experiment with Lattice LPC algorithm

This commit is contained in:
chudov
2009-09-26 23:36:22 +00:00
parent 9a5be99b41
commit 7f1e7e382a

View File

@@ -280,12 +280,13 @@ extern "C" __global__ void cudaComputeLPC(
}
}
#define SUM32(buf,tid) buf[tid] += buf[tid + 16]; buf[tid] += buf[tid + 8]; buf[tid] += buf[tid + 4]; buf[tid] += buf[tid + 2]; buf[tid] += buf[tid + 1];
#define SUM256(buf,tid) if (tid < 128) buf[tid] += buf[tid + 128]; __syncthreads(); \
if (tid < 64) buf[tid] += buf[tid + 64]; __syncthreads(); \
if (tid < 32) { \
buf[tid] += buf[tid + 32]; buf[tid] += buf[tid + 16]; buf[tid] += buf[tid + 8]; \
buf[tid] += buf[tid + 4]; buf[tid] += buf[tid + 2]; buf[tid] += buf[tid + 1]; \
}
if (tid < 64) buf[tid] += buf[tid + 64]; __syncthreads(); \
if (tid < 32) buf[tid] += buf[tid + 32]; __syncthreads(); \
if (tid < 32) SUM32(buf,tid)
#define FSQR(s) ((s)*(s))
extern "C" __global__ void cudaComputeLPCLattice(
@@ -298,13 +299,14 @@ extern "C" __global__ void cudaComputeLPCLattice(
{
__shared__ struct {
encodeResidualTaskStruct task;
volatile float F[512];
volatile float B[512];
float F[512];
float B[512];
volatile float tmp[256];
volatile float arp[32];
volatile float rc[32];
volatile int bits[32];
volatile float PE[33];
volatile float DEN;
} shared;
// fetch task data
@@ -324,9 +326,11 @@ extern "C" __global__ void cudaComputeLPCLattice(
__syncthreads();
SUM256(shared.tmp,threadIdx.x);
__syncthreads();
float DEN = shared.tmp[0];
if (threadIdx.x == 0)
shared.PE[0] = DEN / frameSize;
{
shared.DEN = shared.tmp[0];
shared.PE[0] = shared.tmp[0] / frameSize;
}
__syncthreads();
for (int order = 1; order <= max_order; order++)
@@ -337,7 +341,7 @@ extern "C" __global__ void cudaComputeLPCLattice(
__syncthreads();
SUM256(shared.tmp, threadIdx.x);
__syncthreads();
float reff = shared.tmp[0] / DEN;
float reff = shared.tmp[0] / shared.DEN;
__syncthreads();
// arp(order) = rc(order) = reff
@@ -352,44 +356,34 @@ extern "C" __global__ void cudaComputeLPCLattice(
// F1 = F(order+1:frameSize) - reff * B(1:frameSize-order)
// B(1:frameSize-order) = B(1:frameSize-order) - reff * F(order+1:frameSize)
// F(order+1:frameSize) = F1
if (threadIdx.x + order < frameSize)
{
float f = shared.F[threadIdx.x + order];
float b = shared.B[threadIdx.x];
shared.F[threadIdx.x + order] = f - reff * b;
shared.B[threadIdx.x] = b - reff * f;
}
if (threadIdx.x + order + 256 < frameSize)
{
float f = shared.F[threadIdx.x + order + 256];
float b = shared.B[threadIdx.x + 256];
shared.F[threadIdx.x + order + 256] = f - reff * b;
shared.B[threadIdx.x + 256] = b - reff * f;
}
for (int pos = 0; pos < frameSize - order; pos += 256)
if (threadIdx.x + order + pos < frameSize)
{
float f = shared.F[threadIdx.x + order + pos];
shared.F[threadIdx.x + order + pos] -= reff * shared.B[threadIdx.x + pos];
shared.B[threadIdx.x + pos] -= reff * f;
}
__syncthreads();
// f = F(order+1:frameSize) * F(order+1:frameSize)'
shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * FSQR(shared.F[threadIdx.x + order])
+ (threadIdx.x + 256 + order < frameSize) * FSQR(shared.F[threadIdx.x + 256 + order]);
__syncthreads();
SUM256(shared.tmp, threadIdx.x);
__syncthreads();
float f = shared.tmp[0];
__syncthreads();
// b = B(1:frameSize-order) * B(1:frameSize-order)'
shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * FSQR(shared.B[threadIdx.x])
+ (threadIdx.x + 256 + order < frameSize) * FSQR(shared.B[threadIdx.x + 256]);
shared.tmp[threadIdx.x] = 0;
for (int pos = (threadIdx.x & 127); pos < frameSize - order + (threadIdx.x & 127); pos += 128)
shared.tmp[threadIdx.x] += (pos < frameSize - order) *
(threadIdx.x < 128 ? FSQR(shared.F[pos + order]) : FSQR(shared.B[pos]));
__syncthreads();
SUM256(shared.tmp, threadIdx.x);
__syncthreads();
float b = shared.tmp[0];
if ((threadIdx.x & 64) == 0) shared.tmp[threadIdx.x] += shared.tmp[threadIdx.x + 64]; __syncthreads();
if ((threadIdx.x & 96) == 0) shared.tmp[threadIdx.x] += shared.tmp[threadIdx.x + 32]; __syncthreads();
if ((threadIdx.x & 96) == 0) SUM32(shared.tmp, threadIdx.x)
__syncthreads();
//DEN = f + b; // Burg method
DEN = sqrtf(f * b); // Geometric lattice
if (threadIdx.x == 0)
shared.PE[order] = (f + b) / 2 / (frameSize - order);
{
//DEN = f + b; // Burg method
shared.DEN = sqrtf(shared.tmp[0] * shared.tmp[128]); // Geometric lattice: DEN = sqrtf(f*b)
shared.PE[order] = (shared.tmp[0] + shared.tmp[128]) / 2 / (frameSize - order);
}
__syncthreads();
// Quantization
if (threadIdx.x < 32)