CUETools.DSP.Resampler: split classes into separate files.

This commit is contained in:
karamanolev
2011-10-24 15:45:37 +00:00
parent 7a6e2eb5aa
commit 5c3afc77be
18 changed files with 1150 additions and 1101 deletions

View File

@@ -59,9 +59,24 @@
<Reference Include="System.Xml" />
</ItemGroup>
<ItemGroup>
<Compile Include="Internal\dft_filter_t.cs" />
<Compile Include="Internal\fifo_t.cs" />
<Compile Include="Internal\poly_fir1_0_t.cs" />
<Compile Include="Internal\poly_fir1_1_t.cs" />
<Compile Include="Internal\poly_fir1_2_t.cs" />
<Compile Include="Internal\poly_fir1_3_t.cs" />
<Compile Include="Internal\poly_fir1_t.cs" />
<Compile Include="Internal\poly_fir_t.cs" />
<Compile Include="Internal\rate_shared_t.cs" />
<Compile Include="Internal\rate_t.cs" />
<Compile Include="SOXResampler.cs" />
<Compile Include="SOXFft.cs" />
<Compile Include="Internal\SOXFft.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
<Compile Include="SOXResamplerConfig.cs" />
<Compile Include="SOXResamplerQuality.cs" />
<Compile Include="Internal\stage_fn_t.cs" />
<Compile Include="Internal\stage_t.cs" />
<Compile Include="Internal\thread_fft_cache.cs" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\CUETools.Codecs\CUETools.Codecs.csproj">

View File

@@ -1,10 +1,8 @@
using System;
using System.Collections.Generic;
using System.Text;
namespace CUETools.DSP.Resampler
namespace CUETools.DSP.Resampler.Internal
{
internal class SOXFft
class SOXFft
{
static unsafe void bitrv2(int n, int* ip/*0*/, double* a)
{

View File

@@ -0,0 +1,8 @@
namespace CUETools.DSP.Resampler.Internal
{
class dft_filter_t
{
internal int dft_length, num_taps, post_peak;
internal double[] coefs;
}
}

View File

@@ -0,0 +1,90 @@
using System;
namespace CUETools.DSP.Resampler.Internal
{
class fifo_t
{
internal byte[] data;
int item_size; /* Size of each item in data */
int begin; /* Offset of the first byte to read. */
int end; /* 1 + Offset of the last byte byte to read. */
const int FIFO_MIN = 0x4000;
public int offset
{
get
{
return begin;
}
}
public int occupancy
{
get
{
return (end - begin) / item_size;
}
}
public fifo_t(int item_size)
{
this.data = new byte[FIFO_MIN];
this.item_size = item_size;
this.begin = 0;
this.end = 0;
}
public void clear()
{
this.begin = 0;
this.end = 0;
}
public int reserve(int n)
{
n *= item_size;
if (begin == end)
clear();
while (true)
{
if (end + n <= data.Length)
{
int pos = end;
end += n;
return pos;
}
if (begin > FIFO_MIN)
{
Buffer.BlockCopy(data, begin, data, 0, end - begin);
end -= begin;
begin = 0;
continue;
}
byte[] data1 = new byte[data.Length + Math.Max(n, data.Length)];
Buffer.BlockCopy(data, begin, data1, 0, end - begin);
data = data1;
end -= begin;
begin = 0;
}
}
public void trim_by(int n)
{
end -= n * item_size;
}
public int read(int n, byte[] buf)
{
n *= item_size;
if (n > end - begin)
throw new InvalidOperationException();
if (buf != null)
Buffer.BlockCopy(data, begin, buf, 0, n);
begin += n;
return begin - n;
}
}
}

View File

@@ -0,0 +1,38 @@
namespace CUETools.DSP.Resampler.Internal
{
class poly_fir1_0_t : poly_fir1_t
{
internal poly_fir1_0_t()
: base(0)
{
}
internal unsafe override void fn(stage_t p, fifo_t output_fifo)
{
int i, num_in = p.occupancy, max_num_out = (int)(1 + num_in * p.out_in_ratio);
int output_offs = output_fifo.reserve(max_num_out);
fixed (byte* pinput = &p.fifo.data[p.offset], poutput = &output_fifo.data[output_offs])
{
double* input = (double*)pinput;
double* output = (double*)poutput;
for (i = 0; (p.at >> 32) < num_in * p.divisor; ++i, p.at += p.step & ~0xffffffffL)
{
int divided = (int)(p.at >> 32) / p.divisor;
int divided_rem = (int)(p.at >> 32) % p.divisor;
double* at = input + divided;
double sum = 0;
for (int j = 0; j < pf.num_coefs; j++)
sum += (p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(0, pf.num_coefs, divided_rem, 0, j)]) * at[j];
output[i] = sum;
}
//assert(max_num_out - i >= 0);
output_fifo.trim_by(max_num_out - i);
int divided1 = (int)(p.at >> 32) / p.divisor;
p.fifo.read(divided1, null);
p.at -= ((long)divided1 * p.divisor) << 32;
}
}
}
}

View File

@@ -0,0 +1,44 @@
namespace CUETools.DSP.Resampler.Internal
{
class poly_fir1_1_t : poly_fir1_t
{
const int COEF_INTERP = 1;
const double MULT32 = (65536.0 * 65536.0);
internal poly_fir1_1_t(int phase_bits)
: base(phase_bits)
{
}
internal unsafe override void fn(stage_t p, fifo_t output_fifo)
{
int i, num_in = p.occupancy, max_num_out = (int)(1 + num_in * p.out_in_ratio);
int output_offs = output_fifo.reserve(max_num_out);
fixed (byte* pinput = &p.fifo.data[p.offset], poutput = &output_fifo.data[output_offs])
{
double* input = (double*)pinput;
double* output = (double*)poutput;
for (i = 0; (p.at >> 32) < num_in; ++i, p.at += p.step)
{
double* at = input + (p.at >> 32);
uint fraction = (uint)(p.at & 0xffffffff);
int phase = (int)(fraction >> (32 - phase_bits));
double x = (double)(fraction << phase_bits) * (1 / MULT32);
double sum = 0;
for (int j = 0; j < pf.num_coefs; j++)
{
double a = p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(COEF_INTERP, pf.num_coefs, phase, 0, j)];
double b = p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(COEF_INTERP, pf.num_coefs, phase, 1, j)];
sum += (b * x + a) * at[j];
}
output[i] = sum;
}
//assert(max_num_out - i >= 0);
output_fifo.trim_by(max_num_out - i);
p.fifo.read((int)(p.at >> 32), null);
p.at &= 0xffffffff;
}
}
}
}

View File

@@ -0,0 +1,45 @@
namespace CUETools.DSP.Resampler.Internal
{
class poly_fir1_2_t : poly_fir1_t
{
const int COEF_INTERP = 2;
const double MULT32 = (65536.0 * 65536.0);
internal poly_fir1_2_t(int phase_bits)
: base(phase_bits)
{
}
internal unsafe override void fn(stage_t p, fifo_t output_fifo)
{
int i, num_in = p.occupancy, max_num_out = (int)(1 + num_in * p.out_in_ratio);
int output_offs = output_fifo.reserve(max_num_out);
fixed (byte* pinput = &p.fifo.data[p.offset], poutput = &output_fifo.data[output_offs])
{
double* input = (double*)pinput;
double* output = (double*)poutput;
for (i = 0; (p.at >> 32) < num_in; ++i, p.at += p.step)
{
double* at = input + (p.at >> 32);
uint fraction = (uint)(p.at & 0xffffffff);
int phase = (int)(fraction >> (32 - phase_bits));
double x = (double)(fraction << phase_bits) * (1.0 / 0x100000000);
double sum = 0;
for (int j = 0; j < pf.num_coefs; j++)
{
double a = p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(COEF_INTERP, pf.num_coefs, phase, 0, j)];
double b = p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(COEF_INTERP, pf.num_coefs, phase, 1, j)];
double c = p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(COEF_INTERP, pf.num_coefs, phase, 2, j)];
sum += ((c * x + b) * x + a) * at[j];
}
output[i] = sum;
}
//assert(max_num_out - i >= 0);
output_fifo.trim_by(max_num_out - i);
p.fifo.read((int)(p.at >> 32), null);
p.at &= 0xffffffff;
}
}
}
}

View File

@@ -0,0 +1,46 @@
namespace CUETools.DSP.Resampler.Internal
{
class poly_fir1_3_t : poly_fir1_t
{
const int COEF_INTERP = 3;
const double MULT32 = (65536.0 * 65536.0);
internal poly_fir1_3_t(int phase_bits)
: base(phase_bits)
{
}
internal unsafe override void fn(stage_t p, fifo_t output_fifo)
{
int i, num_in = p.occupancy, max_num_out = (int)(1 + num_in * p.out_in_ratio);
int output_offs = output_fifo.reserve(max_num_out);
fixed (byte* pinput = &p.fifo.data[p.offset], poutput = &output_fifo.data[output_offs])
{
double* input = (double*)pinput;
double* output = (double*)poutput;
for (i = 0; (p.at >> 32) < num_in; ++i, p.at += p.step)
{
double* at = input + (p.at >> 32);
uint fraction = (uint)(p.at & 0xffffffff);
int phase = (int)(fraction >> (32 - phase_bits));
double x = (double)(fraction << phase_bits) * (1 / MULT32);
double sum = 0;
for (int j = 0; j < pf.num_coefs; j++)
{
double a = p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(COEF_INTERP, pf.num_coefs, phase, 0, j)];
double b = p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(COEF_INTERP, pf.num_coefs, phase, 1, j)];
double c = p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(COEF_INTERP, pf.num_coefs, phase, 2, j)];
double d = p.shared.poly_fir_coefs[poly_fir1_t.coef_idx(COEF_INTERP, pf.num_coefs, phase, 3, j)];
sum += (((d * x + c) * x + b) * x + a) * at[j];
}
output[i] = sum;
}
//assert(max_num_out - i >= 0);
output_fifo.trim_by(max_num_out - i);
p.fifo.read((int)(p.at >> 32), null);
p.at &= 0xffffffff;
}
}
}
}

View File

@@ -0,0 +1,18 @@
namespace CUETools.DSP.Resampler.Internal
{
abstract class poly_fir1_t
{
internal int phase_bits;
internal poly_fir_t pf;
internal poly_fir1_t(int phase_bits)
{
this.phase_bits = phase_bits;
}
internal abstract void fn(stage_t input, fifo_t output);
public static int coef_idx(int interp_order, int fir_len, int phase_num, int coef_interp_num, int fir_coef_num)
{
return (fir_len) * ((interp_order) + 1) * (phase_num) + ((interp_order) + 1) * (fir_coef_num) + (interp_order - coef_interp_num);
}
}
}

View File

@@ -0,0 +1,24 @@
namespace CUETools.DSP.Resampler.Internal
{
class poly_fir_t
{
internal int num_coefs;
internal double pass, stop, att;
internal poly_fir1_t[] interp;
internal poly_fir_t(int num_coefs, double pass, double stop, double att, int pb1, int pb2, int pb3)
{
this.num_coefs = num_coefs;
this.pass = pass;
this.stop = stop;
this.att = att;
this.interp = new poly_fir1_t[4];
this.interp[0] = new poly_fir1_0_t();
this.interp[1] = new poly_fir1_1_t(pb1);
this.interp[2] = new poly_fir1_2_t(pb2);
this.interp[3] = new poly_fir1_3_t(pb3);
foreach (poly_fir1_t f1 in interp)
f1.pf = this;
}
}
}

View File

@@ -0,0 +1,16 @@
namespace CUETools.DSP.Resampler.Internal
{
class rate_shared_t
{
internal double[] poly_fir_coefs;
internal dft_filter_t[] half_band = new dft_filter_t[2];
internal thread_fft_cache info;
internal rate_shared_t()
{
info = new thread_fft_cache();
half_band[0] = new dft_filter_t();
half_band[1] = new dft_filter_t();
}
}
}

View File

@@ -0,0 +1,714 @@
using System;
namespace CUETools.DSP.Resampler.Internal
{
class rate_t
{
double factor;
long samples_in, samples_out;
int level, input_stage_num, output_stage_num;
bool upsample;
stage_t[] stages;
stage_t pre_stage, last_stage, post_stage;
int in_samplerate, out_samplerate;
const double MULT32 = (65536.0 * 65536.0);
const double LSX_TO_6dB = 0.5869;
const double LSX_TO_3dB = ((2 / 3.0) * (.5 + LSX_TO_6dB));
const double LSX_MAX_TBW0 = 36.0;
const double LSX_MAX_TBW0A = (LSX_MAX_TBW0 / (1 + LSX_TO_3dB));
//const double LSX_MAX_TBW3 = Math.Floor(LSX_MAX_TBW0 * LSX_TO_3dB);
//const double LSX_MAX_TBW3A = Math.Floor(LSX_MAX_TBW0A * LSX_TO_3dB);
static int range_limit(int x, int lower, int upper)
{
return Math.Min(Math.Max(x, lower), upper);
}
static readonly double[] half_fir_coefs_25 = {
4.9866643051942178e-001, 3.1333582318860204e-001, 1.2567743716165585e-003,
-9.2035726038137103e-002, -1.0507348255277846e-003, 4.2764945027796687e-002,
7.7661461450703555e-004, -2.0673365323361139e-002, -5.0429677622613805e-004,
9.4223774565849357e-003, 2.8491539998284476e-004, -3.8562347294894628e-003,
-1.3803431143314762e-004, 1.3634218103234187e-003, 5.6110366313398705e-005,
-3.9872042837864422e-004, -1.8501044952475473e-005, 9.0580351350892191e-005,
4.6764104835321042e-006, -1.4284332593063177e-005, -8.1340436298087893e-007,
1.1833367010222812e-006, 7.3979325233687461e-008,
};
static readonly double[] half_fir_coefs_low = {
4.2759802493108773e-001, 3.0939308096100709e-001, 6.9285325719540158e-002,
-8.0642059355533674e-002, -6.0528749718348158e-002, 2.5228940037788555e-002,
4.7756850372993369e-002, 8.7463256642532057e-004, -3.3208422093026498e-002,
-1.3425983316344854e-002, 1.9188320662637096e-002, 1.7478840713827052e-002,
-7.5527851809344612e-003, -1.6145235261724403e-002, -6.3013968965413430e-004,
1.1965551091184719e-002, 5.1714613100614501e-003, -6.9898749683755968e-003,
-6.6150222806158742e-003, 2.6394681964090937e-003, 5.9365183404658526e-003,
3.5567920638016650e-004, -4.2031898513566123e-003, -1.8738555289555877e-003,
2.2991238738122328e-003, 2.2058519188488186e-003, -7.7796582498205363e-004,
-1.8212814627239918e-003, -1.4964619042558244e-004, 1.1706370821176716e-003,
5.3082071395224866e-004, -5.6771020453353900e-004, -5.4472363026668942e-004,
1.5914542178505357e-004, 3.8911127354338085e-004, 4.2076035174603683e-005,
-2.1015548483049000e-004, -9.5381290156278399e-005, 8.0903081108059553e-005,
7.5812875822003258e-005, -1.5004304266040688e-005, -3.9149443482028750e-005,
-6.0893901283459912e-006, 1.4040363940567877e-005, 4.9834316581482789e-006,
};
static readonly poly_fir_t[] poly_firs = new poly_fir_t[] {
new poly_fir_t(16, 0.750, 1.5, 108, 9, 7, 6),
new poly_fir_t(30, 1.000, 1.5, 133, 10, 9, 7),
new poly_fir_t(38, 1.000, 1.5, 165, 12, 10, 8),
new poly_fir_t(42, 0.724, 1.0, 105, 10, 8, 6),
new poly_fir_t(10, 0.300, 1.5, 107, 9, 7, 6),
new poly_fir_t(14, 0.500, 1.5, 125, 10, 8, 6),
new poly_fir_t(20, 0.500, 1.5, 174, 11, 9, 7),
};
static unsafe void cubic_spline(stage_t p, fifo_t output_fifo)
{
int i, num_in = p.occupancy;
int max_num_out = 1 + (int)(num_in * p.out_in_ratio);
int output_offs = output_fifo.reserve(max_num_out);
fixed (byte* pinput = &p.fifo.data[p.offset], poutput = &output_fifo.data[output_offs])
{
double* input = (double*)pinput;
double* output = (double*)poutput;
for (i = 0; (p.at >> 32) < num_in; ++i, p.at += p.step)
{
double* s = input + (p.at >> 32);
double x = (p.at & 0xffffffff) * (1 / MULT32);
double b = 0.5 * (s[1] + s[-1]) - *s, a = (1 / 6.0) * (s[2] - s[1] + s[-1] - *s - 4 * b);
double c = s[1] - *s - a - b;
output[i] = ((a * x + b) * x + c) * x + *s;
}
}
//assert(max_num_out - i >= 0);
output_fifo.trim_by(max_num_out - i);
p.fifo.read((int)(p.at >> 32), null);
p.at &= 0xffffffff;
}
static unsafe void half_sample_low(stage_t p, fifo_t output_fifo)
{
int num_out = (p.occupancy + 1) / 2;
int output_offs = output_fifo.reserve(num_out);
fixed (byte* pinput = &p.fifo.data[p.offset], poutput = &output_fifo.data[output_offs])
{
double* input = (double*)pinput;
double* output = (double*)poutput;
for (int i = 0; i < num_out; ++i, input += 2)
{
double sum = input[0] * half_fir_coefs_low[0];
for (int j = 1; j < half_fir_coefs_low.Length; j++)
sum += (input[-j] + input[j]) * half_fir_coefs_low[j];
output[i] = sum;
}
}
p.fifo.read(2 * num_out, null);
}
static unsafe void half_sample_25(stage_t p, fifo_t output_fifo)
{
int num_out = (p.occupancy + 1) / 2;
int output_offs = output_fifo.reserve(num_out);
fixed (byte* pinput = &p.fifo.data[p.offset], poutput = &output_fifo.data[output_offs])
{
double* input = (double*)pinput;
double* output = (double*)poutput;
for (int i = 0; i < num_out; ++i, input += 2)
{
double sum = input[0] * half_fir_coefs_25[0];
for (int j = 1; j < half_fir_coefs_25.Length; j++)
sum += (input[-j] + input[j]) * half_fir_coefs_25[j];
output[i] = sum;
}
}
p.fifo.read(2 * num_out, null);
}
static unsafe void half_sample(stage_t p, fifo_t output_fifo)
{
int num_in = Math.Max(0, p.fifo.occupancy);
dft_filter_t f = p.shared.half_band[p.which];
int overlap = f.num_taps - 1;
while (num_in >= f.dft_length)
{
int input_offs = p.fifo.offset;
p.fifo.read(f.dft_length - overlap, null);
num_in -= f.dft_length - overlap;
int output_offs = output_fifo.reserve(f.dft_length);
output_fifo.trim_by((f.dft_length + overlap) >> 1);
Buffer.BlockCopy(p.fifo.data, input_offs, output_fifo.data, output_offs, f.dft_length * sizeof(double));
fixed (byte* poutput = &output_fifo.data[output_offs])
fixed (double* lsx_fft_sc = p.shared.info.lsx_fft_sc)
fixed (int* lsx_fft_br = p.shared.info.lsx_fft_br)
{
double* output = (double*)poutput;
SOXFft.rdft(f.dft_length, 1, output, lsx_fft_br, lsx_fft_sc);
output[0] *= f.coefs[0];
output[1] *= f.coefs[1];
for (int i = 2; i < f.dft_length; i += 2)
{
double tmp = output[i];
output[i] = f.coefs[i] * tmp - f.coefs[i + 1] * output[i + 1];
output[i + 1] = f.coefs[i + 1] * tmp + f.coefs[i] * output[i + 1];
}
SOXFft.rdft(f.dft_length, -1, output, lsx_fft_br, lsx_fft_sc);
for (int j = 1, i = 2; i < f.dft_length - overlap; ++j, i += 2)
output[j] = output[i];
}
}
}
static unsafe void double_sample(stage_t p, fifo_t output_fifo)
{
int num_in = Math.Max(0, p.fifo.occupancy);
dft_filter_t f = p.shared.half_band[1];
int overlap = f.num_taps - 1;
while (num_in > f.dft_length >> 1)
{
int input_offs = p.fifo.offset;
p.fifo.read((f.dft_length - overlap) >> 1, null);
num_in -= (f.dft_length - overlap) >> 1;
int output_offs = output_fifo.reserve(f.dft_length);
output_fifo.trim_by(overlap);
fixed (byte* pinput = &p.fifo.data[input_offs])
fixed (byte* poutput = &output_fifo.data[output_offs])
fixed (double* lsx_fft_sc = p.shared.info.lsx_fft_sc)
fixed (int* lsx_fft_br = p.shared.info.lsx_fft_br)
{
double* input = (double*)pinput;
double* output = (double*)poutput;
for (int j = 0, i = 0; i < f.dft_length; ++j, i += 2)
{
output[i] = input[j];
output[i + 1] = 0;
}
SOXFft.rdft(f.dft_length, 1, output, lsx_fft_br, lsx_fft_sc);
output[0] *= f.coefs[0];
output[1] *= f.coefs[1];
for (int i = 2; i < f.dft_length; i += 2)
{
double tmp = output[i];
output[i] = f.coefs[i] * tmp - f.coefs[i + 1] * output[i + 1];
output[i + 1] = f.coefs[i + 1] * tmp + f.coefs[i] * output[i + 1];
}
SOXFft.rdft(f.dft_length, -1, output, lsx_fft_br, lsx_fft_sc);
}
}
}
static int lsx_lpf_num_taps(double att, double tr_bw, int k)
{ /* TODO this could be cleaner, esp. for k != 0 */
int n;
if (att <= 80)
n = (int)(0.25 / Math.PI * (att - 7.95) / (2.285 * tr_bw) + .5);
else
{
double n160 = (.0425 * att - 1.4) / tr_bw; /* Half order for att = 160 */
n = (int)(n160 * (16.556 / (att - 39.6) + .8625) + .5); /* For att [80,160) */
}
return k != 0 ? 2 * n : 2 * (n + (n & 1)) + 1; /* =1 %4 (0 phase 1/2 band) */
}
static double lsx_kaiser_beta(double att)
{
if (att > 100) return .1117 * att - 1.11;
if (att > 50) return .1102 * (att - 8.7);
if (att > 20.96) return .58417 * Math.Pow(att - 20.96, .4) + .07886 * (att - 20.96);
return 0;
}
static double lsx_bessel_I_0(double x)
{
double term = 1, sum = 1, last_sum, x2 = x / 2;
int i = 1;
do
{
double y = x2 / i++;
last_sum = sum;
sum += term *= y * y;
} while (sum != last_sum);
return sum;
}
static double[] lsx_make_lpf(int num_taps, double Fc, double beta, double scale, bool dc_norm)
{
int i, m = num_taps - 1;
double[] h = new double[num_taps];
double sum = 0;
double mult = scale / lsx_bessel_I_0(beta);
//assert(Fc >= 0 && Fc <= 1);
//lsx_debug("make_lpf(n=%i, Fc=%g beta=%g dc-norm=%i scale=%g)", num_taps, Fc, beta, dc_norm, scale);
for (i = 0; i <= m / 2; ++i)
{
double x = Math.PI * (i - .5 * m), y = 2.0 * i / m - 1;
h[i] = x != 0 ? Math.Sin(Fc * x) / x : Fc;
sum += h[i] *= lsx_bessel_I_0(beta * Math.Sqrt(1 - y * y)) * mult;
if (m - i != i)
sum += h[m - i] = h[i];
}
for (i = 0; dc_norm && i < num_taps; ++i) h[i] *= scale / sum;
return h;
}
static double[] lsx_design_lpf(
double Fp, /* End of pass-band; ~= 0.01dB point */
double Fc, /* Start of stop-band */
double Fn, /* Nyquist freq; e.g. 0.5, 1, PI */
bool allow_aliasing,
double att, /* Stop-band attenuation in dB */
ref int num_taps, /* (Single phase.) 0: value will be estimated */
int k) /* Number of phases; 0 for single-phase */
{
double tr_bw, beta;
if (allow_aliasing)
Fc += (Fc - Fp) * LSX_TO_3dB;
Fp /= Fn;
Fc /= Fn; /* Normalise to Fn = 1 */
tr_bw = LSX_TO_6dB * (Fc - Fp); /* Transition band-width: 6dB to stop points */
if (num_taps == 0)
num_taps = lsx_lpf_num_taps(att, tr_bw, k);
beta = lsx_kaiser_beta(att);
if (k != 0)
num_taps = num_taps * k - 1;
else k = 1;
//lsx_debug("%g %g %g", Fp, tr_bw, Fc);
return lsx_make_lpf(num_taps, (Fc - tr_bw) / k, beta, (double)k, true);
}
static int lsx_set_dft_length(int num_taps) /* Set to 4 x nearest power of 2 */
{
int result, n = num_taps;
for (result = 8; n > 2; result <<= 1, n >>= 1) ;
result = range_limit(result, 4096, 131072);
//assert(num_taps * 2 < result);
return result;
}
static void lsx_fir_to_phase(ref double[] h, ref int len, ref int post_len, double phase, thread_fft_cache info)
{
double phase1 = (phase > 50 ? 100 - phase : phase) / 50;
int i, work_len, begin, end, imp_peak = 0, peak = 0;
double imp_sum = 0, peak_imp_sum = 0;
double prev_angle2 = 0, cum_2pi = 0, prev_angle1 = 0, cum_1pi = 0;
for (i = len, work_len = 2 * 2 * 8; i > 1; work_len <<= 1, i >>= 1) ;
double[] pi_wraps = new double[work_len + 2]; /* +2: (UN)PACK */
double[] work = new double[(work_len + 2) / 2];
Buffer.BlockCopy(h, 0, work, 0, len * sizeof(double));
SOXFft.safe_rdft(work_len, 1, work, info); /* Cepstral: */
work[work_len] = work[1]; work[work_len + 1] = work[0]; //LSX_UNPACK(work, work_len);
for (i = 0; i <= work_len; i += 2)
{
double angle = Math.Atan2(work[i + 1], work[i]);
double detect = 2 * Math.PI;
double delta = angle - prev_angle2;
double adjust = detect * ((delta < -detect * 0.7 ? 1 : 0) - (delta > detect * 0.7 ? 1 : 0));
prev_angle2 = angle;
cum_2pi += adjust;
angle += cum_2pi;
detect = Math.PI;
delta = angle - prev_angle1;
adjust = detect * ((delta < -detect * .7 ? 1 : 0) - (delta > detect * .7 ? 1 : 0));
prev_angle1 = angle;
cum_1pi += Math.Abs(adjust); /* fabs for when 2pi and 1pi have combined */
pi_wraps[i >> 1] = cum_1pi;
double tt = Math.Sqrt(work[i] * work[i] + work[i + 1] * work[i + 1]);
// assert(tt >= 0)
work[i] = tt > 0 ? Math.Log(tt) : -26;
work[i + 1] = 0;
}
work[1] = work[work_len]; // LSX_PACK(work, work_len);
SOXFft.safe_rdft(work_len, -1, work, info);
for (i = 0; i < work_len; ++i) work[i] *= 2.0 / work_len;
for (i = 1; i < work_len / 2; ++i)
{
/* Window to reject acausal components */
work[i] *= 2;
work[i + work_len / 2] = 0;
}
SOXFft.safe_rdft(work_len, 1, work, info);
for (i = 2; i < work_len; i += 2) /* Interpolate between linear & min phase */
work[i + 1] = phase1 * i / work_len * pi_wraps[work_len >> 1] +
(1 - phase1) * (work[i + 1] + pi_wraps[i >> 1]) - pi_wraps[i >> 1];
work[0] = Math.Exp(work[0]);
work[1] = Math.Exp(work[1]);
for (i = 2; i < work_len; i += 2)
{
double x = Math.Exp(work[i]);
work[i] = x * Math.Cos(work[i + 1]);
work[i + 1] = x * Math.Sin(work[i + 1]);
}
SOXFft.safe_rdft(work_len, -1, work, info);
for (i = 0; i < work_len; ++i) work[i] *= 2.0 / work_len;
/* Find peak pos. */
for (i = 0; i <= (int)(pi_wraps[work_len >> 1] / Math.PI + .5); ++i)
{
imp_sum += work[i];
if (Math.Abs(imp_sum) > Math.Abs(peak_imp_sum))
{
peak_imp_sum = imp_sum;
peak = i;
}
//if (work[i] > work[imp_peak]) /* For debug check only */
//imp_peak = i;
}
while (peak > 0 && Math.Abs(work[peak - 1]) > Math.Abs(work[peak]) && work[peak - 1] * work[peak] > 0)
--peak;
if (phase1 == 0)
begin = 0;
else if (phase1 == 1)
begin = peak - len / 2;
else
{
begin = (int)((.997 - (2 - phase1) * .22) * len + .5);
end = (int)((.997 + (0 - phase1) * .22) * len + .5);
begin = peak - begin - (begin & 1);
end = peak + 1 + end + (end & 1);
len = end - begin;
double[] h1 = new double[len];
Buffer.BlockCopy(h, 0, h1, 0, Math.Min(h.Length, h1.Length) * sizeof(double));
h = h1;
}
for (i = 0; i < len; ++i) h[i] =
work[(begin + (phase > 50 ? len - 1 - i : i) + work_len) & (work_len - 1)];
post_len = phase > 50 ? peak - begin : begin + len - (peak + 1);
//lsx_debug("nPI=%g peak-sum@%i=%g (val@%i=%g); len=%i post=%i (%g%%)",
// pi_wraps[work_len >> 1] / M_PI, peak, peak_imp_sum, imp_peak,
// work[imp_peak], *len, *post_len, 100 - 100. * *post_len / (*len - 1));
//free(pi_wraps), free(work);
}
static void half_band_filter_init(rate_shared_t p, int which,
int num_taps, double[] h, double Fp, double att, int multiplier,
double phase, bool allow_aliasing)
{
dft_filter_t f = p.half_band[which];
int dft_length, i;
if (f.num_taps != 0)
return;
if (h != null)
{
dft_length = lsx_set_dft_length(num_taps);
f.coefs = new double[dft_length];
for (i = 0; i < num_taps; ++i)
f.coefs[(i + dft_length - num_taps + 1) & (dft_length - 1)]
= h[Math.Abs(num_taps / 2 - i)] / dft_length * 2 * multiplier;
f.post_peak = num_taps / 2;
}
else
{
h = lsx_design_lpf(Fp, 1.0, 2.0, allow_aliasing, att, ref num_taps, 0);
if (phase != 50)
lsx_fir_to_phase(ref h, ref num_taps, ref f.post_peak, phase, p.info);
else f.post_peak = num_taps / 2;
dft_length = lsx_set_dft_length(num_taps);
f.coefs = new double[dft_length];
for (i = 0; i < num_taps; ++i)
f.coefs[(i + dft_length - num_taps + 1) & (dft_length - 1)]
= h[i] / dft_length * 2 * multiplier;
}
//assert(num_taps & 1);
f.num_taps = num_taps;
f.dft_length = dft_length;
//lsx_debug("fir_len=%i dft_length=%i Fp=%g att=%g mult=%i",
//num_taps, dft_length, Fp, att, multiplier);
SOXFft.safe_rdft(dft_length, 1, f.coefs, p.info);
}
static double[] prepare_coefs(double[] coefs, int num_coefs,
int num_phases, int interp_order, int multiplier)
{
int i, j, length = num_coefs * num_phases;
double[] result = new double[length * (interp_order + 1)];
double fm1 = coefs[0], f1 = 0, f2 = 0;
for (i = num_coefs - 1; i >= 0; --i)
for (j = num_phases - 1; j >= 0; --j)
{
double f0 = fm1, b = 0, c = 0, d = 0; /* = 0 to kill compiler warning */
int pos = i * num_phases + j - 1;
fm1 = (pos > 0 ? coefs[pos - 1] : 0) * multiplier;
switch (interp_order)
{
case 1: b = f1 - f0; break;
case 2: b = f1 - (.5 * (f2 + f0) - f1) - f0; c = .5 * (f2 + f0) - f1; break;
case 3: c = .5 * (f1 + fm1) - f0; d = (1 / 6.0) * (f2 - f1 + fm1 - f0 - 4 * c); b = f1 - f0 - d - c; break;
default: /*if (interp_order) assert(0); */ break;
}
result[poly_fir1_t.coef_idx(interp_order, num_coefs, j, 0, num_coefs - 1 - i)] = f0;
if (interp_order > 0) result[poly_fir1_t.coef_idx(interp_order, num_coefs, j, 1, num_coefs - 1 - i)] = b;
if (interp_order > 1) result[poly_fir1_t.coef_idx(interp_order, num_coefs, j, 2, num_coefs - 1 - i)] = c;
if (interp_order > 2) result[poly_fir1_t.coef_idx(interp_order, num_coefs, j, 3, num_coefs - 1 - i)] = d;
f2 = f1;
f1 = f0;
}
return result;
}
public int output(ref int n)
{
fifo_t fifo = stages[output_stage_num].fifo;
samples_out += (n = Math.Min(n, fifo.occupancy));
while (samples_in > in_samplerate && samples_out > out_samplerate)
{
samples_in -= in_samplerate;
samples_out -= out_samplerate;
}
int off = fifo.read(n, null);
return off;
}
public unsafe void output(float[,] samples, int channel, ref int n)
{
int offs = output(ref n);
//if (samples != null)
// Buffer.BlockCopy(fifo.data, off, samples, 0, n * sizeof(double));
fixed (byte* psamples = &stages[output_stage_num].fifo.data[offs])
{
double* s = (double*)psamples;
for (int i = 0; i < n; ++i)
samples[i, channel] = Math.Abs(s[i]) < 1.0 / 0x100000000 ? 0.0f : (float)s[i];
}
}
public unsafe int input(int n)
{
samples_in += n;
while (samples_in > in_samplerate && samples_out > out_samplerate)
{
samples_in -= in_samplerate;
samples_out -= out_samplerate;
}
return stages[input_stage_num].fifo.reserve(n);
}
public unsafe void input(float[,] samples, int channel, int n)
{
int offs = input(n);
fixed (byte* psamples = &stages[input_stage_num].fifo.data[offs])
{
double* s = (double*)psamples;
for (int i = 0; i < n; ++i)
s[i] = samples[i, channel];
}
}
public unsafe void process()
{
for (int i = input_stage_num; i < output_stage_num; ++i)
stages[i].fn(stages[i], stages[i + 1].fifo);
}
public rate_t(int in_samplerate, int out_samplerate, rate_shared_t shared, double factor,
SOXResamplerQuality quality, int interp_order, double phase, double bandwidth,
bool allow_aliasing)
{
this.in_samplerate = in_samplerate;
this.out_samplerate = out_samplerate;
int i, mult, divisor = 1;
//assert(factor > 0);
this.factor = factor;
if (quality < SOXResamplerQuality.Quick || quality > SOXResamplerQuality.Very)
quality = SOXResamplerQuality.High;
if (quality != SOXResamplerQuality.Quick)
{
const int max_divisor = 2048; /* Keep coef table size ~< 500kb */
const double epsilon = 4 / MULT32; /* Scaled to half this at max_divisor */
this.upsample = this.factor < 1;
this.level = 0;
for (int fi = (int)factor >> 1; fi != 0; fi >>= 1)
++this.level;/* log base 2 */
factor /= 1 << (this.level + (this.upsample ? 0 : 1));
for (i = 2; i <= max_divisor && divisor == 1; ++i)
{
double try_d = factor * i;
int itry = (int)(try_d + .5);
if (Math.Abs(itry - try_d) < itry * epsilon * (1 - (.5 / max_divisor) * i))
{
if (itry == i) /* Rounded to 1:1? */
{
factor = 1;
divisor = 2;
this.upsample = false;
}
else
{
factor = itry;
divisor = i;
}
}
}
}
this.stages = new stage_t[this.level + 4]; // offset by 1!!! + 3?
for (i = 0; i < this.level + 4; ++i)
this.stages[i] = new stage_t(shared);
this.pre_stage = this.stages[0];
this.last_stage = this.stages[this.level + 1];
this.post_stage = this.stages[this.level + 2];
this.last_stage.step = (long)(factor * MULT32 + .5);
this.last_stage.out_in_ratio = MULT32 * divisor / this.last_stage.step;
//if (divisor != 1)
// assert(!last_stage.step.parts.fraction);
//else if (quality != Quick)
// assert(!last_stage.step.parts.integer);
//lsx_debug("i/o=%g; %.9g:%i @ level %i", this.factor, factor, divisor, this.level);
mult = 1 + (this.upsample ? 1 : 0); /* Compensate for zero-stuffing in double_sample */
this.input_stage_num = this.upsample ? 0 : 1;
this.output_stage_num = this.level + 1;
if (quality == SOXResamplerQuality.Quick)
{
++this.output_stage_num;
last_stage.fn = cubic_spline;
last_stage.pre_post = Math.Max(3, (int)(last_stage.step >> 32));
last_stage.preload = last_stage.pre = 1;
}
else if (last_stage.out_in_ratio != 2 || (this.upsample && quality == SOXResamplerQuality.Low))
{
int n = (this.upsample ? 4 : 0) + range_limit((int)quality, (int)SOXResamplerQuality.Medium, (int)SOXResamplerQuality.Very) - (int)SOXResamplerQuality.Medium;
if (interp_order < 0)
interp_order = quality > SOXResamplerQuality.High ? 1 : 0;
interp_order = divisor == 1 ? 1 + interp_order : 0;
last_stage.divisor = divisor;
this.output_stage_num += 2;
if (this.upsample && quality == SOXResamplerQuality.Low)
{
mult = 1;
++this.input_stage_num;
--this.output_stage_num;
--n;
}
poly_fir_t f = poly_firs[n];
poly_fir1_t f1 = f.interp[interp_order];
if (last_stage.shared.poly_fir_coefs == null)
{
int num_taps = 0, phases = divisor == 1 ? (1 << f1.phase_bits) : divisor;
double[] coefs = lsx_design_lpf(
f.pass, f.stop, 1.0, false, f.att, ref num_taps, phases);
//assert(num_taps == f->num_coefs * phases - 1);
last_stage.shared.poly_fir_coefs =
prepare_coefs(coefs, f.num_coefs, phases, interp_order, mult);
//lsx_debug("fir_len=%i phases=%i coef_interp=%i mult=%i size=%s",
// f->num_coefs, phases, interp_order, mult,
// lsx_sigfigs3((num_taps +1.) * (interp_order + 1) * sizeof(double)));
//free(coefs);
}
last_stage.fn = f1.fn;
last_stage.pre_post = f.num_coefs - 1;
last_stage.pre = 0;
last_stage.preload = last_stage.pre_post >> 1;
mult = 1;
}
if (quality > SOXResamplerQuality.Low)
{
// typedef struct {int len; double const * h; double bw, a;} filter_t;
// static filter_t const filters[] = {
// {2 * array_length(half_fir_coefs_low) - 1, half_fir_coefs_low, 0,0},
// {0, NULL, .931, 110}, {0, NULL, .931, 125}, {0, NULL, .931, 170}};
// filter_t const * f = &filters[quality - Low];
int[] fa = new int[] { 0, 110, 125, 170 };
double[] fbw = new double[] { 0.0, 0.931, 0.931, 0.931 };
double a = fa[quality - SOXResamplerQuality.Low];
double att = allow_aliasing ? (34.0 / 33) * a : a; /* negate att degrade */
double bw = bandwidth != 0 ? 1 - (1 - bandwidth / 100) / LSX_TO_3dB : fbw[quality - SOXResamplerQuality.Low];
double min = 1 - (allow_aliasing ? LSX_MAX_TBW0A : LSX_MAX_TBW0) / 100;
// assert((size_t)(quality - Low) < array_length(filters));
half_band_filter_init(shared, this.upsample ? 1 : 0, 0, null, bw, att, mult, phase, allow_aliasing);
if (this.upsample)
{
pre_stage.fn = double_sample; /* Finish off setting up pre-stage */
pre_stage.preload = shared.half_band[1].post_peak >> 1;
/* Start setting up post-stage; TODO don't use dft for short filters */
if ((1 - this.factor) / (1 - bw) > 2)
half_band_filter_init(shared, 0, 0, null, Math.Max(this.factor, min), att, 1, phase, allow_aliasing);
else shared.half_band[0] = shared.half_band[1];
}
else if (this.level > 0 && this.output_stage_num > this.level)
{
double pass = bw * divisor / factor / 2;
if ((1 - pass) / (1 - bw) > 2)
half_band_filter_init(shared, 1, 0, null, Math.Max(pass, min), att, 1, phase, allow_aliasing);
}
post_stage.fn = half_sample;
post_stage.preload = shared.half_band[0].post_peak;
}
else if (quality == SOXResamplerQuality.Low && !this.upsample)
{ /* dft is slower here, so */
post_stage.fn = half_sample_low; /* use normal convolution */
post_stage.pre_post = 2 * (half_fir_coefs_low.Length - 1);
post_stage.preload = post_stage.pre = post_stage.pre_post >> 1;
}
if (this.level > 0)
{
stage_t s = this.stages[this.level];
if (shared.half_band[1].num_taps != 0)
{
s.fn = half_sample;
s.preload = shared.half_band[1].post_peak;
s.which = 1;
}
else
{
//*s = post_stage
this.stages[this.level] = post_stage;
// ?????????
this.stages[this.level + 2] = s;
}
}
for (i = this.input_stage_num; i <= this.output_stage_num; ++i)
{
stage_t s = this.stages[i];
if (i > 0 && i < this.level)
{
s.fn = half_sample_25;
s.pre_post = 2 * (half_fir_coefs_25.Length - 1);
s.preload = s.pre = s.pre_post >> 1;
}
s.fifo = new fifo_t(sizeof(double));
s.fifo.reserve(s.preload);
// memset(fifo_reserve(&s->fifo, s->preload), 0, sizeof(double)*s->preload);
// if (i < this.output_stage_num)
// lsx_debug("stage=%-3ipre_post=%-3ipre=%-3ipreload=%i",
// i, s->pre_post, s->pre, s->preload);
}
}
}
}

View File

@@ -0,0 +1,4 @@
namespace CUETools.DSP.Resampler.Internal
{
delegate void stage_fn_t(stage_t input, fifo_t output);
}

View File

@@ -0,0 +1,39 @@
using System;
namespace CUETools.DSP.Resampler.Internal
{
class stage_t
{
internal rate_shared_t shared;
internal fifo_t fifo;
internal int pre; /* Number of past samples to store */
internal int pre_post; /* pre + number of future samples to store */
internal int preload; /* Number of zero samples to pre-load the fifo */
internal int which; /* Which of the 2 half-band filters to use */
internal stage_fn_t fn;
internal long at, step; /* For poly_fir & spline: */
internal int divisor; /* For step: > 1 for rational; 1 otherwise */
internal double out_in_ratio;
internal stage_t(rate_shared_t shared)
{
this.shared = shared;
}
internal int offset
{
get
{
return fifo.offset + pre * sizeof(double);
}
}
internal int occupancy
{
get
{
return Math.Max(0, fifo.occupancy - pre_post);
}
}
}
}

View File

@@ -0,0 +1,16 @@
namespace CUETools.DSP.Resampler.Internal
{
class thread_fft_cache
{
internal int[] lsx_fft_br;
internal double[] lsx_fft_sc;
internal int fft_len;
internal thread_fft_cache()
{
fft_len = 0;
lsx_fft_br = null;
lsx_fft_sc = null;
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,11 @@
namespace CUETools.DSP.Resampler
{
public struct SOXResamplerConfig
{
public double phase;
public double bandwidth;
public bool allow_aliasing;
public SOXResamplerQuality quality;
/*double coef_interp; -- interpolation...*/
}
}

View File

@@ -0,0 +1,12 @@
namespace CUETools.DSP.Resampler
{
public enum SOXResamplerQuality
{
Default = -1,
Quick = 0,
Low = 1,
Medium = 2,
High = 3,
Very = 4
}
}