow;
// We need the header later for the shift calculations
ctx->user_data_ddt_header = ddt_header;
ctx->ddt_version = 2;
// Store the primary DDT table's file offset for secondary table references
ctx->primary_ddt_offset = entry->offset;
// Check for DDT compression
switch(ddt_header.compression)
{
case Lzma:
if(ddt_header.cmpLength <= LZMA_PROPERTIES_LENGTH)
{
FATAL("Compressed DDT payload too small (%" PRIu64 ") for LZMA properties.", ddt_header.cmpLength);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
lzma_size = (size_t)(ddt_header.cmpLength - LZMA_PROPERTIES_LENGTH);
cmp_data = (uint8_t *)malloc(lzma_size);
if(cmp_data == NULL)
{
TRACE("Cannot allocate memory for DDT, continuing...");
break;
}
buffer = malloc(ddt_header.length);
if(buffer == NULL)
{
TRACE("Cannot allocate memory for DDT, continuing...");
free(cmp_data);
break;
}
read_bytes = fread(lzma_properties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(read_bytes != LZMA_PROPERTIES_LENGTH)
{
TRACE("Could not read LZMA properties, continuing...");
free(cmp_data);
free(buffer);
break;
}
read_bytes = fread(cmp_data, 1, lzma_size, ctx->imageStream);
if(read_bytes != lzma_size)
{
TRACE("Could not read compressed block, continuing...");
free(cmp_data);
free(buffer);
break;
}
read_bytes = ddt_header.length;
TRACE("Decompressing block of size %zu bytes", ddt_header.length);
error_no = aaruf_lzma_decode_buffer(buffer, &read_bytes, cmp_data, &lzma_size, lzma_properties,
LZMA_PROPERTIES_LENGTH);
if(error_no != 0)
{
FATAL("Got error %d from LZMA, stopping...", error_no);
free(cmp_data);
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(read_bytes != ddt_header.length)
{
FATAL("Error decompressing block, should be {0} bytes but got {1} bytes., stopping...");
free(cmp_data);
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
free(cmp_data);
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
FATAL("Could not initialize CRC64.");
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, buffer, read_bytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddt_header.crc64)
{
FATAL("Expected DDT CRC 0x%16lX but got 0x%16lX.", ddt_header.crc64, crc64);
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_INVALID_BLOCK_CRC");
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
ctx->user_data_ddt2 = (uint64_t *)buffer;
ctx->in_memory_ddt = true;
*found_user_data_ddt = true;
break;
case None:
buffer = malloc(ddt_header.length);
if(buffer == NULL)
{
TRACE("Cannot allocate memory for DDT, continuing...");
break;
}
TRACE("Reading DDT of length %zu bytes", ddt_header.length);
read_bytes = fread(buffer, 1, ddt_header.length, ctx->imageStream);
if(read_bytes != ddt_header.length)
{
free(buffer);
FATAL("Could not read deduplication table, continuing...");
break;
}
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
FATAL("Could not initialize CRC64.");
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, buffer, read_bytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddt_header.crc64)
{
FATAL("Expected DDT CRC 0x%16lX but got 0x%16lX.", ddt_header.crc64, crc64);
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_INVALID_BLOCK_CRC");
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
ctx->user_data_ddt2 = (uint64_t *)buffer;
ctx->in_memory_ddt = true;
*found_user_data_ddt = true;
break;
default:
TRACE("Found unknown compression type %d, continuing...", ddt_header.compression);
*found_user_data_ddt = false;
break;
}
}
else if(entry->dataType == CdSectorPrefix || entry->dataType == CdSectorSuffix)
switch(ddt_header.compression)
{
case Lzma:
if(ddt_header.cmpLength <= LZMA_PROPERTIES_LENGTH)
{
FATAL("Compressed DDT payload too small (%" PRIu64 ") for LZMA properties.", ddt_header.cmpLength);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
lzma_size = (size_t)(ddt_header.cmpLength - LZMA_PROPERTIES_LENGTH);
cmp_data = (uint8_t *)malloc(lzma_size);
if(cmp_data == NULL)
{
TRACE("Cannot allocate memory for DDT, continuing...");
break;
}
buffer = malloc(ddt_header.length);
if(buffer == NULL)
{
TRACE("Cannot allocate memory for DDT, continuing...");
free(cmp_data);
break;
}
read_bytes = fread(lzma_properties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(read_bytes != LZMA_PROPERTIES_LENGTH)
{
TRACE("Could not read LZMA properties, continuing...");
free(cmp_data);
free(buffer);
break;
}
read_bytes = fread(cmp_data, 1, lzma_size, ctx->imageStream);
if(read_bytes != lzma_size)
{
TRACE("Could not read compressed block, continuing...");
free(cmp_data);
free(buffer);
break;
}
read_bytes = ddt_header.length;
TRACE("Decompressing block of size %zu bytes", ddt_header.length);
error_no = aaruf_lzma_decode_buffer(buffer, &read_bytes, cmp_data, &lzma_size, lzma_properties,
LZMA_PROPERTIES_LENGTH);
if(error_no != 0)
{
FATAL("Got error %d from LZMA, stopping...", error_no);
free(cmp_data);
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(read_bytes != ddt_header.length)
{
FATAL("Error decompressing block, should be {0} bytes but got {1} bytes., stopping...");
free(cmp_data);
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
free(cmp_data);
cmp_data = NULL;
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
FATAL("Could not initialize CRC64.");
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, buffer, read_bytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddt_header.crc64)
{
FATAL("Expected DDT CRC 0x%16lX but got 0x%16lX.", ddt_header.crc64, crc64);
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_INVALID_BLOCK_CRC");
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
if(entry->dataType == CdSectorPrefix)
ctx->sector_prefix_ddt2 = (uint64_t *)buffer;
else if(entry->dataType == CdSectorSuffix)
ctx->sector_suffix_ddt2 = (uint64_t *)buffer;
else
free(buffer);
break;
case None:
buffer = malloc(ddt_header.length);
if(buffer == NULL)
{
TRACE("Cannot allocate memory for deduplication table.");
break;
}
read_bytes = fread(buffer, 1, ddt_header.length, ctx->imageStream);
if(read_bytes != ddt_header.length)
{
free(buffer);
FATAL("Could not read deduplication table, continuing...");
break;
}
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
FATAL("Could not initialize CRC64.");
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, buffer, read_bytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddt_header.crc64)
{
FATAL("Expected DDT CRC 0x%16lX but got 0x%16lX.", ddt_header.crc64, crc64);
free(buffer);
TRACE("Exiting process_ddt_v2() = AARUF_ERROR_INVALID_BLOCK_CRC");
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
if(entry->dataType == CdSectorPrefix)
ctx->sector_prefix_ddt2 = (uint64_t *)buffer;
else if(entry->dataType == CdSectorSuffix)
ctx->sector_suffix_ddt2 = (uint64_t *)buffer;
else
free(buffer);
break;
default:
TRACE("Found unknown compression type %d, continuing...", ddt_header.compression);
break;
}
TRACE("Exiting process_ddt_v2() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
/**
* @brief Decodes a DDT v2 entry for a given sector address.
*
* Determines the offset and block offset for a sector using the DDT v2 table(s). This function acts
* as a dispatcher that automatically selects between single-level and multi-level DDT decoding based
* on the tableShift parameter in the DDT header. It provides a unified interface for DDT v2 entry
* decoding regardless of the underlying table structure complexity.
*
* @param ctx Pointer to the aaruformat context containing the loaded DDT structures.
* @param sector_address Logical sector address to decode (will be adjusted for negative sectors).
* @param negative Indicates if the sector address is negative.
* @param offset Pointer to store the resulting sector offset within the block.
* @param block_offset Pointer to store the resulting block offset in the image.
* @param sector_status Pointer to store the sector status (dumped, not dumped, etc.).
*
* @return Returns one of the following status codes:
* @retval AARUF_STATUS_OK (0) Successfully decoded the DDT entry. This is always returned when:
* - The context and image stream are valid
* - The appropriate decoding function (single-level or multi-level) completes successfully
* - All output parameters are properly populated with decoded values
*
* @retval AARUF_ERROR_NOT_AARUFORMAT (-1) The context or image stream is invalid (NULL pointers).
* This is the only error condition that can occur at this dispatcher level.
*
* @retval Other error codes may be returned by the underlying decoding functions:
* - From decode_ddt_single_level_v2(): AARUF_ERROR_CANNOT_READ_BLOCK (-7)
* - From decode_ddt_multi_level_v2(): AARUF_ERROR_CANNOT_READ_BLOCK (-7),
* AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK (-17), AARUF_ERROR_INVALID_BLOCK_CRC (-18)
*
* @note Function Selection:
* - If tableShift > 0: Uses multi-level DDT decoding (decode_ddt_multi_level_v2)
* - If tableShift = 0: Uses single-level DDT decoding (decode_ddt_single_level_v2)
* - The tableShift parameter is read from ctx->userDataDdtHeader.tableShift
*
* @note This function performs minimal validation and primarily acts as a dispatcher.
* Most error conditions and complex logic are handled by the underlying functions.
*
* @warning The function assumes the DDT has been properly loaded by process_ddt_v2().
* Calling this function with an uninitialized or corrupted DDT will result in
* undefined behavior from the underlying decoding functions.
*
* @warning All output parameters must be valid pointers. No bounds checking is performed
* on the sector_address parameter at this level.
*/
int32_t decode_ddt_entry_v2(aaruformat_context *ctx, const uint64_t sector_address, bool negative, uint64_t *offset,
uint64_t *block_offset, uint8_t *sector_status)
{
TRACE("Entering decode_ddt_entry_v2(%p, %" PRIu64 ", %d, %llu, %llu, %d)", ctx, sector_address, negative, *offset,
*block_offset, *sector_status);
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
FATAL("Invalid context or image stream.");
TRACE("Exiting decode_ddt_entry_v2() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
if(ctx->user_data_ddt_header.tableShift > 0)
return decode_ddt_multi_level_v2(ctx, sector_address, negative, offset, block_offset, sector_status);
return decode_ddt_single_level_v2(ctx, sector_address, negative, offset, block_offset, sector_status);
}
/**
* @brief Decodes a single-level DDT v2 entry for a given sector address.
*
* Used when the DDT table does not use multi-level indirection (tableShift = 0). This function
* performs direct lookup in the primary DDT table to extract sector offset, block offset, and
* sector status information. It performs bit manipulation to decode the packed DDT entry values.
*
* @param ctx Pointer to the aaruformat context containing the loaded DDT table.
* @param sector_address Logical sector address to decode (adjusted for negative sectors).
* @param negative Indicates if the sector address is negative.
* @param offset Pointer to store the resulting sector offset within the block.
* @param block_offset Pointer to store the resulting block offset in the image.
* @param sector_status Pointer to store the sector status (dumped, not dumped, etc.).
*
* @return Returns one of the following status codes:
* @retval AARUF_STATUS_OK (0) Successfully decoded the DDT entry. This is always returned when:
* - The context and image stream are valid
* - The tableShift validation passes (must be 0)
* - The DDT size type is recognized (SmallDdtSizeType or BigDdtSizeType)
* - The DDT entry is successfully extracted and decoded
* - All output parameters are properly populated with decoded values
* - Zero DDT entries are handled (indicates sector not dumped)
*
* @retval AARUF_ERROR_NOT_AARUFORMAT (-1) The context or image stream is invalid (NULL pointers).
*
* @retval AARUF_ERROR_CANNOT_READ_BLOCK (-7) Configuration or validation errors. This occurs when:
* - The tableShift is not zero (should use multi-level decoding instead)
* - The DDT size type is unknown/unsupported (not SmallDdtSizeType or BigDdtSizeType)
* - Internal consistency checks fail
*
* @note DDT Entry Decoding
* - Bits 63-61: Sector status (4 bits)
* - Bits 60-0: Combined offset and block index (60 bits)
* - Offset mask: Derived from dataShift parameter
* - Block offset: Calculated using blockAlignmentShift parameter
*
* @note Negative Sector Handling:
* - Sector address is automatically adjusted by adding ctx->userDataDdtHeader.negative
* - This allows proper indexing into the DDT table for negative sector addresses
*
* @note Zero Entry Handling:
* - A zero DDT entry indicates the sector was not dumped
* - Sets sector_status to SectorStatusNotDumped and zeros offset/block_offset
* - This is a normal condition and not an error
*
* @warning The function assumes the DDT table has been properly loaded and is accessible
* via ctx->userDataDdtMini or ctx->userDataDdtBig depending on size type.
*
* @warning No bounds checking is performed on sector_address. Accessing beyond the DDT
* table boundaries will result in undefined behavior.
*
* @warning This function should only be called when tableShift is 0. Calling it with
* tableShift > 0 will result in AARUF_ERROR_CANNOT_READ_BLOCK.
*/
int32_t decode_ddt_single_level_v2(aaruformat_context *ctx, uint64_t sector_address, bool negative, uint64_t *offset,
uint64_t *block_offset, uint8_t *sector_status)
{
TRACE("Entering decode_ddt_single_level_v2(%p, %" PRIu64 ", %d, %llu, %llu, %d)", ctx, sector_address, negative,
*offset, *block_offset, *sector_status);
uint64_t ddt_entry = 0;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
FATAL("Invalid context or image stream.");
TRACE("Exiting decode_ddt_single_level_v2() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
// Should not really be here
if(ctx->user_data_ddt_header.tableShift != 0)
{
FATAL("DDT table shift is not zero, but we are in single-level DDT decoding.");
TRACE("Exiting decode_ddt_single_level_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
// Calculate positive or negative sector
if(negative)
sector_address = ctx->user_data_ddt_header.negative - sector_address;
else
sector_address += ctx->user_data_ddt_header.negative;
ddt_entry = ctx->user_data_ddt2[sector_address];
if(ddt_entry == 0)
{
*sector_status = SectorStatusNotDumped;
*offset = 0;
*block_offset = 0;
TRACE("Exiting decode_ddt_single_level_v2(%p, %" PRIu64 ", %llu, %llu, %d) = AARUF_STATUS_OK", ctx,
sector_address, *offset, *block_offset, *sector_status);
return AARUF_STATUS_OK;
}
*sector_status = ddt_entry >> 60;
ddt_entry &= 0xFFFFFFFFFFFFFFF;
const uint64_t offset_mask = (uint64_t)((1 << ctx->user_data_ddt_header.dataShift) - 1);
*offset = ddt_entry & offset_mask;
*block_offset =
(ddt_entry >> ctx->user_data_ddt_header.dataShift) * (1 << ctx->user_data_ddt_header.blockAlignmentShift);
TRACE("Exiting decode_ddt_single_level_v2(%p, %" PRIu64 ", %d, %llu, %llu, %d) = AARUF_STATUS_OK", ctx,
sector_address, negative, *offset, *block_offset, *sector_status);
return AARUF_STATUS_OK;
}
/**
* @brief Decodes a multi-level DDT v2 entry for a given sector address.
*
* Used when the DDT table uses multi-level indirection (tableShift > 0). This function handles
* the complex process of navigating a hierarchical DDT structure where the primary table points
* to secondary tables that contain the actual sector mappings. It includes caching mechanisms
* for secondary tables, supports both compressed and uncompressed secondary tables, and performs
* comprehensive validation including CRC verification.
*
* @param ctx Pointer to the aaruformat context containing the loaded primary DDT table.
* @param sector_address Logical sector address to decode (adjusted for negative sectors).
* @param negative Indicates if the sector address is negative.
* @param offset Pointer to store the resulting sector offset within the block.
* @param block_offset Pointer to store the resulting block offset in the image.
* @param sector_status Pointer to store the sector status (dumped, not dumped, etc.).
*
* @return Returns one of the following status codes:
* @retval AARUF_STATUS_OK (0) Successfully decoded the DDT entry. This is returned when:
* - The context and image stream are valid
* - The tableShift validation passes (must be > 0)
* - The DDT size type is recognized (SmallDdtSizeType or BigDdtSizeType)
* - Secondary DDT table is successfully loaded (from cache or file)
* - Secondary DDT decompression succeeds (if needed)
* - Secondary DDT CRC validation passes
* - The DDT entry is successfully extracted and decoded
* - All output parameters are properly populated with decoded values
* - Zero DDT entries are handled (indicates sector not dumped)
*
* @retval AARUF_ERROR_NOT_AARUFORMAT (-1) The context or image stream is invalid (NULL pointers).
*
* @retval AARUF_ERROR_CANNOT_READ_BLOCK (-7) Configuration, validation, or file access errors. This occurs when:
* - The tableShift is zero (should use single-level decoding instead)
* - The DDT size type is unknown/unsupported (not SmallDdtSizeType or BigDdtSizeType)
* - Cannot read the secondary DDT header from the image stream
* - Secondary DDT header validation fails (wrong identifier or type)
* - Cannot read uncompressed secondary DDT data from the image stream
* - CRC64 context initialization fails (internal error)
* - Memory allocation fails for secondary DDT data (critical failure)
* - Unknown compression type encountered in secondary DDT
*
* @retval AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK (-17) LZMA decompression failed for secondary DDT. This occurs when:
* - Memory allocation fails for compressed data or decompression buffer
* - Cannot read LZMA properties from the image stream
* - Cannot read compressed secondary DDT data from the image stream
* - The LZMA decoder returns a non-zero error code during decompression
* - The decompressed data size doesn't match the expected secondary DDT length
*
* @retval AARUF_ERROR_INVALID_BLOCK_CRC (-18) CRC64 validation failed for secondary DDT. This occurs when:
* - Calculated CRC64 doesn't match the expected CRC64 in the secondary DDT header
* - Data corruption is detected in the secondary DDT data
* - This applies to both compressed and uncompressed secondary DDT blocks
*
* @note Multi-level DDT Navigation:
* - Uses tableShift to calculate items per DDT entry (2^tableShift)
* - Calculates DDT position by dividing sector address by items per entry
* - Retrieves secondary DDT offset from primary table at calculated position
* - Converts block offset to file offset using blockAlignmentShift
*
* @note Secondary DDT Caching:
* - Maintains a single cached secondary DDT in memory (ctx->cachedSecondaryDdtSmall/Big)
* - Compares requested offset with cached offset (ctx->cachedDdtOffset)
* - Only loads from disk if the requested secondary DDT is not currently cached
* - Caching improves performance for sequential sector access patterns
*
* @note Secondary DDT Processing:
* - Supports both LZMA compression and uncompressed formats
* - Performs full CRC64 validation of secondary DDT data
* - Same bit manipulation as single-level DDT for final entry decoding
*
* @note Error Handling Strategy:
* - Memory allocation failures for secondary DDT loading are treated as critical errors
* - File I/O errors and validation failures cause immediate function termination
* - Unknown compression types are treated as errors (unlike the processing functions)
* - All allocated memory is cleaned up on error conditions
*
* @warning This function should only be called when tableShift > 0. Calling it with
* tableShift = 0 will result in AARUF_ERROR_CANNOT_READ_BLOCK.
*
* @warning The function assumes the primary DDT table has been properly loaded and is accessible
* via ctx->userDataDdtMini or ctx->userDataDdtBig depending on size type.
*
* @warning Secondary DDT caching means that memory usage can increase during operation.
* The cached secondary DDT is replaced when a different secondary table is needed.
*
* @warning No bounds checking is performed on sector_address or calculated DDT positions.
* Accessing beyond table boundaries will result in undefined behavior.
*/
int32_t decode_ddt_multi_level_v2(aaruformat_context *ctx, uint64_t sector_address, bool negative, uint64_t *offset,
uint64_t *block_offset, uint8_t *sector_status)
{
TRACE("Entering decode_ddt_multi_level_v2(%p, %" PRIu64 ", %d, %llu, %llu, %d)", ctx, sector_address, negative,
*offset, *block_offset, *sector_status);
uint64_t ddt_entry = 0;
uint8_t lzma_properties[LZMA_PROPERTIES_LENGTH];
size_t lzma_size = 0;
uint8_t *cmp_data = NULL;
uint8_t *buffer = NULL;
crc64_ctx *crc64_context = NULL;
uint64_t crc64 = 0;
int items_per_ddt_entry = 0;
uint64_t ddt_position = 0;
uint64_t secondary_ddt_offset = 0;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
FATAL("Invalid context or image stream.");
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
// Should not really be here
if(ctx->user_data_ddt_header.tableShift == 0)
{
FATAL("DDT table shift is zero, but we are in multi-level DDT decoding.");
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
// Calculate positive or negative sector
if(negative)
sector_address = ctx->user_data_ddt_header.negative - sector_address;
else
sector_address += ctx->user_data_ddt_header.negative;
items_per_ddt_entry = 1 << ctx->user_data_ddt_header.tableShift;
ddt_position = sector_address / items_per_ddt_entry;
secondary_ddt_offset = ctx->user_data_ddt2[ddt_position];
// Position in file of the child DDT table
secondary_ddt_offset *= 1 << ctx->user_data_ddt_header.blockAlignmentShift;
// Is the one we have cached the same as the one we need to read?
if(ctx->cached_ddt_offset != secondary_ddt_offset)
{
int32_t error_no = 0;
fseek(ctx->imageStream, secondary_ddt_offset, SEEK_SET);
DdtHeader2 ddt_header;
size_t read_bytes = fread(&ddt_header, 1, sizeof(DdtHeader2), ctx->imageStream);
if(read_bytes != sizeof(DdtHeader2))
{
FATAL("Could not read block header at %" PRIu64 "", secondary_ddt_offset);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
if(ddt_header.identifier != DeDuplicationTableSecondary || ddt_header.type != UserData)
{
FATAL("Invalid block header at %" PRIu64 "", secondary_ddt_offset);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
// Check for DDT compression
switch(ddt_header.compression)
{
case Lzma:
if(ddt_header.cmpLength <= LZMA_PROPERTIES_LENGTH)
{
FATAL("Compressed DDT payload too small (%" PRIu64 ") for LZMA properties.", ddt_header.cmpLength);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
lzma_size = (size_t)(ddt_header.cmpLength - LZMA_PROPERTIES_LENGTH);
cmp_data = (uint8_t *)malloc(lzma_size);
if(cmp_data == NULL)
{
FATAL("Cannot allocate memory for DDT, stopping...");
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
buffer = malloc(ddt_header.length);
if(buffer == NULL)
{
FATAL("Cannot allocate memory for DDT, stopping...");
free(cmp_data);
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
read_bytes = fread(lzma_properties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(read_bytes != LZMA_PROPERTIES_LENGTH)
{
FATAL("Could not read LZMA properties, stopping...");
free(cmp_data);
free(buffer);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
read_bytes = fread(cmp_data, 1, lzma_size, ctx->imageStream);
if(read_bytes != lzma_size)
{
FATAL("Could not read compressed block, stopping...");
free(cmp_data);
free(buffer);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
TRACE("Decompressing block of size %zu bytes", ddt_header.length);
read_bytes = ddt_header.length;
error_no = aaruf_lzma_decode_buffer(buffer, &read_bytes, cmp_data, &lzma_size, lzma_properties,
LZMA_PROPERTIES_LENGTH);
if(error_no != 0)
{
FATAL("Got error %d from LZMA, stopping...", error_no);
free(cmp_data);
free(buffer);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(read_bytes != ddt_header.length)
{
FATAL("Error decompressing block, should be {0} bytes but got {1} bytes., stopping...");
free(cmp_data);
free(buffer);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
free(cmp_data);
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
FATAL("Could not initialize CRC64.");
free(buffer);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, buffer, read_bytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddt_header.crc64)
{
FATAL("Expected DDT CRC 0x%16lX but got 0x%16lX.", ddt_header.crc64, crc64);
free(buffer);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_INVALID_BLOCK_CRC");
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
ctx->cached_secondary_ddt2 = (uint64_t *)buffer;
ctx->cached_ddt_offset = secondary_ddt_offset;
break;
case None:
buffer = malloc(ddt_header.length);
if(buffer == NULL)
{
FATAL("Cannot allocate memory for DDT, stopping...");
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
read_bytes = fread(buffer, 1, ddt_header.length, ctx->imageStream);
if(read_bytes != ddt_header.length)
{
free(buffer);
FATAL("Could not read deduplication table, stopping...");
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
FATAL("Could not initialize CRC64.");
free(buffer);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
aaruf_crc64_update(crc64_context, buffer, read_bytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddt_header.crc64)
{
FATAL("Expected DDT CRC 0x%16lX but got 0x%16lX.", ddt_header.crc64, crc64);
free(buffer);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_INVALID_BLOCK_CRC");
return AARUF_ERROR_INVALID_BLOCK_CRC;
}
ctx->cached_secondary_ddt2 = (uint64_t *)buffer;
ctx->cached_ddt_offset = secondary_ddt_offset;
break;
default:
FATAL("Found unknown compression type %d, stopping...", ddt_header.compression);
TRACE("Exiting decode_ddt_multi_level_v2() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
}
ddt_entry = ctx->cached_secondary_ddt2[sector_address % items_per_ddt_entry];
if(ddt_entry == 0)
{
*sector_status = SectorStatusNotDumped;
*offset = 0;
*block_offset = 0;
TRACE("Exiting decode_ddt_multi_level_v2(%p, %" PRIu64 ", %llu, %llu, %d) = AARUF_STATUS_OK", ctx,
sector_address, *offset, *block_offset, *sector_status);
return AARUF_STATUS_OK;
}
*sector_status = ddt_entry >> 60;
ddt_entry &= 0x0FFFFFFFFFFFFFFF;
const uint64_t offset_mask = (uint64_t)((1 << ctx->user_data_ddt_header.dataShift) - 1);
*offset = ddt_entry & offset_mask;
*block_offset =
(ddt_entry >> ctx->user_data_ddt_header.dataShift) * (1 << ctx->user_data_ddt_header.blockAlignmentShift);
TRACE("Exiting decode_ddt_multi_level_v2(%p, %" PRIu64 ", %d, %llu, %llu, %d) = AARUF_STATUS_OK", ctx,
sector_address, negative, *offset, *block_offset, *sector_status);
return AARUF_STATUS_OK;
}
/**
* @brief Sets a DDT v2 entry for a given sector address.
*
* Updates the DDT v2 table(s) with the specified offset, block offset, and sector status for a sector.
*
* @param ctx Pointer to the aaruformat context.
* @param sector_address Logical sector address to set.
* @param negative Indicates if the sector address is negative.
* @param offset Offset to set for the sector.
* @param block_offset Block offset to set for the sector.
* @param sector_status Status to set for the sector.
* @param ddt_entry Existing DDT entry or 0 to create a new one. If 0, a new entry is returned.
*
* @return Returns one of the following status codes:
* @retval true if the entry was set successfully, false otherwise.
*/
bool set_ddt_entry_v2(aaruformat_context *ctx, const uint64_t sector_address, const bool negative, const uint64_t offset,
const uint64_t block_offset, const uint8_t sector_status, uint64_t *ddt_entry)
{
TRACE("Entering set_ddt_entry_v2(%p, %" PRIu64 ", %d, %llu, %llu, %d)", ctx, sector_address, negative, offset,
block_offset, sector_status);
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
FATAL("Invalid context or image stream.");
return false;
}
if(ctx->user_data_ddt_header.tableShift > 0)
return set_ddt_multi_level_v2(ctx, sector_address, negative, offset, block_offset, sector_status, ddt_entry);
return set_ddt_single_level_v2(ctx, sector_address, negative, offset, block_offset, sector_status, ddt_entry);
}
/**
* @brief Sets a single-level DDT v2 entry for a given sector address.
*
* Used when the DDT table does not use multi-level indirection.
*
* @param ctx Pointer to the aaruformat context.
* @param sector_address Logical sector address to set.
* @param negative Indicates if the sector address is negative.
* @param offset Offset to set for the sector.
* @param block_offset Block offset to set for the sector.
* @param sector_status Status to set for the sector.
* @param ddt_entry Existing DDT entry or 0 to create a new one. If 0, a new entry is returned.
*
* @return Returns one of the following status codes:
* @retval true if the entry was set successfully, false otherwise.
*/
bool set_ddt_single_level_v2(aaruformat_context *ctx, uint64_t sector_address, const bool negative,
const uint64_t offset, const uint64_t block_offset, const uint8_t sector_status,
uint64_t *ddt_entry)
{
TRACE("Entering set_ddt_single_level_v2(%p, %" PRIu64 ", %d, %llu, %llu, %d)", ctx, sector_address, negative,
offset, block_offset, sector_status);
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
FATAL("Invalid context or image stream.");
TRACE("Exiting set_ddt_single_level_v2() = false");
return false;
}
// Should not really be here
if(ctx->user_data_ddt_header.tableShift != 0)
{
FATAL("DDT table shift is not zero, but we are in single-level DDT setting.");
TRACE("Exiting set_ddt_single_level_v2() = false");
return false;
}
// Calculate positive or negative sector
if(negative)
sector_address = ctx->user_data_ddt_header.negative - sector_address;
else
sector_address += ctx->user_data_ddt_header.negative;
if(*ddt_entry == 0)
{
const uint64_t block_index = block_offset >> ctx->user_data_ddt_header.blockAlignmentShift;
*ddt_entry = offset & (1ULL << ctx->user_data_ddt_header.dataShift) - 1 |
block_index << ctx->user_data_ddt_header.dataShift;
// Overflow detection for DDT entry
if(*ddt_entry > 0xFFFFFFFFFFFFFFF)
{
FATAL("DDT overflow: media does not fit in big DDT");
TRACE("Exiting set_ddt_single_level_v2() = false");
return false;
}
}
// Sector status can be different from previous deduplicated sector
*ddt_entry &= 0x0FFFFFFFFFFFFFFF;
*ddt_entry |= (uint64_t)sector_status << 60;
TRACE("Setting big single-level DDT entry %d to %ull", sector_address, (uint64_t)*ddt_entry);
ctx->user_data_ddt2[sector_address] = *ddt_entry;
TRACE("Exiting set_ddt_single_level_v2() = true");
return true;
}
/**
* @brief Sets a multi-level DDT v2 entry for a given sector address.
*
* Used when the DDT table uses multi-level indirection (tableShift > 0).
*
* @param ctx Pointer to the aaruformat context.
* @param sector_address Logical sector address to set.
* @param negative Indicates if the sector address is negative.
* @param offset Offset to set for the sector.
* @param block_offset Block offset to set for the sector.
* @param sector_status Status to set for the sector.
* @param ddt_entry Existing DDT entry or 0 to create a new one. If 0, a new entry is returned.
*
* @return Returns one of the following status codes:
* @retval true if the entry was set successfully, false otherwise.
*/
bool set_ddt_multi_level_v2(aaruformat_context *ctx, uint64_t sector_address, bool negative, uint64_t offset,
uint64_t block_offset, uint8_t sector_status, uint64_t *ddt_entry)
{
TRACE("Entering set_ddt_multi_level_v2(%p, %" PRIu64 ", %d, %" PRIu64 ", %" PRIu64 ", %d)", ctx, sector_address,
negative, offset, block_offset, sector_status);
uint64_t items_per_ddt_entry = 0;
uint64_t ddt_position = 0;
uint64_t secondary_ddt_offset = 0;
uint64_t block_index = 0;
uint8_t *buffer = NULL;
crc64_ctx *crc64_context = NULL;
uint64_t crc64 = 0;
DdtHeader2 ddt_header;
size_t written_bytes = 0;
long end_of_file = 0;
bool create_new_table = false;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
FATAL("Invalid context or image stream.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
// Should not really be here
if(ctx->user_data_ddt_header.tableShift == 0)
{
FATAL("DDT table shift is zero, but we are in multi-level DDT setting.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
// Calculate positive or negative sector
if(negative)
sector_address = ctx->user_data_ddt_header.negative - sector_address;
else
sector_address += ctx->user_data_ddt_header.negative;
// Step 1: Calculate the corresponding secondary level table
items_per_ddt_entry = 1 << ctx->user_data_ddt_header.tableShift;
ddt_position = sector_address / items_per_ddt_entry;
secondary_ddt_offset = ctx->user_data_ddt2[ddt_position];
// Position in file of the child DDT table
secondary_ddt_offset *= 1 << ctx->user_data_ddt_header.blockAlignmentShift;
// Step 2: Check if it corresponds to the currently in-memory cached secondary level table
if(ctx->cached_ddt_offset == secondary_ddt_offset && secondary_ddt_offset != 0)
{
// Update the corresponding DDT entry directly in the cached table
if(*ddt_entry == 0)
{
block_index = block_offset >> ctx->user_data_ddt_header.blockAlignmentShift;
*ddt_entry = offset & (1ULL << ctx->user_data_ddt_header.dataShift) - 1 |
block_index << ctx->user_data_ddt_header.dataShift;
// Overflow detection for DDT entry
if(*ddt_entry > 0xFFFFFFFFFFFFFFF)
{
FATAL("DDT overflow: media does not fit in big DDT");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
}
// Sector status can be different from previous deduplicated sector
*ddt_entry &= 0x0FFFFFFFFFFFFFFF;
*ddt_entry |= (uint64_t)sector_status << 60;
TRACE("Setting small secondary DDT entry %d to %ull", sector_address % items_per_ddt_entry,
(uint64_t)*ddt_entry);
ctx->cached_secondary_ddt2[sector_address % items_per_ddt_entry] = *ddt_entry;
TRACE("Updated cached secondary DDT entry at position %" PRIu64, sector_address % items_per_ddt_entry);
TRACE("Exiting set_ddt_multi_level_v2() = true");
return true;
}
// Step 2.5: Handle case where we have a cached secondary DDT that has never been written to disk
// but does not contain the requested block
if(ctx->cached_ddt_offset == 0 && (ctx->cached_secondary_ddt2 != NULL))
{
// Only write the cached table to disk if the requested block belongs to a different DDT position
if(ddt_position != ctx->cached_ddt_position)
{
TRACE("Current secondary DDT in memory belongs to position %" PRIu64
" but requested block needs position %" PRIu64,
ctx->cached_ddt_position, ddt_position);
// Write the cached DDT to disk before proceeding with the new one
// Close the current data block first
if(ctx->writing_buffer != NULL) aaruf_close_current_block(ctx);
// Get current position and seek to end of file
fseek(ctx->imageStream, 0, SEEK_END);
end_of_file = ftell(ctx->imageStream);
// Align to block boundary
uint64_t alignment_mask = (1ULL << ctx->user_data_ddt_header.blockAlignmentShift) - 1;
end_of_file = end_of_file + alignment_mask & ~alignment_mask;
fseek(ctx->imageStream, end_of_file, SEEK_SET);
// Prepare DDT header for the never-written cached table
memset(&ddt_header, 0, sizeof(DdtHeader2));
ddt_header.identifier = DeDuplicationTableSecondary;
ddt_header.type = UserData;
ddt_header.compression = ctx->compression_enabled ? Lzma : None; // Use no compression for simplicity
ddt_header.levels = ctx->user_data_ddt_header.levels;
ddt_header.tableLevel = ctx->user_data_ddt_header.tableLevel + 1;
ddt_header.previousLevelOffset = ctx->primary_ddt_offset;
ddt_header.negative = ctx->user_data_ddt_header.negative;
ddt_header.blocks = items_per_ddt_entry;
ddt_header.overflow = ctx->user_data_ddt_header.overflow;
ddt_header.start = ctx->cached_ddt_position * items_per_ddt_entry; // Use cached position with table shift
ddt_header.blockAlignmentShift = ctx->user_data_ddt_header.blockAlignmentShift;
ddt_header.dataShift = ctx->user_data_ddt_header.dataShift;
ddt_header.tableShift = 0; // Secondary tables are single level
ddt_header.entries = items_per_ddt_entry;
// Calculate data size
ddt_header.length = items_per_ddt_entry * sizeof(uint64_t);
// Calculate CRC64 of the data
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
FATAL("Could not initialize CRC64.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cached_secondary_ddt2, (uint32_t)ddt_header.length);
aaruf_crc64_final(crc64_context, &crc64);
ddt_header.crc64 = crc64;
uint8_t *cmp_buffer = NULL;
uint8_t lzma_properties[LZMA_PROPERTIES_LENGTH] = {0};
if(ddt_header.compression == None)
{
cmp_buffer = (uint8_t *)ctx->cached_secondary_ddt2;
ddt_header.cmpCrc64 = ddt_header.crc64;
}
else
{
cmp_buffer = malloc((size_t)ddt_header.length * 2); // Allocate double size for compression
if(cmp_buffer == NULL)
{
TRACE("Failed to allocate memory for secondary DDT v2 compression");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
size_t dst_size = (size_t)ddt_header.length * 2 * 2;
size_t props_size = LZMA_PROPERTIES_LENGTH;
aaruf_lzma_encode_buffer(cmp_buffer, &dst_size, (uint8_t *)ctx->cached_secondary_ddt2,
ddt_header.length, lzma_properties, &props_size, 9, ctx->lzma_dict_size, 4, 0,
2, 273, 8);
ddt_header.cmpLength = (uint32_t)dst_size;
if(ddt_header.cmpLength >= ddt_header.length)
{
ddt_header.compression = None;
free(cmp_buffer);
cmp_buffer = (uint8_t *)ctx->cached_secondary_ddt2;
}
}
if(ddt_header.compression == None)
{
ddt_header.cmpLength = ddt_header.length;
ddt_header.cmpCrc64 = ddt_header.crc64;
}
else
ddt_header.cmpCrc64 = aaruf_crc64_data(cmp_buffer, (uint32_t)ddt_header.cmpLength);
if(ddt_header.compression == Lzma) ddt_header.cmpLength += LZMA_PROPERTIES_LENGTH;
// Write header
written_bytes = fwrite(&ddt_header, sizeof(DdtHeader2), 1, ctx->imageStream);
if(written_bytes != 1)
{
FATAL("Could not write never-written DDT header to file.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
// Write data
if(ddt_header.compression == Lzma) fwrite(lzma_properties, LZMA_PROPERTIES_LENGTH, 1, ctx->imageStream);
if(fwrite(cmp_buffer, ddt_header.cmpLength, 1, ctx->imageStream) != 1)
{
FATAL("Could not write never-written DDT data to file.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
if(ddt_header.compression == Lzma) free(cmp_buffer);
// Add index entry for the newly written secondary DDT
IndexEntry new_ddt_entry;
new_ddt_entry.blockType = DeDuplicationTableSecondary;
new_ddt_entry.dataType = UserData;
new_ddt_entry.offset = end_of_file;
utarray_push_back(ctx->index_entries, &new_ddt_entry);
TRACE("Added new DDT index entry for never-written table at offset %" PRIu64, end_of_file);
// Update the primary level table entry to point to the new location of the secondary table
uint64_t new_secondary_table_block_offset = end_of_file >> ctx->user_data_ddt_header.blockAlignmentShift;
ctx->user_data_ddt2[ctx->cached_ddt_position] = new_secondary_table_block_offset;
// Write the updated primary table back to its original position in the file
long saved_pos = ftell(ctx->imageStream);
fseek(ctx->imageStream, ctx->primary_ddt_offset + sizeof(DdtHeader2), SEEK_SET);
size_t primary_table_size = ctx->user_data_ddt_header.entries * sizeof(uint64_t);
written_bytes = fwrite(ctx->user_data_ddt2, primary_table_size, 1, ctx->imageStream);
if(written_bytes != 1)
{
FATAL("Could not flush primary DDT table to file after writing never-written secondary table.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
// Update nextBlockPosition to ensure future blocks don't overwrite the DDT
uint64_t ddt_total_size = sizeof(DdtHeader2) + ddt_header.length;
ctx->next_block_position = end_of_file + ddt_total_size + alignment_mask & ~alignment_mask;
block_offset = ctx->next_block_position;
offset = 0;
TRACE("Updated nextBlockPosition after never-written DDT write to %" PRIu64, ctx->next_block_position);
// Free the cached table
free(ctx->cached_secondary_ddt2);
ctx->cached_secondary_ddt2 = NULL;
// Reset cached values since we've written and freed the table
ctx->cached_ddt_offset = 0;
ctx->cached_ddt_position = 0;
// Restore file position
fseek(ctx->imageStream, saved_pos, SEEK_SET);
TRACE("Successfully wrote never-written cached secondary DDT to disk");
}
else
// The cached DDT is actually for the requested block range, so we can use it directly
TRACE("Cached DDT is for the correct block range, using it directly");
// No need to write to disk, just continue with the cached table
}
// Step 3: Write the currently in-memory cached secondary level table to the end of the file
if(ctx->cached_ddt_offset != 0)
{
long current_pos = 0;
// Close the current data block first
if(ctx->writing_buffer != NULL) aaruf_close_current_block(ctx);
// Get current position and seek to end of file
current_pos = ftell(ctx->imageStream);
fseek(ctx->imageStream, 0, SEEK_END);
end_of_file = ftell(ctx->imageStream);
// Align to block boundary
uint64_t alignment_mask = (1ULL << ctx->user_data_ddt_header.blockAlignmentShift) - 1;
end_of_file = end_of_file + alignment_mask & ~alignment_mask;
fseek(ctx->imageStream, end_of_file, SEEK_SET);
// Prepare DDT header for the cached table
memset(&ddt_header, 0, sizeof(DdtHeader2));
ddt_header.identifier = DeDuplicationTableSecondary;
ddt_header.type = UserData;
ddt_header.compression = ctx->compression_enabled ? Lzma : None;
ddt_header.levels = ctx->user_data_ddt_header.levels;
ddt_header.tableLevel = ctx->user_data_ddt_header.tableLevel + 1;
ddt_header.previousLevelOffset = ctx->primary_ddt_offset; // Set to primary DDT table location
ddt_header.negative = ctx->user_data_ddt_header.negative;
ddt_header.blocks = items_per_ddt_entry;
ddt_header.overflow = ctx->user_data_ddt_header.overflow;
ddt_header.start = ddt_position * items_per_ddt_entry; // First block this DDT table references
ddt_header.blockAlignmentShift = ctx->user_data_ddt_header.blockAlignmentShift;
ddt_header.dataShift = ctx->user_data_ddt_header.dataShift;
ddt_header.tableShift = 0; // Secondary tables are single level
ddt_header.entries = items_per_ddt_entry;
// Calculate data size
ddt_header.length = items_per_ddt_entry * sizeof(uint64_t);
// Calculate CRC64 of the data
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
FATAL("Could not initialize CRC64.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cached_secondary_ddt2, ddt_header.length);
aaruf_crc64_final(crc64_context, &crc64);
ddt_header.crc64 = crc64;
uint8_t *cmp_buffer = NULL;
uint8_t lzma_properties[LZMA_PROPERTIES_LENGTH] = {0};
if(ddt_header.compression == None)
{
cmp_buffer = (uint8_t *)ctx->cached_secondary_ddt2;
ddt_header.cmpCrc64 = ddt_header.crc64;
}
else
{
cmp_buffer = malloc((size_t)ddt_header.length * 2); // Allocate double size for compression
if(cmp_buffer == NULL)
{
TRACE("Failed to allocate memory for secondary DDT v2 compression");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
size_t dst_size = (size_t)ddt_header.length * 2 * 2;
size_t props_size = LZMA_PROPERTIES_LENGTH;
aaruf_lzma_encode_buffer(cmp_buffer, &dst_size, (uint8_t *)ctx->cached_secondary_ddt2, ddt_header.length,
lzma_properties, &props_size, 9, ctx->lzma_dict_size, 4, 0, 2, 273, 8);
ddt_header.cmpLength = (uint32_t)dst_size;
if(ddt_header.cmpLength >= ddt_header.length)
{
ddt_header.compression = None;
free(cmp_buffer);
cmp_buffer = (uint8_t *)ctx->cached_secondary_ddt2;
}
}
if(ddt_header.compression == None)
{
ddt_header.cmpLength = ddt_header.length;
ddt_header.cmpCrc64 = ddt_header.crc64;
}
else
ddt_header.cmpCrc64 = aaruf_crc64_data(cmp_buffer, (uint32_t)ddt_header.cmpLength);
if(ddt_header.compression == Lzma) ddt_header.cmpLength += LZMA_PROPERTIES_LENGTH;
// Write header
if(ddt_header.compression == Lzma) fwrite(lzma_properties, LZMA_PROPERTIES_LENGTH, 1, ctx->imageStream);
written_bytes = fwrite(&ddt_header, sizeof(DdtHeader2), 1, ctx->imageStream);
if(written_bytes != 1)
{
FATAL("Could not write DDT header to file.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
// Write data
written_bytes = fwrite(cmp_buffer, ddt_header.cmpLength, 1, ctx->imageStream);
if(written_bytes != 1)
{
FATAL("Could not write DDT data to file.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
if(ddt_header.compression == Lzma) free(cmp_buffer);
// Update index: remove old entry and add new one for the evicted secondary DDT
TRACE("Updating index for evicted secondary DDT");
// Remove old index entry for the cached DDT
if(ctx->cached_ddt_offset != 0)
{
TRACE("Removing old index entry for DDT at offset %" PRIu64, ctx->cached_ddt_offset);
IndexEntry *entry = NULL;
// Find and remove the old index entry
for(unsigned int i = 0; i < utarray_len(ctx->index_entries); i++)
{
entry = (IndexEntry *)utarray_eltptr(ctx->index_entries, i);
if(entry && entry->offset == ctx->cached_ddt_offset && entry->blockType == DeDuplicationTableSecondary)
{
TRACE("Found old DDT index entry at position %u, removing", i);
utarray_erase(ctx->index_entries, i, 1);
break;
}
}
}
// Add new index entry for the newly written secondary DDT
IndexEntry new_ddt_entry;
new_ddt_entry.blockType = DeDuplicationTableSecondary;
new_ddt_entry.dataType = UserData;
new_ddt_entry.offset = end_of_file;
utarray_push_back(ctx->index_entries, &new_ddt_entry);
TRACE("Added new DDT index entry at offset %" PRIu64, end_of_file);
// Step 4: Update the primary level table entry and flush it back to file
uint64_t new_secondary_table_block_offset = end_of_file >> ctx->user_data_ddt_header.blockAlignmentShift;
// Update the primary table entry to point to the new location of the secondary table
// Use ddtPosition which was calculated from sectorAddress, not cachedDdtOffset
ctx->user_data_ddt2[ddt_position] = new_secondary_table_block_offset;
// Write the updated primary table back to its original position in the file
long saved_pos = ftell(ctx->imageStream);
fseek(ctx->imageStream, ctx->primary_ddt_offset + sizeof(DdtHeader2), SEEK_SET);
size_t primary_table_size = ctx->user_data_ddt_header.entries * sizeof(uint64_t);
written_bytes = fwrite(ctx->user_data_ddt2, primary_table_size, 1, ctx->imageStream);
if(written_bytes != 1)
{
FATAL("Could not flush primary DDT table to file.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
// Update nextBlockPosition to ensure future blocks don't overwrite the DDT
uint64_t ddt_total_size = sizeof(DdtHeader2) + ddt_header.length;
ctx->next_block_position = end_of_file + ddt_total_size + alignment_mask & ~alignment_mask;
block_offset = ctx->next_block_position;
offset = 0;
TRACE("Updated nextBlockPosition after DDT write to %" PRIu64, ctx->next_block_position);
fseek(ctx->imageStream, saved_pos, SEEK_SET);
// Free the cached table
free(ctx->cached_secondary_ddt2);
ctx->cached_secondary_ddt2 = NULL;
// Restore file position
fseek(ctx->imageStream, current_pos, SEEK_SET);
}
// Step 5: Check if the specified block already has an existing secondary level table
create_new_table = ctx->cached_secondary_ddt2 == NULL;
if(!create_new_table && secondary_ddt_offset != 0)
{
// Load existing table
fseek(ctx->imageStream, secondary_ddt_offset, SEEK_SET);
size_t read_bytes = fread(&ddt_header, 1, sizeof(DdtHeader2), ctx->imageStream);
if(read_bytes != sizeof(DdtHeader2) || ddt_header.identifier != DeDuplicationTable2 ||
ddt_header.type != UserData)
{
FATAL("Invalid secondary DDT header at %" PRIu64, secondary_ddt_offset);
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
// Read the table data (assuming no compression for now)
buffer = malloc(ddt_header.length);
if(buffer == NULL)
{
FATAL("Cannot allocate memory for secondary DDT.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
read_bytes = fread(buffer, 1, ddt_header.length, ctx->imageStream);
if(read_bytes != ddt_header.length)
{
FATAL("Could not read secondary DDT data.");
free(buffer);
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
// Verify CRC
crc64_context = aaruf_crc64_init();
if(crc64_context == NULL)
{
FATAL("Could not initialize CRC64.");
free(buffer);
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
aaruf_crc64_update(crc64_context, buffer, read_bytes);
aaruf_crc64_final(crc64_context, &crc64);
if(crc64 != ddt_header.crc64)
{
FATAL("Secondary DDT CRC mismatch. Expected 0x%16lX but got 0x%16lX.", ddt_header.crc64, crc64);
free(buffer);
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
// Cache the loaded table
ctx->cached_secondary_ddt2 = (uint64_t *)buffer;
ctx->cached_ddt_offset = secondary_ddt_offset;
}
if(create_new_table)
{
// Create a new empty table
size_t table_size = items_per_ddt_entry * sizeof(uint64_t);
buffer = calloc(1, table_size);
if(buffer == NULL)
{
FATAL("Cannot allocate memory for new secondary DDT.");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
ctx->cached_secondary_ddt2 = (uint64_t *)buffer;
ctx->cached_ddt_offset = 0; // Will be set when written to file
ctx->cached_ddt_position = ddt_position; // Track which primary DDT position this new table belongs to
TRACE("Created new secondary DDT for position %" PRIu64, ddt_position);
}
// Step 6: Update the corresponding DDT entry
if(*ddt_entry == 0)
{
block_index = block_offset >> ctx->user_data_ddt_header.blockAlignmentShift;
*ddt_entry = offset & (1ULL << ctx->user_data_ddt_header.dataShift) - 1 |
block_index << ctx->user_data_ddt_header.dataShift;
// Overflow detection for DDT entry
if(*ddt_entry > 0xFFFFFFFFFFFFFFF)
{
FATAL("DDT overflow: media does not fit in big DDT");
TRACE("Exiting set_ddt_multi_level_v2() = false");
return false;
}
}
// Sector status can be different from previous deduplicated sector
*ddt_entry &= 0x0FFFFFFFFFFFFFFF;
*ddt_entry |= (uint64_t)sector_status << 60;
TRACE("Setting big secondary DDT entry %d to %ull", sector_address % items_per_ddt_entry, (uint64_t)*ddt_entry);
ctx->cached_secondary_ddt2[sector_address % items_per_ddt_entry] = *ddt_entry;
TRACE("Updated secondary DDT entry at position %" PRIu64, sector_address % items_per_ddt_entry);
TRACE("Exiting set_ddt_multi_level_v2() = true");
return true;
}
/**
* @brief Sets a DDT entry for tape media using a hash-based lookup table.
*
* This function is specifically designed for tape media images where sectors are accessed
* non-sequentially and the traditional DDT array structure is inefficient. Instead of using
* a large contiguous array, it uses a hash table (UTHASH) to store only the sectors that
* have been written, providing sparse storage for tape media.
*
* The function performs the following operations:
* 1. Validates the context and verifies it's a tape image
* 2. Constructs a DDT entry encoding offset, block alignment, and sector status
* 3. Creates a hash table entry with the sector address as the key
* 4. Inserts or replaces the entry in the tape DDT hash table
*
* **DDT Entry Format:**
* The DDT entry is a 64-bit value with the following bit layout:
* ```
* Bits 0-(dataShift-1): Sector offset within block (masked by dataShift)
* Bits dataShift-27: Block index (block_offset >> blockAlignmentShift)
* Bits 28-31: Sector status (4 bits for status flags)
* Bits 32-63: Unused (reserved for future use)
* ```
*
* **Hash Table Management:**
* Uses HASH_REPLACE macro from UTHASH library which:
* - Adds new entries if the key (sector_address) doesn't exist
* - Replaces existing entries if the key is found (automatically frees old entry)
* - Maintains O(1) average lookup time for sector address resolution
*
* **Overflow Detection:**
* The function checks if the constructed DDT entry exceeds 28 bits (0xFFFFFFF).
* This limit ensures the sector status can fit in the upper 4 bits while leaving
* room for future extensions in the upper 32 bits.
*
* @param ctx Pointer to the aaruformat context. Must not be NULL.
* The context must have a valid imageStream and is_tape must be true.
* The ctx->tapeDdt hash table will be updated with the new entry.
* The ctx->userDataDdtHeader contains alignment and shift parameters.
*
* @param sector_address Logical sector address on the tape to set. This serves as
* the unique key in the hash table. Multiple calls with the
* same sector_address will replace the previous entry.
*
* @param offset Byte offset within the aligned block where the sector data begins.
* This value is masked by (1 << dataShift) - 1 to extract only the
* lower bits representing the offset within the block.
*
* @param block_offset Absolute byte offset in the image file where the data block starts.
* This is right-shifted by blockAlignmentShift to get the block index,
* which is stored in the DDT entry's middle bits.
*
* @param sector_status Status flags for the sector (4 bits). Common values include:
* - 0x0 (SectorStatusNotDumped): Sector not yet acquired during image dumping
* - 0x1 (SectorStatusDumped): Sector successfully dumped without error
* - 0x2 (SectorStatusErrored): Error during dumping; data may be incomplete or corrupt
* - 0x3 (SectorStatusMode1Correct): Valid MODE 1 data with regenerable suffix/prefix
* - 0x4 (SectorStatusMode2Form1Ok): Suffix verified/regenerable for MODE 2 Form 1
* - 0x5 (SectorStatusMode2Form2Ok): Suffix matches MODE 2 Form 2 with valid CRC
* - 0x6 (SectorStatusMode2Form2NoCrc): Suffix matches MODE 2 Form 2 but CRC empty/missing
* - 0x7 (SectorStatusTwin): Pointer references a twin sector table
* - 0x8 (SectorStatusUnrecorded): Sector physically unrecorded; repeated reads non-deterministic
* - 0x9 (SectorStatusEncrypted): Content encrypted and stored encrypted in image
* - 0xA (SectorStatusUnencrypted): Content originally encrypted but stored decrypted in image
* See SectorStatus enum for complete list of defined values
*
* @param ddt_entry Pointer to a 64-bit value that will receive the constructed DDT entry.
* - If *ddt_entry is 0: A new entry is constructed from the provided parameters
* - If *ddt_entry is non-zero: The existing value is used directly
* The constructed or provided value is stored in the hash table.
*
* @return Returns one of the following status codes:
* @retval true Successfully created and inserted the DDT entry. This occurs when:
* - The context and image stream are valid
* - The image is confirmed to be a tape image (is_tape == true)
* - The DDT entry fits within the 28-bit limit (< 0xFFFFFFF)
* - Memory allocation for the hash entry succeeds
* - The entry is successfully inserted or replaced in the hash table
*
* @retval false Failed to set the DDT entry. This can happen when:
* - ctx is NULL or ctx->imageStream is NULL (invalid context)
* - ctx->is_tape is false (wrong function called for non-tape media)
* - The DDT entry exceeds 0xFFFFFFF (media too large for big DDT)
* - Memory allocation fails for the new hash table entry (out of memory)
*
* @note This function is only for tape images. For disk images, use set_ddt_single_level_v2()
* or set_ddt_multi_level_v2() instead, which use array-based DDT structures.
*
* @note Memory Management:
* - Allocates a new TapeDdtHashEntry for each sector
* - HASH_REPLACE automatically frees replaced entries
* - All hash entries remain in context until cleanup
* - The tapeDdt hash table must be freed during context destruction
*
* @note Tape Media Characteristics:
* - Tape sectors are typically accessed sequentially during streaming
* - File marks and partition boundaries create sparse address spaces
* - Hash table provides efficient storage for sparse sector maps
* - Supports variable block sizes common in tape formats
*
* @note Error Handling:
* - All errors are logged with FATAL level messages
* - Function returns false immediately on any error condition
* - TRACE logging marks entry/exit points for debugging
* - No partial state changes occur on failure
*
* @warning The DDT entry overflow check at 0xFFFFFFF (28 bits) is critical. Exceeding
* this limit indicates the media is too large to fit in the current DDT format,
* and continuing would cause data corruption.
*
* @warning This function modifies the shared tapeDdt hash table. In multi-threaded
* environments, external synchronization is required to prevent race conditions.
*
* @see TapeDdtHashEntry for the hash table entry structure
* @see set_ddt_entry_v2() for the main DDT entry point that dispatches to this function
* @see get_ddt_tape() for retrieving tape DDT entries from the hash table
*/
bool set_ddt_tape(aaruformat_context *ctx, uint64_t sector_address, const uint64_t offset, const uint64_t block_offset,
const uint8_t sector_status, uint64_t *ddt_entry)
{
TRACE("Entering set_ddt_tape(%p, %" PRIu64 ", %llu, %llu, %d)", ctx, sector_address, offset, block_offset,
sector_status);
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
FATAL("Invalid context or image stream.");
TRACE("Exiting set_ddt_tape() = false");
return false;
}
// Should not really be here
if(!ctx->is_tape)
{
FATAL("Image is not tape, wrong function called.");
TRACE("Exiting set_ddt_tape() = false");
return false;
}
if(*ddt_entry == 0)
{
const uint64_t block_index = block_offset >> ctx->user_data_ddt_header.blockAlignmentShift;
*ddt_entry = offset & (1ULL << ctx->user_data_ddt_header.dataShift) - 1 |
block_index << ctx->user_data_ddt_header.dataShift;
// Overflow detection for DDT entry
if(*ddt_entry > 0xFFFFFFFFFFFFFFF)
{
FATAL("DDT overflow: media does not fit in big DDT");
TRACE("Exiting set_ddt_tape() = false");
return false;
}
*ddt_entry |= (uint64_t)sector_status << 60;
}
// Create DDT hash entry
TapeDdtHashEntry *new_entry = calloc(1, sizeof(TapeDdtHashEntry));
TapeDdtHashEntry *old_entry = NULL;
if(new_entry == NULL)
{
FATAL("Cannot allocate memory for new tape DDT hash entry.");
TRACE("Exiting set_ddt_tape() = false");
return false;
}
TRACE("Setting tape DDT entry %d to %u", sector_address, (uint32_t)*ddt_entry);
new_entry->key = sector_address;
new_entry->value = *ddt_entry;
// Insert entry into tape DDT
HASH_REPLACE(hh, ctx->tape_ddt, key, sizeof(uint64_t), new_entry, old_entry);
if(old_entry) free(old_entry);
TRACE("Exiting set_ddt_tape() = true");
return true;
}