Files
cuetools.net/CUETools.Codecs.FLACCL/flac.cl

984 lines
33 KiB
Common Lisp
Raw Normal View History

2010-09-20 05:32:05 +00:00
/**
* CUETools.FLACCL: FLAC audio encoder using OpenCL
* Copyright (c) 2009 Gregory S. Chudov
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _FLACCL_KERNEL_H_
#define _FLACCL_KERNEL_H_
2010-10-10 23:28:38 +00:00
//#pragma OPENCL EXTENSION cl_amd_fp64 : enable
2010-09-20 05:32:05 +00:00
typedef enum
{
Constant = 0,
Verbatim = 1,
Fixed = 8,
LPC = 32
} SubframeType;
typedef struct
{
int residualOrder; // <= 32
int samplesOffs;
int shift;
int cbits;
int size;
int type;
int obits;
int blocksize;
int best_index;
int channel;
int residualOffs;
int wbits;
int abits;
int porder;
int reserved[2];
} FLACCLSubframeData;
typedef struct
{
FLACCLSubframeData data;
2010-09-25 19:53:48 +00:00
int coefs[32]; // fixme: should be short?
2010-09-20 05:32:05 +00:00
} FLACCLSubframeTask;
__kernel void cudaStereoDecorr(
__global int *samples,
__global short2 *src,
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
samples[2 * offset + pos] = (s.x + s.y) >> 1;
samples[3 * offset + pos] = s.x - s.y;
}
}
__kernel void cudaChannelDecorr2(
__global int *samples,
__global short2 *src,
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
}
}
//__kernel void cudaChannelDecorr(
// int *samples,
// short *src,
// int offset
//)
//{
// int pos = get_global_id(0);
// if (pos < offset)
// samples[get_group_id(1) * offset + pos] = src[pos * get_num_groups(1) + get_group_id(1)];
//}
#define __ffs(a) (32 - clz(a & (-a)))
//#define __ffs(a) (33 - clz(~a & (a - 1)))
2010-09-25 19:53:48 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-09-20 05:32:05 +00:00
void cudaFindWastedBits(
__global FLACCLSubframeTask *tasks,
__global int *samples,
int tasksPerChannel
)
{
2010-09-25 19:53:48 +00:00
__local int abits[GROUP_SIZE];
__local int wbits[GROUP_SIZE];
2010-09-20 05:32:05 +00:00
__local FLACCLSubframeData task;
int tid = get_local_id(0);
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0) * tasksPerChannel].data))[tid];
barrier(CLK_LOCAL_MEM_FENCE);
int w = 0, a = 0;
2010-10-10 23:28:38 +00:00
for (int pos = 0; pos < task.blocksize; pos += GROUP_SIZE)
2010-09-20 05:32:05 +00:00
{
int smp = pos + tid < task.blocksize ? samples[task.samplesOffs + pos + tid] : 0;
w |= smp;
a |= smp ^ (smp >> 31);
}
wbits[tid] = w;
abits[tid] = a;
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-10 23:28:38 +00:00
for (int s = GROUP_SIZE / 2; s > 0; s >>= 1)
2010-09-20 05:32:05 +00:00
{
if (tid < s)
{
wbits[tid] |= wbits[tid + s];
abits[tid] |= abits[tid + s];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
2010-09-25 19:53:48 +00:00
w = max(0,__ffs(wbits[0]) - 1);
a = 32 - clz(abits[0]) - w;
2010-09-20 05:32:05 +00:00
if (tid < tasksPerChannel)
2010-09-25 19:53:48 +00:00
tasks[get_group_id(0) * tasksPerChannel + tid].data.wbits = w;
2010-09-20 05:32:05 +00:00
if (tid < tasksPerChannel)
2010-09-25 19:53:48 +00:00
tasks[get_group_id(0) * tasksPerChannel + tid].data.abits = a;
2010-09-20 05:32:05 +00:00
}
2010-09-25 19:53:48 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-09-20 05:32:05 +00:00
void cudaComputeAutocor(
__global float *output,
__global const int *samples,
__global const float *window,
__global FLACCLSubframeTask *tasks,
const int windowCount, // windows (log2: 0,1)
const int taskCount // tasks per block
)
{
2010-09-25 19:53:48 +00:00
__local float data[GROUP_SIZE * 2];
__local float product[GROUP_SIZE];
__local FLACCLSubframeData task;
const int tid = get_local_id(0);
2010-09-20 05:32:05 +00:00
// fetch task data
2010-09-25 19:53:48 +00:00
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(tasks + taskCount * (get_group_id(1) >> windowCount)))[tid];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
int bs = task.blocksize;
int windowOffs = (get_group_id(1) & ((1 << windowCount)-1)) * bs;
2010-09-20 05:32:05 +00:00
2010-09-25 19:53:48 +00:00
data[tid] = tid < bs ? samples[task.samplesOffs + tid] * window[windowOffs + tid] : 0.0f;
2010-09-20 05:32:05 +00:00
2010-09-25 19:53:48 +00:00
int tid0 = tid % (GROUP_SIZE >> 2);
int tid1 = tid / (GROUP_SIZE >> 2);
int lag0 = get_group_id(0) * 4;
__local float4 * dptr = ((__local float4 *)&data[0]) + tid0;
__local float4 * dptr1 = ((__local float4 *)&data[lag0 + tid1]) + tid0;
float prod = 0.0f;
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
2010-09-20 05:32:05 +00:00
{
2010-09-25 19:53:48 +00:00
// fetch samples
float nextData = pos + tid + GROUP_SIZE < bs ? samples[task.samplesOffs + pos + tid + GROUP_SIZE] * window[windowOffs + pos + tid + GROUP_SIZE] : 0.0f;
data[tid + GROUP_SIZE] = nextData;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
prod += dot(*dptr, *dptr1);
barrier(CLK_LOCAL_MEM_FENCE);
data[tid] = nextData;
}
product[tid] = prod;
barrier(CLK_LOCAL_MEM_FENCE);
for (int l = (GROUP_SIZE >> 3); l > 0; l >>= 1)
{
if (tid0 < l)
product[tid] = product[tid] + product[tid + l];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
}
2010-09-25 19:53:48 +00:00
if (tid < 4 && tid + lag0 <= MAX_ORDER)
output[get_group_id(1) * (MAX_ORDER + 1) + tid + lag0] = product[tid * (GROUP_SIZE >> 2)];
2010-09-20 05:32:05 +00:00
}
2010-10-10 23:28:38 +00:00
//#define DEBUGPRINT
#ifdef DEBUGPRINT
#pragma OPENCL EXTENSION cl_amd_printf : enable
#endif
2010-09-20 05:32:05 +00:00
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void cudaComputeLPC(
__global FLACCLSubframeTask *tasks,
2010-09-25 19:53:48 +00:00
__global float *autoc,
2010-09-20 05:32:05 +00:00
__global float *lpcs,
2010-09-25 19:53:48 +00:00
int taskCount, // tasks per block
int windowCount
2010-09-20 05:32:05 +00:00
)
{
__local struct {
FLACCLSubframeData task;
volatile float ldr[32];
volatile float gen1[32];
volatile float error[32];
volatile float autoc[33];
volatile int lpcOffs;
volatile int autocOffs;
} shared;
const int tid = get_local_id(0);// + get_local_id(1) * 32;
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
2010-09-25 19:53:48 +00:00
((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1)))[tid];
2010-09-20 05:32:05 +00:00
if (tid == 0)
{
2010-09-25 19:53:48 +00:00
shared.lpcOffs = (get_group_id(0) + get_group_id(1) * windowCount) * (MAX_ORDER + 1) * 32;
shared.autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1);
2010-09-20 05:32:05 +00:00
}
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
if (get_local_id(0) <= MAX_ORDER)
shared.autoc[get_local_id(0)] = autoc[shared.autocOffs + get_local_id(0)];
if (get_local_id(0) + get_local_size(0) <= MAX_ORDER)
shared.autoc[get_local_id(0) + get_local_size(0)] = autoc[shared.autocOffs + get_local_id(0) + get_local_size(0)];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// Compute LPC using Schur and Levinson-Durbin recursion
float gen0 = shared.gen1[get_local_id(0)] = shared.autoc[get_local_id(0)+1];
shared.ldr[get_local_id(0)] = 0.0f;
float error = shared.autoc[0];
2010-10-10 23:28:38 +00:00
#ifdef DEBUGPRINT
int magic = shared.autoc[0] == 177286873088.0f;
if (magic && get_local_id(0) <= MAX_ORDER)
printf("autoc[%d] == %f\n", get_local_id(0), shared.autoc[get_local_id(0)]);
#endif
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
for (int order = 0; order < MAX_ORDER; order++)
2010-09-20 05:32:05 +00:00
{
// Schur recursion
float reff = -shared.gen1[0] / error;
error += shared.gen1[0] * reff; // Equivalent to error *= (1 - reff * reff);
2010-10-10 23:28:38 +00:00
//error *= (1 - reff * reff);
2010-09-20 05:32:05 +00:00
float gen1;
2010-09-25 19:53:48 +00:00
if (get_local_id(0) < MAX_ORDER - 1 - order)
2010-09-20 05:32:05 +00:00
{
gen1 = shared.gen1[get_local_id(0) + 1] + reff * gen0;
gen0 += shared.gen1[get_local_id(0) + 1] * reff;
}
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
if (get_local_id(0) < MAX_ORDER - 1 - order)
2010-09-20 05:32:05 +00:00
shared.gen1[get_local_id(0)] = gen1;
2010-10-10 23:28:38 +00:00
#ifdef DEBUGPRINT
if (magic && get_local_id(0) == 0)
printf("order == %d, reff == %f, error = %f\n", order, reff, error);
if (magic && get_local_id(0) <= MAX_ORDER)
printf("gen[%d] == %f, %f\n", get_local_id(0), gen0, gen1);
#endif
2010-09-20 05:32:05 +00:00
// Store prediction error
if (get_local_id(0) == 0)
shared.error[order] = error;
// Levinson-Durbin recursion
float ldr =
select(0.0f, reff * shared.ldr[order - 1 - get_local_id(0)], get_local_id(0) < order) +
select(0.0f, reff, get_local_id(0) == order);
barrier(CLK_LOCAL_MEM_FENCE);
shared.ldr[get_local_id(0)] += ldr;
barrier(CLK_LOCAL_MEM_FENCE);
// Output coeffs
if (get_local_id(0) <= order)
lpcs[shared.lpcOffs + order * 32 + get_local_id(0)] = -shared.ldr[order - get_local_id(0)];
2010-10-10 23:28:38 +00:00
//if (get_local_id(0) <= order + 1 && fabs(-shared.ldr[0]) > 3000)
// printf("coef[%d] == %f, autoc == %f, error == %f\n", get_local_id(0), -shared.ldr[order - get_local_id(0)], shared.autoc[get_local_id(0)], shared.error[get_local_id(0)]);
2010-09-20 05:32:05 +00:00
}
barrier(CLK_LOCAL_MEM_FENCE);
// Output prediction error estimates
2010-09-25 19:53:48 +00:00
if (get_local_id(0) < MAX_ORDER)
lpcs[shared.lpcOffs + MAX_ORDER * 32 + get_local_id(0)] = shared.error[get_local_id(0)];
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
2010-09-20 05:32:05 +00:00
void cudaQuantizeLPC(
__global FLACCLSubframeTask *tasks,
2010-09-25 19:53:48 +00:00
__global float*lpcs,
2010-09-20 05:32:05 +00:00
int taskCount, // tasks per block
int taskCountLPC, // tasks per set of coeffs (<= 32)
int minprecision,
int precisions
)
{
__local struct {
FLACCLSubframeData task;
2010-10-06 11:16:41 +00:00
volatile int tmpi[32];
2010-09-20 05:32:05 +00:00
volatile int index[64];
volatile float error[64];
volatile int lpcOffs;
} shared;
2010-10-06 11:16:41 +00:00
const int tid = get_local_id(0);
2010-09-20 05:32:05 +00:00
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1) * taskCount))[tid];
if (tid == 0)
2010-09-25 19:53:48 +00:00
shared.lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
// Select best orders based on Akaike's Criteria
2010-10-06 11:16:41 +00:00
shared.index[tid] = min(MAX_ORDER - 1, tid);
shared.error[tid] = shared.task.blocksize * 64 + tid;
2010-10-10 23:28:38 +00:00
shared.index[32 + tid] = MAX_ORDER - 1;
shared.error[32 + tid] = shared.task.blocksize * 64 + tid + 32;
2010-10-06 11:16:41 +00:00
// Load prediction error estimates
if (tid < MAX_ORDER)
2010-10-10 23:28:38 +00:00
shared.error[tid] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log(shared.task.blocksize);
2010-10-06 11:16:41 +00:00
//shared.error[get_local_id(0)] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + get_local_id(0)]) + get_local_id(0) * 0.30f * (shared.task.abits + 1) * log(shared.task.blocksize);
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// Sort using bitonic sort
for(int size = 2; size < 64; size <<= 1){
//Bitonic merge
2010-09-25 19:53:48 +00:00
int ddd = (tid & (size / 2)) == 0;
2010-09-20 05:32:05 +00:00
for(int stride = size / 2; stride > 0; stride >>= 1){
2010-09-25 19:53:48 +00:00
int pos = 2 * tid - (tid & (stride - 1));
2010-10-06 11:16:41 +00:00
float e0 = shared.error[pos];
float e1 = shared.error[pos + stride];
int i0 = shared.index[pos];
int i1 = shared.index[pos + stride];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-06 11:16:41 +00:00
if ((e0 >= e1) == ddd)
2010-09-20 05:32:05 +00:00
{
shared.error[pos] = e1;
shared.error[pos + stride] = e0;
shared.index[pos] = i1;
shared.index[pos + stride] = i0;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
//ddd == dir for the last bitonic merge step
{
for(int stride = 32; stride > 0; stride >>= 1){
//barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
int pos = 2 * tid - (tid & (stride - 1));
2010-10-06 11:16:41 +00:00
float e0 = shared.error[pos];
float e1 = shared.error[pos + stride];
int i0 = shared.index[pos];
int i1 = shared.index[pos + stride];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-06 11:16:41 +00:00
if (e0 >= e1)
2010-09-20 05:32:05 +00:00
{
shared.error[pos] = e1;
shared.error[pos + stride] = e0;
shared.index[pos] = i1;
shared.index[pos + stride] = i0;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
2010-10-10 23:28:38 +00:00
//shared.index[tid] = MAX_ORDER - 1;
//barrier(CLK_LOCAL_MEM_FENCE);
2010-09-20 05:32:05 +00:00
// Quantization
2010-10-06 11:16:41 +00:00
for (int i = 0; i < taskCountLPC; i ++)
2010-09-20 05:32:05 +00:00
{
int order = shared.index[i >> precisions];
2010-10-06 11:16:41 +00:00
float lpc = tid <= order ? lpcs[shared.lpcOffs + order * 32 + tid] : 0.0f;
2010-09-20 05:32:05 +00:00
// get 15 bits of each coeff
int coef = convert_int_rte(lpc * (1 << 15));
// remove sign bits
shared.tmpi[tid] = coef ^ (coef >> 31);
barrier(CLK_LOCAL_MEM_FENCE);
// OR reduction
for (int l = get_local_size(0) / 2; l > 1; l >>= 1)
{
2010-10-06 11:16:41 +00:00
if (tid < l)
2010-09-20 05:32:05 +00:00
shared.tmpi[tid] |= shared.tmpi[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
//SUM32(shared.tmpi,tid,|=);
// choose precision
//int cbits = max(3, min(10, 5 + (shared.task.abits >> 1))); // - convert_int_rte(shared.PE[order - 1])
int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (shared.task.blocksize <= 2304) - (shared.task.blocksize <= 1152) - (shared.task.blocksize <= 576), shared.task.abits), clz(order) + 1 - shared.task.abits));
// calculate shift based on precision and number of leading zeroes in coeffs
2010-10-06 11:16:41 +00:00
int shift = max(0,min(15, clz(shared.tmpi[0] | shared.tmpi[1]) - 18 + cbits));
2010-09-20 05:32:05 +00:00
//cbits = 13;
//shift = 15;
//if (shared.task.abits + 32 - clz(order) < shift
2010-10-06 11:16:41 +00:00
//int shift = max(0,min(15, (shared.task.abits >> 2) - 14 + clz(shared.tmpi[tid & ~31]) + ((32 - clz(order))>>1)));
2010-09-20 05:32:05 +00:00
// quantize coeffs with given shift
coef = convert_int_rte(clamp(lpc * (1 << shift), -1 << (cbits - 1), 1 << (cbits - 1)));
// error correction
2010-10-06 11:16:41 +00:00
//shared.tmp[tid] = (tid != 0) * (shared.arp[tid - 1]*(1 << shared.task.shift) - shared.task.coefs[tid - 1]);
//shared.task.coefs[tid] = max(-(1 << (shared.task.cbits - 1)), min((1 << (shared.task.cbits - 1))-1, convert_int_rte((shared.arp[tid]) * (1 << shared.task.shift) + shared.tmp[tid])));
2010-09-20 05:32:05 +00:00
// remove sign bits
shared.tmpi[tid] = coef ^ (coef >> 31);
barrier(CLK_LOCAL_MEM_FENCE);
// OR reduction
for (int l = get_local_size(0) / 2; l > 1; l >>= 1)
{
2010-10-06 11:16:41 +00:00
if (tid < l)
2010-09-20 05:32:05 +00:00
shared.tmpi[tid] |= shared.tmpi[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
//SUM32(shared.tmpi,tid,|=);
// calculate actual number of bits (+1 for sign)
2010-10-06 11:16:41 +00:00
cbits = 1 + 32 - clz(shared.tmpi[0] | shared.tmpi[1]);
2010-09-20 05:32:05 +00:00
// output shift, cbits and output coeffs
2010-10-10 23:28:38 +00:00
int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i;
if (tid == 0)
tasks[taskNo].data.shift = shift;
if (tid == 0)
tasks[taskNo].data.cbits = cbits;
if (tid == 0)
tasks[taskNo].data.residualOrder = order + 1;
if (tid <= order)
tasks[taskNo].coefs[tid] = coef;
2010-09-20 05:32:05 +00:00
}
}
2010-10-10 23:28:38 +00:00
#define DONT_BEACCURATE
2010-09-25 19:53:48 +00:00
__kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-09-20 05:32:05 +00:00
void cudaEstimateResidual(
__global int*output,
__global int*samples,
__global FLACCLSubframeTask *tasks
)
{
2010-10-10 23:28:38 +00:00
__local int data[GROUP_SIZE * 2];
2010-09-20 05:32:05 +00:00
__local FLACCLSubframeTask task;
2010-10-10 23:28:38 +00:00
#ifdef BEACCURATE
__local int residual[GROUP_SIZE];
__local int len[GROUP_SIZE / 16];
#else
__local float residual[GROUP_SIZE];
#endif
2010-09-20 05:32:05 +00:00
const int tid = get_local_id(0);
if (tid < sizeof(task)/sizeof(int))
2010-09-25 19:53:48 +00:00
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid];
2010-09-20 05:32:05 +00:00
barrier(CLK_GLOBAL_MEM_FENCE);
int ro = task.data.residualOrder;
int bs = task.data.blocksize;
2010-10-10 23:28:38 +00:00
if (tid < 32 && tid >= ro)
task.coefs[tid] = 0;
#ifdef BEACCURATE
if (tid < GROUP_SIZE / 16)
len[tid] = 0;
#else
float res = 0.0f;
#endif
data[tid] = tid < bs ? samples[task.data.samplesOffs + tid] >> task.data.wbits : 0;
2010-09-25 19:53:48 +00:00
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
2010-09-20 05:32:05 +00:00
{
// fetch samples
2010-10-10 23:28:38 +00:00
int nextData = pos + tid + GROUP_SIZE < bs ? samples[task.data.samplesOffs + pos + tid + GROUP_SIZE] >> task.data.wbits : 0;
2010-09-25 19:53:48 +00:00
data[tid + GROUP_SIZE] = nextData;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// compute residual
2010-10-10 23:28:38 +00:00
__local int4 * dptr = (__local int4 *)&data[tid];
__local int4 * cptr = (__local int4 *)&task.coefs[0];
int4 sum = dptr[0] * cptr[0]
#if MAX_ORDER > 4
+ dptr[1] * cptr[1]
2010-09-20 05:32:05 +00:00
#if MAX_ORDER > 8
2010-10-10 23:28:38 +00:00
+ dptr[2] * cptr[2]
2010-09-20 05:32:05 +00:00
#if MAX_ORDER > 12
2010-10-10 23:28:38 +00:00
+ dptr[3] * cptr[3]
2010-09-20 05:32:05 +00:00
#if MAX_ORDER > 16
2010-10-10 23:28:38 +00:00
+ dptr[4] * cptr[4]
+ dptr[5] * cptr[5]
+ dptr[6] * cptr[6]
+ dptr[7] * cptr[7]
#endif
2010-09-20 05:32:05 +00:00
#endif
#endif
#endif
2010-10-10 23:28:38 +00:00
;
2010-09-20 05:32:05 +00:00
2010-10-10 23:28:38 +00:00
int t = select(0, data[tid + ro] - ((sum.x + sum.y + sum.z + sum.w) >> task.data.shift), pos + tid + ro < bs);
#ifdef BEACCURATE
residual[tid] = min((t << 1) ^ (t >> 31), 0x7fffff);
#else
res += fabs(t);
#endif
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-10 23:28:38 +00:00
#ifdef BEACCURATE
if (tid < GROUP_SIZE / 16)
{
__local int4 * chunk = ((__local int4 *)residual) + tid * 4;
int4 sum = chunk[0] + chunk[1] + chunk[2] + chunk[3];
int res = sum.x + sum.y + sum.z + sum.w;
int k = clamp(clz(16) - clz(res), 0, 14);
len[tid] += 16 * k + (res >> k);
k = clamp(clz(16) - clz(res), 0, 14);
}
#endif
2010-09-20 05:32:05 +00:00
data[tid] = nextData;
}
2010-10-10 23:28:38 +00:00
#ifdef BEACCURATE
barrier(CLK_LOCAL_MEM_FENCE);
for (int l = GROUP_SIZE / 32; l > 0; l >>= 1)
{
if (tid < l)
len[tid] += len[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0)
output[get_group_id(0)] = len[0] + (bs - ro);
#else
residual[tid] = res;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
for (int l = GROUP_SIZE / 2; l > 0; l >>= 1)
2010-09-20 05:32:05 +00:00
{
if (tid < l)
residual[tid] += residual[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0)
2010-10-10 23:28:38 +00:00
{
int residualLen = (bs - ro);
float sum = residual[0] * 2;// + residualLen / 2;
//int k = clamp(convert_int_rtn(log2((sum + 0.000001f) / (residualLen + 0.000001f))), 0, 14);
int k;
frexp((sum + 0.000001f) / residualLen, &k);
k = clamp(k - 1, 0, 14);
output[get_group_id(0)] = residualLen * (k + 1) + convert_int_rtn(min((float)0xffffff, sum / (1 << k)));
}
#endif
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void cudaChooseBestMethod(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks,
__global int *residual,
int taskCount
)
{
__local struct {
2010-10-06 11:16:41 +00:00
volatile int index[32];
volatile int length[32];
2010-09-20 05:32:05 +00:00
} shared;
2010-10-06 11:16:41 +00:00
__local FLACCLSubframeData task;
const int tid = get_local_id(0);
2010-09-20 05:32:05 +00:00
shared.length[tid] = 0x7fffffff;
shared.index[tid] = tid;
2010-10-06 11:16:41 +00:00
for (int taskNo = 0; taskNo < taskCount; taskNo++)
{
// fetch task data
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[taskNo + taskCount * get_group_id(1)].data))[tid];
2010-09-20 05:32:05 +00:00
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-20 05:32:05 +00:00
2010-10-06 11:16:41 +00:00
if (tid == 0)
{
// fetch part sum
int partLen = residual[taskNo + taskCount * get_group_id(1)];
//// calculate part size
//int residualLen = task[get_local_id(1)].data.blocksize - task[get_local_id(1)].data.residualOrder;
//residualLen = residualLen * (task[get_local_id(1)].data.type != Constant || psum != 0);
//// calculate rice parameter
//int k = max(0, min(14, convert_int_rtz(log2((psum + 0.000001f) / (residualLen + 0.000001f) + 0.5f))));
//// calculate part bit length
//int partLen = residualLen * (k + 1) + (psum >> k);
int obits = task.obits - task.wbits;
shared.length[taskNo] =
min(obits * task.blocksize,
task.type == Fixed ? task.residualOrder * obits + 6 + (4 * 1/2) + partLen :
task.type == LPC ? task.residualOrder * obits + 4 + 5 + task.residualOrder * task.cbits + 6 + (4 * 1/2)/* << porder */ + partLen :
task.type == Constant ? obits * (1 + task.blocksize * (partLen != 0)) :
obits * task.blocksize);
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
}
2010-09-20 05:32:05 +00:00
//shared.index[get_local_id(0)] = get_local_id(0);
//shared.length[get_local_id(0)] = (get_local_id(0) < taskCount) ? tasks[get_local_id(0) + taskCount * get_group_id(1)].size : 0x7fffffff;
if (tid < taskCount)
tasks[tid + taskCount * get_group_id(1)].data.size = shared.length[tid];
int l1 = shared.length[tid];
2010-10-06 11:16:41 +00:00
for (int sh = 4; sh > 0; sh --)
2010-09-20 05:32:05 +00:00
{
2010-10-06 11:16:41 +00:00
if (tid < (1 << sh))
2010-09-20 05:32:05 +00:00
{
int l2 = shared.length[tid + (1 << sh)];
shared.index[tid] = shared.index[tid + ((l2 < l1) << sh)];
shared.length[tid] = l1 = min(l1, l2);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0)
tasks[taskCount * get_group_id(1)].data.best_index = taskCount * get_group_id(1) + shared.index[shared.length[1] < shared.length[0]];
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
void cudaCopyBestMethod(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
)
{
__local int best_index;
if (get_local_id(0) == 0)
best_index = tasks[count * get_group_id(1)].data.best_index;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
((__global int*)(tasks_out + get_group_id(1)))[get_local_id(0)] = ((__global int*)(tasks + best_index))[get_local_id(0)];
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
void cudaCopyBestMethodStereo(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
)
{
__local struct {
int best_index[4];
int best_size[4];
int lr_index[2];
} shared;
if (get_local_id(0) < 4)
shared.best_index[get_local_id(0)] = tasks[count * (get_group_id(1) * 4 + get_local_id(0))].data.best_index;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < 4)
shared.best_size[get_local_id(0)] = tasks[shared.best_index[get_local_id(0)]].data.size;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) == 0)
{
int bitsBest = shared.best_size[2] + shared.best_size[3]; // MidSide
shared.lr_index[0] = shared.best_index[2];
shared.lr_index[1] = shared.best_index[3];
if (bitsBest > shared.best_size[3] + shared.best_size[1]) // RightSide
{
bitsBest = shared.best_size[3] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[3];
shared.lr_index[1] = shared.best_index[1];
}
if (bitsBest > shared.best_size[0] + shared.best_size[3]) // LeftSide
{
bitsBest = shared.best_size[0] + shared.best_size[3];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[3];
}
if (bitsBest > shared.best_size[0] + shared.best_size[1]) // LeftRight
{
bitsBest = shared.best_size[0] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[1];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
((__global int*)(tasks_out + 2 * get_group_id(1)))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[0]))[get_local_id(0)];
if (get_local_id(0) == 0)
tasks_out[2 * get_group_id(1)].data.residualOffs = tasks[shared.best_index[0]].data.residualOffs;
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
((__global int*)(tasks_out + 2 * get_group_id(1) + 1))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[1]))[get_local_id(0)];
if (get_local_id(0) == 0)
tasks_out[2 * get_group_id(1) + 1].data.residualOffs = tasks[shared.best_index[1]].data.residualOffs;
}
2010-10-10 23:28:38 +00:00
// get_group_id(0) == task index
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void cudaEncodeResidual(
__global int *output,
__global int *samples,
__global FLACCLSubframeTask *tasks
)
{
__local FLACCLSubframeTask task;
__local int data[GROUP_SIZE * 2];
const int tid = get_local_id(0);
if (get_local_id(0) < sizeof(task) / sizeof(int))
2010-10-10 23:28:38 +00:00
((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)];
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
data[tid] = tid < bs ? samples[task.data.samplesOffs + tid] >> task.data.wbits : 0;
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
{
// fetch samples
float nextData = pos + tid + GROUP_SIZE < bs ? samples[task.data.samplesOffs + pos + tid + GROUP_SIZE] >> task.data.wbits : 0;
data[tid + GROUP_SIZE] = nextData;
barrier(CLK_LOCAL_MEM_FENCE);
// compute residual
int sum = 0;
for (int c = 0; c < ro; c++)
sum += data[tid + c] * task.coefs[c];
sum = data[tid + ro] - (sum >> task.data.shift);
if (pos + tid + ro < bs)
output[task.data.residualOffs + pos + tid + ro] = sum;
barrier(CLK_LOCAL_MEM_FENCE);
data[tid] = nextData;
}
}
2010-10-10 23:28:38 +00:00
// get_group_id(0) == partition index
// get_group_id(1) == task index
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void cudaCalcPartition(
__global int *partition_lengths,
__global int *residual,
__global FLACCLSubframeTask *tasks,
int max_porder, // <= 8
int psize // == task.blocksize >> max_porder?
)
{
__local int data[GROUP_SIZE];
__local int length[GROUP_SIZE / 16][16];
__local FLACCLSubframeData task;
const int tid = get_local_id(0);
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(1)]))[tid];
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-10 23:28:38 +00:00
int k = tid % 16;
int x = tid / 16;
2010-10-06 11:16:41 +00:00
int sum = 0;
for (int pos0 = 0; pos0 < psize; pos0 += GROUP_SIZE)
{
int offs = get_group_id(0) * psize + pos0 + tid;
// fetch residual
int s = (offs >= task.residualOrder && pos0 + tid < psize) ? residual[task.residualOffs + offs] : 0;
// convert to unsigned
2010-10-10 23:28:38 +00:00
data[tid] = min(0x7fffff, (s << 1) ^ (s >> 31));
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// calc number of unary bits for each residual sample with each rice paramater
for (int pos = 0; pos < psize && pos < GROUP_SIZE; pos += GROUP_SIZE / 16)
sum += data[pos + x] >> k;
barrier(CLK_LOCAL_MEM_FENCE);
}
2010-10-10 23:28:38 +00:00
length[x][k] = min(0x7fffff, sum);
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
if (x == 0)
{
for (int i = 1; i < GROUP_SIZE / 16; i++)
length[0][k] += length[i][k];
// output length
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1));
if (k <= 14)
2010-10-10 23:28:38 +00:00
partition_lengths[pos + get_group_id(0)] = min(0x7fffff,length[0][k]) + (psize - task.residualOrder * (get_group_id(0) == 0)) * (k + 1);
2010-10-06 11:16:41 +00:00
}
}
2010-10-10 23:28:38 +00:00
// Sums partition lengths for a certain k == get_group_id(0)
// Requires 128 threads
// get_group_id(0) == k
// get_group_id(1) == task index
__kernel __attribute__((reqd_work_group_size(128, 1, 1)))
void cudaSumPartition(
__global int* partition_lengths,
int max_porder
)
{
__local int data[512]; // max_porder <= 8, data length <= 1 << 9.
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (get_group_id(0) << (max_porder + 1));
// fetch partition lengths
data[get_local_id(0)] = get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_id(0)] : 0;
data[get_local_size(0) + get_local_id(0)] = get_local_size(0) + get_local_id(0) < (1 << max_porder) ? partition_lengths[pos + get_local_size(0) + get_local_id(0)] : 0;
barrier(CLK_LOCAL_MEM_FENCE);
int in_pos = (get_local_id(0) << 1);
int out_pos = (1 << max_porder) + get_local_id(0);
for (int bs = 1 << (max_porder - 1); bs > 0; bs >>= 1)
{
if (get_local_id(0) < bs) data[out_pos] = data[in_pos] + data[in_pos + 1];
in_pos += bs << 1;
out_pos += bs;
barrier(CLK_LOCAL_MEM_FENCE);
}
if (get_local_id(0) < (1 << max_porder))
partition_lengths[pos + (1 << max_porder) + get_local_id(0)] = data[(1 << max_porder) + get_local_id(0)];
if (get_local_size(0) + get_local_id(0) < (1 << max_porder))
partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = data[(1 << max_porder) + get_local_size(0) + get_local_id(0)];
}
// Finds optimal rice parameter for several partitions at a time.
// get_group_id(0) == chunk index (chunk size is GROUP_SIZE / 8, so total task size is 8 * (2 << max_porder))
// get_group_id(1) == task index
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void cudaFindRiceParameter(
__global int* rice_parameters,
__global int* partition_lengths,
int max_porder
)
{
__local struct {
volatile int length[GROUP_SIZE];
volatile int index[GROUP_SIZE];
} shared;
const int tid = get_local_id(0);
const int ws = GROUP_SIZE / 8;
const int parts = min(ws, 2 << max_porder);
const int p = tid % ws;
const int k = tid / ws; // 0..7
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1));
// read length for 32 partitions
int l1 = (p < parts) ? partition_lengths[pos + get_group_id(0) * ws + p] : 0xffffff;
int l2 = (k + 8 <= 14 && p < parts) ? partition_lengths[pos + (8 << (max_porder + 1)) + get_group_id(0) * ws + p] : 0xffffff;
// find best rice parameter
shared.index[tid] = k + ((l2 < l1) << 3);
shared.length[tid] = l1 = min(l1, l2);
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-20 05:32:05 +00:00
//#pragma unroll 3
2010-10-10 23:28:38 +00:00
for (int lsh = GROUP_SIZE / 2; lsh >= ws; lsh >>= 1)
{
if (tid < lsh)
{
l2 = shared.length[tid + lsh];
shared.index[tid] = shared.index[tid + (l2 < l1) * lsh];
shared.length[tid] = l1 = min(l1, l2);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid < parts)
{
// output rice parameter
rice_parameters[(get_group_id(1) << (max_porder + 2)) + get_group_id(0) * parts + tid] = shared.index[tid];
// output length
rice_parameters[(get_group_id(1) << (max_porder + 2)) + (1 << (max_porder + 1)) + get_group_id(0) * parts + tid] = shared.length[tid];
}
}
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
void cudaFindPartitionOrder(
__global int* best_rice_parameters,
__global FLACCLSubframeTask *tasks,
__global int* rice_parameters,
int max_porder
)
{
__local struct {
int length[32];
int index[32];
} shared;
__local int partlen[GROUP_SIZE];
__local FLACCLSubframeData task;
const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder);
if (get_local_id(0) < sizeof(task) / sizeof(int))
((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)];
// fetch partition lengths
barrier(CLK_LOCAL_MEM_FENCE);
for (int porder = max_porder; porder >= 0; porder--)
{
int len = 0;
for (int offs = 0; offs < (1 << porder); offs += GROUP_SIZE)
len += offs + get_local_id(0) < (1 << porder) ? rice_parameters[pos + (2 << max_porder) - (2 << porder) + offs + get_local_id(0)] : 0;
partlen[get_local_id(0)] = len;
barrier(CLK_LOCAL_MEM_FENCE);
for (int l = min(GROUP_SIZE, 1 << porder) / 2; l > 0; l >>= 1)
{
if (get_local_id(0) < l)
partlen[get_local_id(0)] += partlen[get_local_id(0) + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
if (get_local_id(0) == 0)
shared.length[porder] = partlen[0] + (4 << porder);
barrier(CLK_LOCAL_MEM_FENCE);
}
if (get_local_id(0) < 32 && get_local_id(0) > max_porder)
shared.length[get_local_id(0)] = 0xfffffff;
if (get_local_id(0) < 32)
shared.index[get_local_id(0)] = get_local_id(0);
barrier(CLK_LOCAL_MEM_FENCE);
int l1 = get_local_id(0) <= max_porder ? shared.length[get_local_id(0)] : 0xfffffff;
for (int sh = 3; sh >= 0; sh --)
{
if (get_local_id(0) < (1 << sh))
{
int l2 = shared.length[get_local_id(0) + (1 << sh)];
shared.index[get_local_id(0)] = shared.index[get_local_id(0) + ((l2 < l1) << sh)];
shared.length[get_local_id(0)] = l1 = min(l1, l2);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (get_local_id(0) == 0)
tasks[get_group_id(0)].data.porder = shared.index[0];
if (get_local_id(0) == 0)
{
int obits = task.obits - task.wbits;
tasks[get_group_id(0)].data.size =
task.type == Fixed ? task.residualOrder * obits + 6 + l1 :
task.type == LPC ? task.residualOrder * obits + 6 + l1 + 4 + 5 + task.residualOrder * task.cbits :
task.type == Constant ? obits : obits * task.blocksize;
}
barrier(CLK_LOCAL_MEM_FENCE);
int porder = shared.index[0];
for (int offs = 0; offs < (1 << porder); offs += GROUP_SIZE)
if (offs + get_local_id(0) < (1 << porder))
best_rice_parameters[(get_group_id(0) << max_porder) + offs + get_local_id(0)] = rice_parameters[pos - (2 << porder) + offs + get_local_id(0)];
// FIXME: should be bytes?
// if (get_local_id(0) < (1 << porder))
//shared.tmp[get_local_id(0)] = rice_parameters[pos - (2 << porder) + get_local_id(0)];
// barrier(CLK_LOCAL_MEM_FENCE);
// if (get_local_id(0) < max(1, (1 << porder) >> 2))
// {
//char4 ch;
//ch.x = shared.tmp[(get_local_id(0) << 2)];
//ch.y = shared.tmp[(get_local_id(0) << 2) + 1];
//ch.z = shared.tmp[(get_local_id(0) << 2) + 2];
//ch.w = shared.tmp[(get_local_id(0) << 2) + 3];
//shared.ch[get_local_id(0)] = ch
// }
// barrier(CLK_LOCAL_MEM_FENCE);
// if (get_local_id(0) < max(1, (1 << porder) >> 2))
//best_rice_parameters[(get_group_id(1) << max_porder) + get_local_id(0)] = shared.ch[get_local_id(0)];
}
2010-09-20 05:32:05 +00:00
//#endif
//
//#if 0
// if (get_local_id(0) < order)
// {
// for (int i = 0; i < order; i++)
// if (get_local_id(0) >= i)
// sum[get_local_id(0) - i] += coefs[get_local_id(0)] * sample[order - i - 1];
// fot (int i = order; i < blocksize; i++)
// {
// if (!get_local_id(0)) sample[order + i] = s = residual[order + i] + (sum[order + i] >> shift);
// sum[get_local_id(0) + i + 1] += coefs[get_local_id(0)] * s;
// }
// }
//#endif
#endif