mirror of
https://github.com/claunia/cuetools.net.git
synced 2025-12-16 18:14:25 +00:00
experiment with Burg LPC method
This commit is contained in:
@@ -281,11 +281,10 @@ extern "C" __global__ void cudaComputeLPC(
|
||||
}
|
||||
|
||||
#define SUM32(buf,tid) buf[tid] += buf[tid + 16]; buf[tid] += buf[tid + 8]; buf[tid] += buf[tid + 4]; buf[tid] += buf[tid + 2]; buf[tid] += buf[tid + 1];
|
||||
|
||||
#define SUM256(buf,tid) if (tid < 128) buf[tid] += buf[tid + 128]; __syncthreads(); \
|
||||
if (tid < 64) buf[tid] += buf[tid + 64]; __syncthreads(); \
|
||||
if (tid < 32) buf[tid] += buf[tid + 32]; __syncthreads(); \
|
||||
if (tid < 32) SUM32(buf,tid)
|
||||
#define SUM64(buf,tid) if (tid < 32) buf[tid] += buf[tid + 32]; __syncthreads(); if (tid < 32) SUM32(buf,tid)
|
||||
#define SUM128(buf,tid) if (tid < 64) buf[tid] += buf[tid + 64]; __syncthreads(); SUM64(buf,tid)
|
||||
#define SUM256(buf,tid) if (tid < 128) buf[tid] += buf[tid + 128]; __syncthreads(); SUM128(buf,tid)
|
||||
#define SUM512(buf,tid) if (tid < 256) buf[tid] += buf[tid + 256]; __syncthreads(); SUM256(buf,tid)
|
||||
|
||||
#define FSQR(s) ((s)*(s))
|
||||
|
||||
@@ -299,14 +298,14 @@ extern "C" __global__ void cudaComputeLPCLattice(
|
||||
{
|
||||
__shared__ struct {
|
||||
encodeResidualTaskStruct task;
|
||||
float F[512];
|
||||
float B[512];
|
||||
volatile float F[512];
|
||||
volatile float B[512];
|
||||
volatile float tmp[256];
|
||||
volatile float arp[32];
|
||||
volatile float rc[32];
|
||||
volatile int bits[32];
|
||||
volatile float PE[33];
|
||||
volatile float DEN;
|
||||
volatile float DEN, reff;
|
||||
} shared;
|
||||
|
||||
// fetch task data
|
||||
@@ -325,7 +324,6 @@ extern "C" __global__ void cudaComputeLPCLattice(
|
||||
shared.tmp[threadIdx.x] = FSQR(shared.F[threadIdx.x]) + FSQR(shared.F[threadIdx.x + 256]);
|
||||
__syncthreads();
|
||||
SUM256(shared.tmp,threadIdx.x);
|
||||
__syncthreads();
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
shared.DEN = shared.tmp[0];
|
||||
@@ -336,52 +334,48 @@ extern "C" __global__ void cudaComputeLPCLattice(
|
||||
for (int order = 1; order <= max_order; order++)
|
||||
{
|
||||
// reff = F(order+1:frameSize) * B(1:frameSize-order)' / DEN
|
||||
shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * shared.F[threadIdx.x + order]*shared.B[threadIdx.x]
|
||||
+ (threadIdx.x + 256 + order < frameSize) * shared.F[threadIdx.x + 256 + order]*shared.B[threadIdx.x + 256];
|
||||
float f1 = (threadIdx.x + order < frameSize) * shared.F[order + threadIdx.x];
|
||||
float f2 = (threadIdx.x + 256 + order < frameSize) * shared.F[order + threadIdx.x + 256];
|
||||
shared.tmp[threadIdx.x] = f1 * shared.B[threadIdx.x] + f2 * shared.B[threadIdx.x + 256];
|
||||
__syncthreads();
|
||||
SUM256(shared.tmp, threadIdx.x);
|
||||
__syncthreads();
|
||||
float reff = shared.tmp[0] / shared.DEN;
|
||||
if (threadIdx.x == 0)
|
||||
shared.reff = shared.tmp[0] / shared.DEN;
|
||||
__syncthreads();
|
||||
|
||||
// arp(order) = rc(order) = reff
|
||||
if (threadIdx.x == 0)
|
||||
shared.arp[order - 1] = shared.rc[order - 1] = reff;
|
||||
shared.arp[order - 1] = shared.rc[order - 1] = shared.reff;
|
||||
|
||||
// Levinson-Durbin recursion
|
||||
// arp(1:order-1) = arp(1:order-1) - reff * arp(order-1:-1:1)
|
||||
if (threadIdx.x < 32)
|
||||
shared.arp[threadIdx.x] -= (threadIdx.x < order - 1) * __fmul_rz(reff, shared.arp[order - 2 - threadIdx.x]);
|
||||
shared.arp[threadIdx.x] -= (threadIdx.x < order - 1) * __fmul_rz(shared.reff, shared.arp[order - 2 - threadIdx.x]);
|
||||
|
||||
// F1 = F(order+1:frameSize) - reff * B(1:frameSize-order)
|
||||
// B(1:frameSize-order) = B(1:frameSize-order) - reff * F(order+1:frameSize)
|
||||
// F(order+1:frameSize) = F1
|
||||
for (int pos = 0; pos < frameSize - order; pos += 256)
|
||||
if (threadIdx.x + order + pos < frameSize)
|
||||
{
|
||||
float f = shared.F[threadIdx.x + order + pos];
|
||||
shared.F[threadIdx.x + order + pos] -= reff * shared.B[threadIdx.x + pos];
|
||||
shared.B[threadIdx.x + pos] -= reff * f;
|
||||
}
|
||||
if (threadIdx.x < frameSize - order)
|
||||
{
|
||||
shared.F[order + threadIdx.x] -= shared.reff * shared.B[threadIdx.x];
|
||||
shared.B[threadIdx.x] -= shared.reff * f1;
|
||||
}
|
||||
if (threadIdx.x + 256 < frameSize - order)
|
||||
{
|
||||
shared.F[order + threadIdx.x + 256] -= shared.reff * shared.B[threadIdx.x + 256];
|
||||
shared.B[threadIdx.x + 256] -= shared.reff * f2;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// f = F(order+1:frameSize) * F(order+1:frameSize)'
|
||||
// b = B(1:frameSize-order) * B(1:frameSize-order)'
|
||||
shared.tmp[threadIdx.x] = 0;
|
||||
for (int pos = (threadIdx.x & 127); pos < frameSize - order + (threadIdx.x & 127); pos += 128)
|
||||
shared.tmp[threadIdx.x] += (pos < frameSize - order) *
|
||||
(threadIdx.x < 128 ? FSQR(shared.F[pos + order]) : FSQR(shared.B[pos]));
|
||||
// DEN = F(order+1:frameSize) * F(order+1:frameSize)' + B(1:frameSize-order) * B(1:frameSize-order)' (BURG)
|
||||
shared.tmp[threadIdx.x] = (threadIdx.x < frameSize - order) * (FSQR(shared.F[threadIdx.x + order]) + FSQR(shared.B[threadIdx.x]))
|
||||
+ (threadIdx.x + 256 < frameSize - order) * (FSQR(shared.F[threadIdx.x + 256 + order]) + FSQR(shared.B[threadIdx.x + 256]));
|
||||
__syncthreads();
|
||||
if ((threadIdx.x & 64) == 0) shared.tmp[threadIdx.x] += shared.tmp[threadIdx.x + 64]; __syncthreads();
|
||||
if ((threadIdx.x & 96) == 0) shared.tmp[threadIdx.x] += shared.tmp[threadIdx.x + 32]; __syncthreads();
|
||||
if ((threadIdx.x & 96) == 0) SUM32(shared.tmp, threadIdx.x)
|
||||
__syncthreads();
|
||||
|
||||
SUM256(shared.tmp, threadIdx.x);
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
//DEN = f + b; // Burg method
|
||||
shared.DEN = sqrtf(shared.tmp[0] * shared.tmp[128]); // Geometric lattice: DEN = sqrtf(f*b)
|
||||
shared.PE[order] = (shared.tmp[0] + shared.tmp[128]) / 2 / (frameSize - order);
|
||||
shared.DEN = shared.tmp[0] / 2;
|
||||
shared.PE[order] = shared.tmp[0] / 2 / (frameSize - order);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
@@ -417,6 +411,135 @@ extern "C" __global__ void cudaComputeLPCLattice(
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ void cudaComputeLPCLattice512(
|
||||
encodeResidualTaskStruct *tasks,
|
||||
const int taskCount, // tasks per block
|
||||
const int *samples,
|
||||
const int frameSize, // <= 512
|
||||
const int max_order // should be <= 32
|
||||
)
|
||||
{
|
||||
__shared__ struct {
|
||||
encodeResidualTaskStruct task;
|
||||
float F[512];
|
||||
float B[512];
|
||||
float lpc[32][32];
|
||||
volatile float tmp[512];
|
||||
volatile float arp[32];
|
||||
volatile float rc[32];
|
||||
volatile int bits[512];
|
||||
volatile float f, b;
|
||||
} shared;
|
||||
|
||||
// fetch task data
|
||||
if (threadIdx.x < sizeof(shared.task) / sizeof(int))
|
||||
((int*)&shared.task)[threadIdx.x] = ((int*)(tasks + taskCount * blockIdx.y))[threadIdx.x];
|
||||
__syncthreads();
|
||||
|
||||
// F = samples; B = samples
|
||||
shared.F[threadIdx.x] = threadIdx.x < frameSize ? samples[shared.task.samplesOffs + threadIdx.x] >> shared.task.wbits : 0.0f;
|
||||
shared.B[threadIdx.x] = shared.F[threadIdx.x];
|
||||
__syncthreads();
|
||||
|
||||
// DEN = F*F'
|
||||
shared.tmp[threadIdx.x] = FSQR(shared.F[threadIdx.x]);
|
||||
__syncthreads();
|
||||
SUM512(shared.tmp,threadIdx.x);
|
||||
__syncthreads();
|
||||
if (threadIdx.x == 0)
|
||||
shared.f = shared.b = shared.tmp[0];
|
||||
// if (threadIdx.x == 0)
|
||||
//shared.PE[0] = DEN / frameSize;
|
||||
__syncthreads();
|
||||
|
||||
for (int order = 1; order <= max_order; order++)
|
||||
{
|
||||
// reff = F(order+1:frameSize) * B(1:frameSize-order)' / DEN
|
||||
shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * shared.F[threadIdx.x + order] * shared.B[threadIdx.x];
|
||||
__syncthreads();
|
||||
SUM512(shared.tmp, threadIdx.x);
|
||||
__syncthreads();
|
||||
|
||||
//float reff = shared.tmp[0] * rsqrtf(shared.b * shared.f); // Geometric lattice
|
||||
float reff = shared.tmp[0] * 2 / (shared.b + shared.f); // Burg method
|
||||
__syncthreads();
|
||||
|
||||
// Levinson-Durbin recursion
|
||||
// arp(order) = rc(order) = reff
|
||||
// arp(1:order-1) = arp(1:order-1) - reff * arp(order-1:-1:1)
|
||||
if (threadIdx.x == 32)
|
||||
shared.arp[order - 1] = shared.rc[order - 1] = reff;
|
||||
if (threadIdx.x < 32)
|
||||
shared.arp[threadIdx.x] -= (threadIdx.x < order - 1) * __fmul_rz(reff, shared.arp[order - 2 - threadIdx.x]);
|
||||
|
||||
// F1 = F(order+1:frameSize) - reff * B(1:frameSize-order)
|
||||
// B(1:frameSize-order) = B(1:frameSize-order) - reff * F(order+1:frameSize)
|
||||
// F(order+1:frameSize) = F1
|
||||
if (threadIdx.x < frameSize - order)
|
||||
{
|
||||
float f;// = shared.F[threadIdx.x + order];
|
||||
shared.F[threadIdx.x + order] = (f = shared.F[threadIdx.x + order]) - reff * shared.B[threadIdx.x];
|
||||
shared.B[threadIdx.x] -= reff * f;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// f = F(order+1:frameSize) * F(order+1:frameSize)'
|
||||
// b = B(1:frameSize-order) * B(1:frameSize-order)'
|
||||
shared.tmp[threadIdx.x] = (threadIdx.x < frameSize - order) * FSQR(shared.F[threadIdx.x + order]);
|
||||
__syncthreads();
|
||||
SUM512(shared.tmp, threadIdx.x);
|
||||
__syncthreads();
|
||||
if (threadIdx.x == 0)
|
||||
shared.f = shared.tmp[0];
|
||||
__syncthreads();
|
||||
|
||||
shared.tmp[threadIdx.x] = (threadIdx.x < frameSize - order) * FSQR(shared.B[threadIdx.x]);
|
||||
__syncthreads();
|
||||
SUM512(shared.tmp, threadIdx.x);
|
||||
__syncthreads();
|
||||
if (threadIdx.x == 0)
|
||||
shared.b = shared.tmp[0];
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < 32)
|
||||
shared.lpc[order - 1][threadIdx.x] = shared.arp[threadIdx.x];
|
||||
|
||||
//if (threadIdx.x == 0)
|
||||
// shared.PE[order] = (shared.b + shared.f) / 2 / (frameSize - order);
|
||||
__syncthreads();
|
||||
}
|
||||
for (int order = 1 + (threadIdx.x >> 5); order <= max_order; order += 16)
|
||||
{
|
||||
// Quantization
|
||||
int cn = threadIdx.x & 31;
|
||||
int precision = 10 - (order > 8) - min(2, shared.task.wbits);
|
||||
int taskNo = taskCount * blockIdx.y + order - 1;
|
||||
shared.bits[threadIdx.x] = __mul24((33 - __clz(__float2int_rn(fabs(shared.lpc[order - 1][cn]) * (1 << 15))) - precision), cn < order);
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 16]);
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 8]);
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 4]);
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 2]);
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 1]);
|
||||
int sh = max(0,min(15, 15 - shared.bits[threadIdx.x - cn]));
|
||||
|
||||
// reverse coefs
|
||||
int coef = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(shared.lpc[order - 1][order - 1 - cn] * (1 << sh))));
|
||||
if (cn < order)
|
||||
tasks[taskNo].coefs[cn] = coef;
|
||||
if (cn == 0)
|
||||
tasks[taskNo].shift = sh;
|
||||
shared.bits[threadIdx.x] = 33 - max(__clz(coef),__clz(-1 ^ coef));
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 16]);
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 8]);
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 4]);
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 2]);
|
||||
shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 1]);
|
||||
int cbits = shared.bits[threadIdx.x - cn];
|
||||
if (cn == 0)
|
||||
tasks[taskNo].cbits = cbits;
|
||||
}
|
||||
}
|
||||
|
||||
// blockDim.x == 32
|
||||
// blockDim.y == 8
|
||||
extern "C" __global__ void cudaEstimateResidual(
|
||||
|
||||
Reference in New Issue
Block a user