mirror of
https://github.com/claunia/cuetools.net.git
synced 2025-12-16 18:14:25 +00:00
experiment with Latice LPC algorithm
This commit is contained in:
@@ -312,7 +312,7 @@ extern "C" __global__ void cudaComputeLPCLattice(
|
||||
((int*)&shared.task)[threadIdx.x] = ((int*)(tasks + taskCount * blockIdx.y))[threadIdx.x];
|
||||
__syncthreads();
|
||||
|
||||
// F = samples; B = samples;
|
||||
// F = samples; B = samples
|
||||
shared.F[threadIdx.x] = threadIdx.x < frameSize ? samples[shared.task.samplesOffs + threadIdx.x] >> shared.task.wbits : 0.0f;
|
||||
shared.F[threadIdx.x + 256] = threadIdx.x + 256 < frameSize ? samples[shared.task.samplesOffs + threadIdx.x + 256] >> shared.task.wbits : 0.0f;
|
||||
shared.B[threadIdx.x] = shared.F[threadIdx.x];
|
||||
@@ -325,38 +325,33 @@ extern "C" __global__ void cudaComputeLPCLattice(
|
||||
SUM256(shared.tmp,threadIdx.x);
|
||||
__syncthreads();
|
||||
float DEN = shared.tmp[0];
|
||||
|
||||
// PE = [DEN./nn,zeros(lr,max_order)];
|
||||
if (threadIdx.x < 32)
|
||||
shared.PE[threadIdx.x+1] = 0.0f;
|
||||
if (threadIdx.x == 0)
|
||||
shared.PE[0] = DEN / frameSize;
|
||||
__syncthreads();
|
||||
|
||||
for (int order = 1; order <= max_order; order++)
|
||||
{
|
||||
// [TMP,nn] = sumskipnan(F(:,order+1:frameSize).*B(:,1:frameSize-order),2);
|
||||
// reff = F(order+1:frameSize) * B(1:frameSize-order)' / DEN
|
||||
shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * shared.F[threadIdx.x + order]*shared.B[threadIdx.x]
|
||||
+ (threadIdx.x + 256 + order < frameSize) * shared.F[threadIdx.x + 256 + order]*shared.B[threadIdx.x + 256];
|
||||
__syncthreads();
|
||||
SUM256(shared.tmp, threadIdx.x);
|
||||
SUM256(shared.tmp, threadIdx.x);
|
||||
__syncthreads();
|
||||
float reff = shared.tmp[0] / DEN;
|
||||
__syncthreads();
|
||||
|
||||
// arp(:,order) = TMP./DEN; %Burg
|
||||
// rc(:,order) = arp(:,order);
|
||||
// arp(order) = rc(order) = reff
|
||||
if (threadIdx.x == 0)
|
||||
shared.arp[order - 1] = shared.rc[order - 1] = reff;
|
||||
|
||||
// Levinson-Durbin recursion
|
||||
// arp(:,1:order-1) = arp(:,1:order-1) - arp(:,order*ones(order-1,1)).*arp(:,order-1:-1:1);
|
||||
// arp(1:order-1) = arp(1:order-1) - reff * arp(order-1:-1:1)
|
||||
if (threadIdx.x < 32)
|
||||
shared.arp[threadIdx.x] -= (threadIdx.x < order - 1) * __fmul_rz(reff, shared.arp[order - 2 - threadIdx.x]);
|
||||
|
||||
// tmp = F(:,order+1:frameSize) - rc(:,order*ones(1,frameSize-order)).*B(:,1:frameSize-order);
|
||||
// B(:,1:frameSize-order) = B(:,1:frameSize-order) - rc(:,order*ones(1,frameSize-order)).*F(:,order+1:frameSize);
|
||||
// F(:,order+1:frameSize) = tmp;
|
||||
// F1 = F(order+1:frameSize) - reff * B(1:frameSize-order)
|
||||
// B(1:frameSize-order) = B(1:frameSize-order) - reff * F(order+1:frameSize)
|
||||
// F(order+1:frameSize) = F1
|
||||
if (threadIdx.x + order < frameSize)
|
||||
{
|
||||
float f = shared.F[threadIdx.x + order];
|
||||
@@ -371,25 +366,9 @@ extern "C" __global__ void cudaComputeLPCLattice(
|
||||
shared.F[threadIdx.x + order + 256] = f - reff * b;
|
||||
shared.B[threadIdx.x + 256] = b - reff * f;
|
||||
}
|
||||
// [PE(:,order+1),nn] = sumskipnan([F(:,order+1:frameSize).^2,B(:,1:frameSize-order).^2],2);
|
||||
shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * (FSQR(shared.F[threadIdx.x + order]) + FSQR(shared.B[threadIdx.x]))
|
||||
+ (threadIdx.x + 256 + order < frameSize) * (FSQR(shared.F[threadIdx.x + 256 + order]) + FSQR(shared.B[threadIdx.x + 256]));
|
||||
__syncthreads();
|
||||
SUM256(shared.tmp, threadIdx.x);
|
||||
__syncthreads();
|
||||
if (threadIdx.x == 0)
|
||||
shared.PE[order] = shared.tmp[0];
|
||||
__syncthreads();
|
||||
|
||||
// BURG:
|
||||
// DEN = PE(:,order+1);
|
||||
//DEN = PE[order];
|
||||
|
||||
// GEOL:
|
||||
//[f,nf] = sumskipnan(F(:,order+1:frameSize).^2,2);
|
||||
//[b,nb] = sumskipnan(B(:,1:frameSize-order).^2,2);
|
||||
//DEN = sqrt(b.*f);
|
||||
|
||||
// f = F(order+1:frameSize) * F(order+1:frameSize)'
|
||||
shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * FSQR(shared.F[threadIdx.x + order])
|
||||
+ (threadIdx.x + 256 + order < frameSize) * FSQR(shared.F[threadIdx.x + 256 + order]);
|
||||
__syncthreads();
|
||||
@@ -398,6 +377,7 @@ extern "C" __global__ void cudaComputeLPCLattice(
|
||||
float f = shared.tmp[0];
|
||||
__syncthreads();
|
||||
|
||||
// b = B(1:frameSize-order) * B(1:frameSize-order)'
|
||||
shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * FSQR(shared.B[threadIdx.x])
|
||||
+ (threadIdx.x + 256 + order < frameSize) * FSQR(shared.B[threadIdx.x + 256]);
|
||||
__syncthreads();
|
||||
@@ -406,11 +386,10 @@ extern "C" __global__ void cudaComputeLPCLattice(
|
||||
float b = shared.tmp[0];
|
||||
__syncthreads();
|
||||
|
||||
DEN = sqrtf(f * b);
|
||||
|
||||
// PE(:,order+1) = PE(:,order+1)./nn; % estimate of covariance
|
||||
//DEN = f + b; // Burg method
|
||||
DEN = sqrtf(f * b); // Geometric lattice
|
||||
if (threadIdx.x == 0)
|
||||
shared.PE[order] /= 2 * (frameSize - order);
|
||||
shared.PE[order] = (f + b) / 2 / (frameSize - order);
|
||||
|
||||
// Quantization
|
||||
if (threadIdx.x < 32)
|
||||
|
||||
Reference in New Issue
Block a user