mirror of
https://github.com/TencentARC/GFPGAN.git
synced 2026-02-04 13:54:31 +00:00
Compare commits
28 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7552a7791c | ||
|
|
2eac203389 | ||
|
|
2f46d95254 | ||
|
|
bc5a5deb95 | ||
|
|
3fd33abc47 | ||
|
|
d226e86f6c | ||
|
|
bb2f916764 | ||
|
|
fe3beac9dc | ||
|
|
126c55c68d | ||
|
|
8d2447a2d9 | ||
|
|
af7569775d | ||
|
|
c6593e7221 | ||
|
|
7272e45887 | ||
|
|
3e27784b1b | ||
|
|
2c420ee565 | ||
|
|
8e7cf5d723 | ||
|
|
c541e97f83 | ||
|
|
86756cba65 | ||
|
|
a9a2e3ae15 | ||
|
|
9c3f2d62cb | ||
|
|
ccd30af837 | ||
|
|
7d657f26b6 | ||
|
|
c7ccc098a7 | ||
|
|
bc3f0c4d91 | ||
|
|
924ce473ab | ||
|
|
09a37ae7fd | ||
|
|
6c544b70e6 | ||
|
|
47983e1767 |
33
.github/workflows/no-response.yml
vendored
33
.github/workflows/no-response.yml
vendored
@@ -1,33 +0,0 @@
|
||||
name: No Response
|
||||
|
||||
# TODO: it seems not to work
|
||||
# Modified from: https://raw.githubusercontent.com/github/docs/main/.github/workflows/no-response.yaml
|
||||
|
||||
# **What it does**: Closes issues that don't have enough information to be actionable.
|
||||
# **Why we have it**: To remove the need for maintainers to remember to check back on issues periodically
|
||||
# to see if contributors have responded.
|
||||
# **Who does it impact**: Everyone that works on docs or docs-internal.
|
||||
|
||||
on:
|
||||
issue_comment:
|
||||
types: [created]
|
||||
|
||||
schedule:
|
||||
# Schedule for five minutes after the hour every hour
|
||||
- cron: '5 * * * *'
|
||||
|
||||
jobs:
|
||||
noResponse:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: lee-dohm/no-response@v0.5.0
|
||||
with:
|
||||
token: ${{ github.token }}
|
||||
closeComment: >
|
||||
This issue has been automatically closed because there has been no response
|
||||
to our request for more information from the original author. With only the
|
||||
information that is currently in the issue, we don't have enough information
|
||||
to take action. Please reach out if you have or find the answers we need so
|
||||
that we can investigate further.
|
||||
If you still have questions, please improve your description and re-open it.
|
||||
Thanks :-)
|
||||
41
.github/workflows/release.yml
vendored
Normal file
41
.github/workflows/release.yml
vendored
Normal file
@@ -0,0 +1,41 @@
|
||||
name: release
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- '*'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
permissions: write-all
|
||||
name: Create Release
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v2
|
||||
- name: Create Release
|
||||
id: create_release
|
||||
uses: actions/create-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
tag_name: ${{ github.ref }}
|
||||
release_name: GFPGAN ${{ github.ref }} Release Note
|
||||
body: |
|
||||
🚀 See you again 😸
|
||||
🚀Have a nice day 😸 and happy everyday 😃
|
||||
🚀 Long time no see ☄️
|
||||
|
||||
✨ **Highlights**
|
||||
✅ [Features] Support ...
|
||||
|
||||
🐛 **Bug Fixes**
|
||||
|
||||
🌴 **Improvements**
|
||||
|
||||
📢📢📢
|
||||
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/TencentARC/GFPGAN/master/assets/gfpgan_logo.png" height=150>
|
||||
</p>
|
||||
draft: true
|
||||
prerelease: false
|
||||
24
README.md
24
README.md
@@ -1,4 +1,13 @@
|
||||
# GFPGAN (CVPR 2021)
|
||||
<p align="center">
|
||||
<img src="assets/gfpgan_logo.png" height=130>
|
||||
</p>
|
||||
|
||||
## <div align="center"><b><a href="README.md">English</a> | <a href="README_CN.md">简体中文</a></b></div>
|
||||
|
||||
<div align="center">
|
||||
<!-- <a href="https://twitter.com/_Xintao_" style="text-decoration:none;">
|
||||
<img src="https://user-images.githubusercontent.com/17445847/187162058-c764ced6-952f-404b-ac85-ba95cce18e7b.png" width="4%" alt="" />
|
||||
</a> -->
|
||||
|
||||
[](https://github.com/TencentARC/GFPGAN/releases)
|
||||
[](https://pypi.org/project/gfpgan/)
|
||||
@@ -7,12 +16,15 @@
|
||||
[](https://github.com/TencentARC/GFPGAN/blob/master/LICENSE)
|
||||
[](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/pylint.yml)
|
||||
[](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/publish-pip.yml)
|
||||
</div>
|
||||
|
||||
1. :boom: **Updated** online demo: [](https://replicate.com/tencentarc/gfpgan). Here is the [backup](https://replicate.com/xinntao/gfpgan).
|
||||
1. :boom: **Updated** online demo: [](https://huggingface.co/spaces/Xintao/GFPGAN)
|
||||
1. [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) for GFPGAN <a href="https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>; (Another [Colab Demo](https://colab.research.google.com/drive/1Oa1WwKB4M4l1GmR7CtswDVgOCOeSLChA?usp=sharing) for the original paper model)
|
||||
2. Online demo: [Huggingface](https://huggingface.co/spaces/akhaliq/GFPGAN) (return only the cropped face)
|
||||
3. Online demo: [Replicate.ai](https://replicate.com/xinntao/gfpgan) (may need to sign in, return the whole image)
|
||||
|
||||
<!-- 3. Online demo: [Replicate.ai](https://replicate.com/xinntao/gfpgan) (may need to sign in, return the whole image)
|
||||
4. Online demo: [Baseten.co](https://app.baseten.co/applications/Q04Lz0d/operator_views/8qZG6Bg) (backed by GPU, returns the whole image)
|
||||
5. We provide a *clean* version of GFPGAN, which can run without CUDA extensions. So that it can run in **Windows** or on **CPU mode**.
|
||||
5. We provide a *clean* version of GFPGAN, which can run without CUDA extensions. So that it can run in **Windows** or on **CPU mode**. -->
|
||||
|
||||
> :rocket: **Thanks for your interest in our work. You may also want to check our new updates on the *tiny models* for *anime images and videos* in [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN/blob/master/docs/anime_video_model.md)** :blush:
|
||||
|
||||
@@ -23,7 +35,9 @@ It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g
|
||||
|
||||
:triangular_flag_on_post: **Updates**
|
||||
|
||||
- :fire::fire::white_check_mark: Add **[V1.3 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth)**, which produces **more natural** restoration results, and better results on *very low-quality* / *high-quality* inputs. See more in [Model zoo](#european_castle-model-zoo), [Comparisons.md](Comparisons.md)
|
||||
- :white_check_mark: Add [RestoreFormer](https://github.com/wzhouxiff/RestoreFormer) inference codes.
|
||||
- :white_check_mark: Add [V1.4 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth), which produces slightly more details and better identity than V1.3.
|
||||
- :white_check_mark: Add **[V1.3 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth)**, which produces **more natural** restoration results, and better results on *very low-quality* / *high-quality* inputs. See more in [Model zoo](#european_castle-model-zoo), [Comparisons.md](Comparisons.md)
|
||||
- :white_check_mark: Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/GFPGAN).
|
||||
- :white_check_mark: Support enhancing non-face regions (background) with [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
|
||||
- :white_check_mark: We provide a *clean* version of GFPGAN, which does not require CUDA extensions.
|
||||
|
||||
7
README_CN.md
Normal file
7
README_CN.md
Normal file
@@ -0,0 +1,7 @@
|
||||
<p align="center">
|
||||
<img src="assets/gfpgan_logo.png" height=130>
|
||||
</p>
|
||||
|
||||
## <div align="center"><b><a href="README.md">English</a> | <a href="README_CN.md">简体中文</a></b></div>
|
||||
|
||||
还未完工,欢迎贡献!
|
||||
BIN
assets/gfpgan_logo.png
Normal file
BIN
assets/gfpgan_logo.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 50 KiB |
22
cog.yaml
Normal file
22
cog.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
# This file is used for constructing replicate env
|
||||
image: "r8.im/tencentarc/gfpgan"
|
||||
|
||||
build:
|
||||
gpu: true
|
||||
python_version: "3.8"
|
||||
system_packages:
|
||||
- "libgl1-mesa-glx"
|
||||
- "libglib2.0-0"
|
||||
python_packages:
|
||||
- "torch==1.7.1"
|
||||
- "torchvision==0.8.2"
|
||||
- "numpy==1.21.1"
|
||||
- "lmdb==1.2.1"
|
||||
- "opencv-python==4.5.3.56"
|
||||
- "PyYAML==5.4.1"
|
||||
- "tqdm==4.62.2"
|
||||
- "yapf==0.31.0"
|
||||
- "basicsr==1.4.2"
|
||||
- "facexlib==0.2.5"
|
||||
|
||||
predict: "cog_predict.py:Predictor"
|
||||
161
cog_predict.py
Normal file
161
cog_predict.py
Normal file
@@ -0,0 +1,161 @@
|
||||
# flake8: noqa
|
||||
# This file is used for deploying replicate models
|
||||
# running: cog predict -i img=@inputs/whole_imgs/10045.png -i version='v1.4' -i scale=2
|
||||
# push: cog push r8.im/tencentarc/gfpgan
|
||||
# push (backup): cog push r8.im/xinntao/gfpgan
|
||||
|
||||
import os
|
||||
|
||||
os.system('python setup.py develop')
|
||||
os.system('pip install realesrgan')
|
||||
|
||||
import cv2
|
||||
import shutil
|
||||
import tempfile
|
||||
import torch
|
||||
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
||||
|
||||
from gfpgan import GFPGANer
|
||||
|
||||
try:
|
||||
from cog import BasePredictor, Input, Path
|
||||
from realesrgan.utils import RealESRGANer
|
||||
except Exception:
|
||||
print('please install cog and realesrgan package')
|
||||
|
||||
|
||||
class Predictor(BasePredictor):
|
||||
|
||||
def setup(self):
|
||||
os.makedirs('output', exist_ok=True)
|
||||
# download weights
|
||||
if not os.path.exists('gfpgan/weights/realesr-general-x4v3.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./gfpgan/weights'
|
||||
)
|
||||
if not os.path.exists('gfpgan/weights/GFPGANv1.2.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./gfpgan/weights')
|
||||
if not os.path.exists('gfpgan/weights/GFPGANv1.3.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./gfpgan/weights')
|
||||
if not os.path.exists('gfpgan/weights/GFPGANv1.4.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./gfpgan/weights')
|
||||
if not os.path.exists('gfpgan/weights/RestoreFormer.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P ./gfpgan/weights'
|
||||
)
|
||||
|
||||
# background enhancer with RealESRGAN
|
||||
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
||||
model_path = 'gfpgan/weights/realesr-general-x4v3.pth'
|
||||
half = True if torch.cuda.is_available() else False
|
||||
self.upsampler = RealESRGANer(
|
||||
scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
||||
|
||||
# Use GFPGAN for face enhancement
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/GFPGANv1.4.pth',
|
||||
upscale=2,
|
||||
arch='clean',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
self.current_version = 'v1.4'
|
||||
|
||||
def predict(
|
||||
self,
|
||||
img: Path = Input(description='Input'),
|
||||
version: str = Input(
|
||||
description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.',
|
||||
choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'],
|
||||
default='v1.4'),
|
||||
scale: float = Input(description='Rescaling factor', default=2),
|
||||
) -> Path:
|
||||
weight = 0.5
|
||||
print(img, version, scale, weight)
|
||||
try:
|
||||
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
||||
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
|
||||
if len(img.shape) == 3 and img.shape[2] == 4:
|
||||
img_mode = 'RGBA'
|
||||
elif len(img.shape) == 2:
|
||||
img_mode = None
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
else:
|
||||
img_mode = None
|
||||
|
||||
h, w = img.shape[0:2]
|
||||
if h < 300:
|
||||
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
||||
|
||||
if self.current_version != version:
|
||||
if version == 'v1.2':
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/GFPGANv1.2.pth',
|
||||
upscale=2,
|
||||
arch='clean',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
self.current_version = 'v1.2'
|
||||
elif version == 'v1.3':
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/GFPGANv1.3.pth',
|
||||
upscale=2,
|
||||
arch='clean',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
self.current_version = 'v1.3'
|
||||
elif version == 'v1.4':
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/GFPGANv1.4.pth',
|
||||
upscale=2,
|
||||
arch='clean',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
self.current_version = 'v1.4'
|
||||
elif version == 'RestoreFormer':
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/RestoreFormer.pth',
|
||||
upscale=2,
|
||||
arch='RestoreFormer',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
|
||||
try:
|
||||
_, _, output = self.face_enhancer.enhance(
|
||||
img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
||||
except RuntimeError as error:
|
||||
print('Error', error)
|
||||
|
||||
try:
|
||||
if scale != 2:
|
||||
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
||||
h, w = img.shape[0:2]
|
||||
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
||||
except Exception as error:
|
||||
print('wrong scale input.', error)
|
||||
|
||||
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
||||
extension = 'png'
|
||||
# save_path = f'output/out.{extension}'
|
||||
# cv2.imwrite(save_path, output)
|
||||
out_path = Path(tempfile.mkdtemp()) / f'out.{extension}'
|
||||
cv2.imwrite(str(out_path), output)
|
||||
except Exception as error:
|
||||
print('global exception: ', error)
|
||||
finally:
|
||||
clean_folder('output')
|
||||
return out_path
|
||||
|
||||
|
||||
def clean_folder(folder):
|
||||
for filename in os.listdir(folder):
|
||||
file_path = os.path.join(folder, filename)
|
||||
try:
|
||||
if os.path.isfile(file_path) or os.path.islink(file_path):
|
||||
os.unlink(file_path)
|
||||
elif os.path.isdir(file_path):
|
||||
shutil.rmtree(file_path)
|
||||
except Exception as e:
|
||||
print(f'Failed to delete {file_path}. Reason: {e}')
|
||||
@@ -1,12 +1,12 @@
|
||||
import math
|
||||
import random
|
||||
import torch
|
||||
from basicsr.archs.stylegan2_bilinear_arch import (ConvLayer, EqualConv2d, EqualLinear, ResBlock, ScaledLeakyReLU,
|
||||
StyleGAN2GeneratorBilinear)
|
||||
from basicsr.utils.registry import ARCH_REGISTRY
|
||||
from torch import nn
|
||||
|
||||
from .gfpganv1_arch import ResUpBlock
|
||||
from .stylegan2_bilinear_arch import (ConvLayer, EqualConv2d, EqualLinear, ResBlock, ScaledLeakyReLU,
|
||||
StyleGAN2GeneratorBilinear)
|
||||
|
||||
|
||||
class StyleGAN2GeneratorBilinearSFT(StyleGAN2GeneratorBilinear):
|
||||
|
||||
@@ -350,7 +350,7 @@ class GFPGANv1(nn.Module):
|
||||
ScaledLeakyReLU(0.2),
|
||||
EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0)))
|
||||
|
||||
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
|
||||
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs):
|
||||
"""Forward function for GFPGANv1.
|
||||
|
||||
Args:
|
||||
@@ -416,7 +416,7 @@ class FacialComponentDiscriminator(nn.Module):
|
||||
self.conv5 = ConvLayer(256, 256, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
|
||||
self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False)
|
||||
|
||||
def forward(self, x, return_feats=False):
|
||||
def forward(self, x, return_feats=False, **kwargs):
|
||||
"""Forward function for FacialComponentDiscriminator.
|
||||
|
||||
Args:
|
||||
|
||||
@@ -274,7 +274,7 @@ class GFPGANv1Clean(nn.Module):
|
||||
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
|
||||
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
|
||||
|
||||
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
|
||||
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs):
|
||||
"""Forward function for GFPGANv1Clean.
|
||||
|
||||
Args:
|
||||
|
||||
658
gfpgan/archs/restoreformer_arch.py
Normal file
658
gfpgan/archs/restoreformer_arch.py
Normal file
@@ -0,0 +1,658 @@
|
||||
"""Modified from https://github.com/wzhouxiff/RestoreFormer
|
||||
"""
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class VectorQuantizer(nn.Module):
|
||||
"""
|
||||
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
|
||||
____________________________________________
|
||||
Discretization bottleneck part of the VQ-VAE.
|
||||
Inputs:
|
||||
- n_e : number of embeddings
|
||||
- e_dim : dimension of embedding
|
||||
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
||||
_____________________________________________
|
||||
"""
|
||||
|
||||
def __init__(self, n_e, e_dim, beta):
|
||||
super(VectorQuantizer, self).__init__()
|
||||
self.n_e = n_e
|
||||
self.e_dim = e_dim
|
||||
self.beta = beta
|
||||
|
||||
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
||||
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
||||
|
||||
def forward(self, z):
|
||||
"""
|
||||
Inputs the output of the encoder network z and maps it to a discrete
|
||||
one-hot vector that is the index of the closest embedding vector e_j
|
||||
z (continuous) -> z_q (discrete)
|
||||
z.shape = (batch, channel, height, width)
|
||||
quantization pipeline:
|
||||
1. get encoder input (B,C,H,W)
|
||||
2. flatten input to (B*H*W,C)
|
||||
"""
|
||||
# reshape z -> (batch, height, width, channel) and flatten
|
||||
z = z.permute(0, 2, 3, 1).contiguous()
|
||||
z_flattened = z.view(-1, self.e_dim)
|
||||
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||
|
||||
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
||||
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
||||
torch.matmul(z_flattened, self.embedding.weight.t())
|
||||
|
||||
# could possible replace this here
|
||||
# #\start...
|
||||
# find closest encodings
|
||||
|
||||
min_value, min_encoding_indices = torch.min(d, dim=1)
|
||||
|
||||
min_encoding_indices = min_encoding_indices.unsqueeze(1)
|
||||
|
||||
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.n_e).to(z)
|
||||
min_encodings.scatter_(1, min_encoding_indices, 1)
|
||||
|
||||
# dtype min encodings: torch.float32
|
||||
# min_encodings shape: torch.Size([2048, 512])
|
||||
# min_encoding_indices.shape: torch.Size([2048, 1])
|
||||
|
||||
# get quantized latent vectors
|
||||
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
||||
# .........\end
|
||||
|
||||
# with:
|
||||
# .........\start
|
||||
# min_encoding_indices = torch.argmin(d, dim=1)
|
||||
# z_q = self.embedding(min_encoding_indices)
|
||||
# ......\end......... (TODO)
|
||||
|
||||
# compute loss for embedding
|
||||
loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2)
|
||||
|
||||
# preserve gradients
|
||||
z_q = z + (z_q - z).detach()
|
||||
|
||||
# perplexity
|
||||
|
||||
e_mean = torch.mean(min_encodings, dim=0)
|
||||
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
||||
|
||||
# reshape back to match original input shape
|
||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d)
|
||||
|
||||
def get_codebook_entry(self, indices, shape):
|
||||
# shape specifying (batch, height, width, channel)
|
||||
# TODO: check for more easy handling with nn.Embedding
|
||||
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
|
||||
min_encodings.scatter_(1, indices[:, None], 1)
|
||||
|
||||
# get quantized latent vectors
|
||||
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
||||
|
||||
if shape is not None:
|
||||
z_q = z_q.view(shape)
|
||||
|
||||
# reshape back to match original input shape
|
||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q
|
||||
|
||||
|
||||
# pytorch_diffusion + derived encoder decoder
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode='nearest')
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
if self.with_conv:
|
||||
pad = (0, 1, 0, 1)
|
||||
x = torch.nn.functional.pad(x, pad, mode='constant', value=0)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
|
||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if temb_channels > 0:
|
||||
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
else:
|
||||
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x, temb):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
if temb is not None:
|
||||
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x + h
|
||||
|
||||
|
||||
class MultiHeadAttnBlock(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, head_size=1):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.head_size = head_size
|
||||
self.att_size = in_channels // head_size
|
||||
assert (in_channels % head_size == 0), 'The size of head should be divided by the number of channels.'
|
||||
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.norm2 = Normalize(in_channels)
|
||||
|
||||
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.num = 0
|
||||
|
||||
def forward(self, x, y=None):
|
||||
h_ = x
|
||||
h_ = self.norm1(h_)
|
||||
if y is None:
|
||||
y = h_
|
||||
else:
|
||||
y = self.norm2(y)
|
||||
|
||||
q = self.q(y)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
q = q.reshape(b, self.head_size, self.att_size, h * w)
|
||||
q = q.permute(0, 3, 1, 2) # b, hw, head, att
|
||||
|
||||
k = k.reshape(b, self.head_size, self.att_size, h * w)
|
||||
k = k.permute(0, 3, 1, 2)
|
||||
|
||||
v = v.reshape(b, self.head_size, self.att_size, h * w)
|
||||
v = v.permute(0, 3, 1, 2)
|
||||
|
||||
q = q.transpose(1, 2)
|
||||
v = v.transpose(1, 2)
|
||||
k = k.transpose(1, 2).transpose(2, 3)
|
||||
|
||||
scale = int(self.att_size)**(-0.5)
|
||||
q.mul_(scale)
|
||||
w_ = torch.matmul(q, k)
|
||||
w_ = F.softmax(w_, dim=3)
|
||||
|
||||
w_ = w_.matmul(v)
|
||||
|
||||
w_ = w_.transpose(1, 2).contiguous() # [b, h*w, head, att]
|
||||
w_ = w_.view(b, h, w, -1)
|
||||
w_ = w_.permute(0, 3, 1, 2)
|
||||
|
||||
w_ = self.proj_out(w_)
|
||||
|
||||
return x + w_
|
||||
|
||||
|
||||
class MultiHeadEncoder(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks=2,
|
||||
attn_resolutions=(16, ),
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels=3,
|
||||
resolution=512,
|
||||
z_channels=256,
|
||||
double_z=True,
|
||||
enable_mid=True,
|
||||
head_size=1,
|
||||
**ignore_kwargs):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.enable_mid = enable_mid
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1, ) + tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(MultiHeadAttnBlock(block_in, head_size))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
if self.enable_mid:
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
|
||||
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
hs = {}
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
h = self.conv_in(x)
|
||||
hs['in'] = h
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](h, temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
|
||||
if i_level != self.num_resolutions - 1:
|
||||
# hs.append(h)
|
||||
hs['block_' + str(i_level)] = h
|
||||
h = self.down[i_level].downsample(h)
|
||||
|
||||
# middle
|
||||
# h = hs[-1]
|
||||
if self.enable_mid:
|
||||
h = self.mid.block_1(h, temb)
|
||||
hs['block_' + str(i_level) + '_atten'] = h
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
hs['mid_atten'] = h
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
# hs.append(h)
|
||||
hs['out'] = h
|
||||
|
||||
return hs
|
||||
|
||||
|
||||
class MultiHeadDecoder(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks=2,
|
||||
attn_resolutions=(16, ),
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels=3,
|
||||
resolution=512,
|
||||
z_channels=256,
|
||||
give_pre_end=False,
|
||||
enable_mid=True,
|
||||
head_size=1,
|
||||
**ignorekwargs):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.give_pre_end = give_pre_end
|
||||
self.enable_mid = enable_mid
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
block_in = ch * ch_mult[self.num_resolutions - 1]
|
||||
curr_res = resolution // 2**(self.num_resolutions - 1)
|
||||
self.z_shape = (1, z_channels, curr_res, curr_res)
|
||||
print('Working with z of shape {} = {} dimensions.'.format(self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
# middle
|
||||
if self.enable_mid:
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
|
||||
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(MultiHeadAttnBlock(block_in, head_size))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, z):
|
||||
# assert z.shape[1:] == self.z_shape[1:]
|
||||
self.last_z_shape = z.shape
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
if self.enable_mid:
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](h, temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
if self.give_pre_end:
|
||||
return h
|
||||
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class MultiHeadDecoderTransformer(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks=2,
|
||||
attn_resolutions=(16, ),
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels=3,
|
||||
resolution=512,
|
||||
z_channels=256,
|
||||
give_pre_end=False,
|
||||
enable_mid=True,
|
||||
head_size=1,
|
||||
**ignorekwargs):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.give_pre_end = give_pre_end
|
||||
self.enable_mid = enable_mid
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
block_in = ch * ch_mult[self.num_resolutions - 1]
|
||||
curr_res = resolution // 2**(self.num_resolutions - 1)
|
||||
self.z_shape = (1, z_channels, curr_res, curr_res)
|
||||
print('Working with z of shape {} = {} dimensions.'.format(self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
# middle
|
||||
if self.enable_mid:
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
|
||||
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout))
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(MultiHeadAttnBlock(block_in, head_size))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, z, hs):
|
||||
# assert z.shape[1:] == self.z_shape[1:]
|
||||
# self.last_z_shape = z.shape
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
if self.enable_mid:
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h, hs['mid_atten'])
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](h, temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h, hs['block_' + str(i_level) + '_atten'])
|
||||
# hfeature = h.clone()
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
if self.give_pre_end:
|
||||
return h
|
||||
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class RestoreFormer(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
n_embed=1024,
|
||||
embed_dim=256,
|
||||
ch=64,
|
||||
out_ch=3,
|
||||
ch_mult=(1, 2, 2, 4, 4, 8),
|
||||
num_res_blocks=2,
|
||||
attn_resolutions=(16, ),
|
||||
dropout=0.0,
|
||||
in_channels=3,
|
||||
resolution=512,
|
||||
z_channels=256,
|
||||
double_z=False,
|
||||
enable_mid=True,
|
||||
fix_decoder=False,
|
||||
fix_codebook=True,
|
||||
fix_encoder=False,
|
||||
head_size=8):
|
||||
super(RestoreFormer, self).__init__()
|
||||
|
||||
self.encoder = MultiHeadEncoder(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
ch_mult=ch_mult,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
dropout=dropout,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
double_z=double_z,
|
||||
enable_mid=enable_mid,
|
||||
head_size=head_size)
|
||||
self.decoder = MultiHeadDecoderTransformer(
|
||||
ch=ch,
|
||||
out_ch=out_ch,
|
||||
ch_mult=ch_mult,
|
||||
num_res_blocks=num_res_blocks,
|
||||
attn_resolutions=attn_resolutions,
|
||||
dropout=dropout,
|
||||
in_channels=in_channels,
|
||||
resolution=resolution,
|
||||
z_channels=z_channels,
|
||||
enable_mid=enable_mid,
|
||||
head_size=head_size)
|
||||
|
||||
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25)
|
||||
|
||||
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
||||
|
||||
if fix_decoder:
|
||||
for _, param in self.decoder.named_parameters():
|
||||
param.requires_grad = False
|
||||
for _, param in self.post_quant_conv.named_parameters():
|
||||
param.requires_grad = False
|
||||
for _, param in self.quantize.named_parameters():
|
||||
param.requires_grad = False
|
||||
elif fix_codebook:
|
||||
for _, param in self.quantize.named_parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
if fix_encoder:
|
||||
for _, param in self.encoder.named_parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def encode(self, x):
|
||||
|
||||
hs = self.encoder(x)
|
||||
h = self.quant_conv(hs['out'])
|
||||
quant, emb_loss, info = self.quantize(h)
|
||||
return quant, emb_loss, info, hs
|
||||
|
||||
def decode(self, quant, hs):
|
||||
quant = self.post_quant_conv(quant)
|
||||
dec = self.decoder(quant, hs)
|
||||
|
||||
return dec
|
||||
|
||||
def forward(self, input, **kwargs):
|
||||
quant, diff, info, hs = self.encode(input)
|
||||
dec = self.decode(quant, hs)
|
||||
|
||||
return dec, None
|
||||
613
gfpgan/archs/stylegan2_bilinear_arch.py
Normal file
613
gfpgan/archs/stylegan2_bilinear_arch.py
Normal file
@@ -0,0 +1,613 @@
|
||||
import math
|
||||
import random
|
||||
import torch
|
||||
from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu
|
||||
from basicsr.utils.registry import ARCH_REGISTRY
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
class NormStyleCode(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
"""Normalize the style codes.
|
||||
|
||||
Args:
|
||||
x (Tensor): Style codes with shape (b, c).
|
||||
|
||||
Returns:
|
||||
Tensor: Normalized tensor.
|
||||
"""
|
||||
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
|
||||
|
||||
|
||||
class EqualLinear(nn.Module):
|
||||
"""Equalized Linear as StyleGAN2.
|
||||
|
||||
Args:
|
||||
in_channels (int): Size of each sample.
|
||||
out_channels (int): Size of each output sample.
|
||||
bias (bool): If set to ``False``, the layer will not learn an additive
|
||||
bias. Default: ``True``.
|
||||
bias_init_val (float): Bias initialized value. Default: 0.
|
||||
lr_mul (float): Learning rate multiplier. Default: 1.
|
||||
activation (None | str): The activation after ``linear`` operation.
|
||||
Supported: 'fused_lrelu', None. Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
|
||||
super(EqualLinear, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.lr_mul = lr_mul
|
||||
self.activation = activation
|
||||
if self.activation not in ['fused_lrelu', None]:
|
||||
raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
|
||||
"Supported ones are: ['fused_lrelu', None].")
|
||||
self.scale = (1 / math.sqrt(in_channels)) * lr_mul
|
||||
|
||||
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
|
||||
if bias:
|
||||
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
|
||||
else:
|
||||
self.register_parameter('bias', None)
|
||||
|
||||
def forward(self, x):
|
||||
if self.bias is None:
|
||||
bias = None
|
||||
else:
|
||||
bias = self.bias * self.lr_mul
|
||||
if self.activation == 'fused_lrelu':
|
||||
out = F.linear(x, self.weight * self.scale)
|
||||
out = fused_leaky_relu(out, bias)
|
||||
else:
|
||||
out = F.linear(x, self.weight * self.scale, bias=bias)
|
||||
return out
|
||||
|
||||
def __repr__(self):
|
||||
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
|
||||
f'out_channels={self.out_channels}, bias={self.bias is not None})')
|
||||
|
||||
|
||||
class ModulatedConv2d(nn.Module):
|
||||
"""Modulated Conv2d used in StyleGAN2.
|
||||
|
||||
There is no bias in ModulatedConv2d.
|
||||
|
||||
Args:
|
||||
in_channels (int): Channel number of the input.
|
||||
out_channels (int): Channel number of the output.
|
||||
kernel_size (int): Size of the convolving kernel.
|
||||
num_style_feat (int): Channel number of style features.
|
||||
demodulate (bool): Whether to demodulate in the conv layer.
|
||||
Default: True.
|
||||
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
|
||||
Default: None.
|
||||
eps (float): A value added to the denominator for numerical stability.
|
||||
Default: 1e-8.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
num_style_feat,
|
||||
demodulate=True,
|
||||
sample_mode=None,
|
||||
eps=1e-8,
|
||||
interpolation_mode='bilinear'):
|
||||
super(ModulatedConv2d, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.demodulate = demodulate
|
||||
self.sample_mode = sample_mode
|
||||
self.eps = eps
|
||||
self.interpolation_mode = interpolation_mode
|
||||
if self.interpolation_mode == 'nearest':
|
||||
self.align_corners = None
|
||||
else:
|
||||
self.align_corners = False
|
||||
|
||||
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
|
||||
# modulation inside each modulated conv
|
||||
self.modulation = EqualLinear(
|
||||
num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None)
|
||||
|
||||
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size))
|
||||
self.padding = kernel_size // 2
|
||||
|
||||
def forward(self, x, style):
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
x (Tensor): Tensor with shape (b, c, h, w).
|
||||
style (Tensor): Tensor with shape (b, num_style_feat).
|
||||
|
||||
Returns:
|
||||
Tensor: Modulated tensor after convolution.
|
||||
"""
|
||||
b, c, h, w = x.shape # c = c_in
|
||||
# weight modulation
|
||||
style = self.modulation(style).view(b, 1, c, 1, 1)
|
||||
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
|
||||
weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
|
||||
|
||||
if self.demodulate:
|
||||
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
||||
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
||||
|
||||
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
|
||||
|
||||
if self.sample_mode == 'upsample':
|
||||
x = F.interpolate(x, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
|
||||
elif self.sample_mode == 'downsample':
|
||||
x = F.interpolate(x, scale_factor=0.5, mode=self.interpolation_mode, align_corners=self.align_corners)
|
||||
|
||||
b, c, h, w = x.shape
|
||||
x = x.view(1, b * c, h, w)
|
||||
# weight: (b*c_out, c_in, k, k), groups=b
|
||||
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
||||
out = out.view(b, self.out_channels, *out.shape[2:4])
|
||||
|
||||
return out
|
||||
|
||||
def __repr__(self):
|
||||
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
|
||||
f'out_channels={self.out_channels}, '
|
||||
f'kernel_size={self.kernel_size}, '
|
||||
f'demodulate={self.demodulate}, sample_mode={self.sample_mode})')
|
||||
|
||||
|
||||
class StyleConv(nn.Module):
|
||||
"""Style conv.
|
||||
|
||||
Args:
|
||||
in_channels (int): Channel number of the input.
|
||||
out_channels (int): Channel number of the output.
|
||||
kernel_size (int): Size of the convolving kernel.
|
||||
num_style_feat (int): Channel number of style features.
|
||||
demodulate (bool): Whether demodulate in the conv layer. Default: True.
|
||||
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
num_style_feat,
|
||||
demodulate=True,
|
||||
sample_mode=None,
|
||||
interpolation_mode='bilinear'):
|
||||
super(StyleConv, self).__init__()
|
||||
self.modulated_conv = ModulatedConv2d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
num_style_feat,
|
||||
demodulate=demodulate,
|
||||
sample_mode=sample_mode,
|
||||
interpolation_mode=interpolation_mode)
|
||||
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
||||
self.activate = FusedLeakyReLU(out_channels)
|
||||
|
||||
def forward(self, x, style, noise=None):
|
||||
# modulate
|
||||
out = self.modulated_conv(x, style)
|
||||
# noise injection
|
||||
if noise is None:
|
||||
b, _, h, w = out.shape
|
||||
noise = out.new_empty(b, 1, h, w).normal_()
|
||||
out = out + self.weight * noise
|
||||
# activation (with bias)
|
||||
out = self.activate(out)
|
||||
return out
|
||||
|
||||
|
||||
class ToRGB(nn.Module):
|
||||
"""To RGB from features.
|
||||
|
||||
Args:
|
||||
in_channels (int): Channel number of input.
|
||||
num_style_feat (int): Channel number of style features.
|
||||
upsample (bool): Whether to upsample. Default: True.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, num_style_feat, upsample=True, interpolation_mode='bilinear'):
|
||||
super(ToRGB, self).__init__()
|
||||
self.upsample = upsample
|
||||
self.interpolation_mode = interpolation_mode
|
||||
if self.interpolation_mode == 'nearest':
|
||||
self.align_corners = None
|
||||
else:
|
||||
self.align_corners = False
|
||||
self.modulated_conv = ModulatedConv2d(
|
||||
in_channels,
|
||||
3,
|
||||
kernel_size=1,
|
||||
num_style_feat=num_style_feat,
|
||||
demodulate=False,
|
||||
sample_mode=None,
|
||||
interpolation_mode=interpolation_mode)
|
||||
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
||||
|
||||
def forward(self, x, style, skip=None):
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
x (Tensor): Feature tensor with shape (b, c, h, w).
|
||||
style (Tensor): Tensor with shape (b, num_style_feat).
|
||||
skip (Tensor): Base/skip tensor. Default: None.
|
||||
|
||||
Returns:
|
||||
Tensor: RGB images.
|
||||
"""
|
||||
out = self.modulated_conv(x, style)
|
||||
out = out + self.bias
|
||||
if skip is not None:
|
||||
if self.upsample:
|
||||
skip = F.interpolate(
|
||||
skip, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
|
||||
out = out + skip
|
||||
return out
|
||||
|
||||
|
||||
class ConstantInput(nn.Module):
|
||||
"""Constant input.
|
||||
|
||||
Args:
|
||||
num_channel (int): Channel number of constant input.
|
||||
size (int): Spatial size of constant input.
|
||||
"""
|
||||
|
||||
def __init__(self, num_channel, size):
|
||||
super(ConstantInput, self).__init__()
|
||||
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
|
||||
|
||||
def forward(self, batch):
|
||||
out = self.weight.repeat(batch, 1, 1, 1)
|
||||
return out
|
||||
|
||||
|
||||
@ARCH_REGISTRY.register()
|
||||
class StyleGAN2GeneratorBilinear(nn.Module):
|
||||
"""StyleGAN2 Generator.
|
||||
|
||||
Args:
|
||||
out_size (int): The spatial size of outputs.
|
||||
num_style_feat (int): Channel number of style features. Default: 512.
|
||||
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
||||
channel_multiplier (int): Channel multiplier for large networks of
|
||||
StyleGAN2. Default: 2.
|
||||
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
|
||||
narrow (float): Narrow ratio for channels. Default: 1.0.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
out_size,
|
||||
num_style_feat=512,
|
||||
num_mlp=8,
|
||||
channel_multiplier=2,
|
||||
lr_mlp=0.01,
|
||||
narrow=1,
|
||||
interpolation_mode='bilinear'):
|
||||
super(StyleGAN2GeneratorBilinear, self).__init__()
|
||||
# Style MLP layers
|
||||
self.num_style_feat = num_style_feat
|
||||
style_mlp_layers = [NormStyleCode()]
|
||||
for i in range(num_mlp):
|
||||
style_mlp_layers.append(
|
||||
EqualLinear(
|
||||
num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp,
|
||||
activation='fused_lrelu'))
|
||||
self.style_mlp = nn.Sequential(*style_mlp_layers)
|
||||
|
||||
channels = {
|
||||
'4': int(512 * narrow),
|
||||
'8': int(512 * narrow),
|
||||
'16': int(512 * narrow),
|
||||
'32': int(512 * narrow),
|
||||
'64': int(256 * channel_multiplier * narrow),
|
||||
'128': int(128 * channel_multiplier * narrow),
|
||||
'256': int(64 * channel_multiplier * narrow),
|
||||
'512': int(32 * channel_multiplier * narrow),
|
||||
'1024': int(16 * channel_multiplier * narrow)
|
||||
}
|
||||
self.channels = channels
|
||||
|
||||
self.constant_input = ConstantInput(channels['4'], size=4)
|
||||
self.style_conv1 = StyleConv(
|
||||
channels['4'],
|
||||
channels['4'],
|
||||
kernel_size=3,
|
||||
num_style_feat=num_style_feat,
|
||||
demodulate=True,
|
||||
sample_mode=None,
|
||||
interpolation_mode=interpolation_mode)
|
||||
self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, interpolation_mode=interpolation_mode)
|
||||
|
||||
self.log_size = int(math.log(out_size, 2))
|
||||
self.num_layers = (self.log_size - 2) * 2 + 1
|
||||
self.num_latent = self.log_size * 2 - 2
|
||||
|
||||
self.style_convs = nn.ModuleList()
|
||||
self.to_rgbs = nn.ModuleList()
|
||||
self.noises = nn.Module()
|
||||
|
||||
in_channels = channels['4']
|
||||
# noise
|
||||
for layer_idx in range(self.num_layers):
|
||||
resolution = 2**((layer_idx + 5) // 2)
|
||||
shape = [1, 1, resolution, resolution]
|
||||
self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
|
||||
# style convs and to_rgbs
|
||||
for i in range(3, self.log_size + 1):
|
||||
out_channels = channels[f'{2**i}']
|
||||
self.style_convs.append(
|
||||
StyleConv(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
num_style_feat=num_style_feat,
|
||||
demodulate=True,
|
||||
sample_mode='upsample',
|
||||
interpolation_mode=interpolation_mode))
|
||||
self.style_convs.append(
|
||||
StyleConv(
|
||||
out_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
num_style_feat=num_style_feat,
|
||||
demodulate=True,
|
||||
sample_mode=None,
|
||||
interpolation_mode=interpolation_mode))
|
||||
self.to_rgbs.append(
|
||||
ToRGB(out_channels, num_style_feat, upsample=True, interpolation_mode=interpolation_mode))
|
||||
in_channels = out_channels
|
||||
|
||||
def make_noise(self):
|
||||
"""Make noise for noise injection."""
|
||||
device = self.constant_input.weight.device
|
||||
noises = [torch.randn(1, 1, 4, 4, device=device)]
|
||||
|
||||
for i in range(3, self.log_size + 1):
|
||||
for _ in range(2):
|
||||
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
|
||||
|
||||
return noises
|
||||
|
||||
def get_latent(self, x):
|
||||
return self.style_mlp(x)
|
||||
|
||||
def mean_latent(self, num_latent):
|
||||
latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
|
||||
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
|
||||
return latent
|
||||
|
||||
def forward(self,
|
||||
styles,
|
||||
input_is_latent=False,
|
||||
noise=None,
|
||||
randomize_noise=True,
|
||||
truncation=1,
|
||||
truncation_latent=None,
|
||||
inject_index=None,
|
||||
return_latents=False):
|
||||
"""Forward function for StyleGAN2Generator.
|
||||
|
||||
Args:
|
||||
styles (list[Tensor]): Sample codes of styles.
|
||||
input_is_latent (bool): Whether input is latent style.
|
||||
Default: False.
|
||||
noise (Tensor | None): Input noise or None. Default: None.
|
||||
randomize_noise (bool): Randomize noise, used when 'noise' is
|
||||
False. Default: True.
|
||||
truncation (float): TODO. Default: 1.
|
||||
truncation_latent (Tensor | None): TODO. Default: None.
|
||||
inject_index (int | None): The injection index for mixing noise.
|
||||
Default: None.
|
||||
return_latents (bool): Whether to return style latents.
|
||||
Default: False.
|
||||
"""
|
||||
# style codes -> latents with Style MLP layer
|
||||
if not input_is_latent:
|
||||
styles = [self.style_mlp(s) for s in styles]
|
||||
# noises
|
||||
if noise is None:
|
||||
if randomize_noise:
|
||||
noise = [None] * self.num_layers # for each style conv layer
|
||||
else: # use the stored noise
|
||||
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
|
||||
# style truncation
|
||||
if truncation < 1:
|
||||
style_truncation = []
|
||||
for style in styles:
|
||||
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
|
||||
styles = style_truncation
|
||||
# get style latent with injection
|
||||
if len(styles) == 1:
|
||||
inject_index = self.num_latent
|
||||
|
||||
if styles[0].ndim < 3:
|
||||
# repeat latent code for all the layers
|
||||
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
||||
else: # used for encoder with different latent code for each layer
|
||||
latent = styles[0]
|
||||
elif len(styles) == 2: # mixing noises
|
||||
if inject_index is None:
|
||||
inject_index = random.randint(1, self.num_latent - 1)
|
||||
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
||||
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
||||
latent = torch.cat([latent1, latent2], 1)
|
||||
|
||||
# main generation
|
||||
out = self.constant_input(latent.shape[0])
|
||||
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
||||
skip = self.to_rgb1(out, latent[:, 1])
|
||||
|
||||
i = 1
|
||||
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
|
||||
noise[2::2], self.to_rgbs):
|
||||
out = conv1(out, latent[:, i], noise=noise1)
|
||||
out = conv2(out, latent[:, i + 1], noise=noise2)
|
||||
skip = to_rgb(out, latent[:, i + 2], skip)
|
||||
i += 2
|
||||
|
||||
image = skip
|
||||
|
||||
if return_latents:
|
||||
return image, latent
|
||||
else:
|
||||
return image, None
|
||||
|
||||
|
||||
class ScaledLeakyReLU(nn.Module):
|
||||
"""Scaled LeakyReLU.
|
||||
|
||||
Args:
|
||||
negative_slope (float): Negative slope. Default: 0.2.
|
||||
"""
|
||||
|
||||
def __init__(self, negative_slope=0.2):
|
||||
super(ScaledLeakyReLU, self).__init__()
|
||||
self.negative_slope = negative_slope
|
||||
|
||||
def forward(self, x):
|
||||
out = F.leaky_relu(x, negative_slope=self.negative_slope)
|
||||
return out * math.sqrt(2)
|
||||
|
||||
|
||||
class EqualConv2d(nn.Module):
|
||||
"""Equalized Linear as StyleGAN2.
|
||||
|
||||
Args:
|
||||
in_channels (int): Channel number of the input.
|
||||
out_channels (int): Channel number of the output.
|
||||
kernel_size (int): Size of the convolving kernel.
|
||||
stride (int): Stride of the convolution. Default: 1
|
||||
padding (int): Zero-padding added to both sides of the input.
|
||||
Default: 0.
|
||||
bias (bool): If ``True``, adds a learnable bias to the output.
|
||||
Default: ``True``.
|
||||
bias_init_val (float): Bias initialized value. Default: 0.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0):
|
||||
super(EqualConv2d, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.padding = padding
|
||||
self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
|
||||
|
||||
self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
|
||||
if bias:
|
||||
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
|
||||
else:
|
||||
self.register_parameter('bias', None)
|
||||
|
||||
def forward(self, x):
|
||||
out = F.conv2d(
|
||||
x,
|
||||
self.weight * self.scale,
|
||||
bias=self.bias,
|
||||
stride=self.stride,
|
||||
padding=self.padding,
|
||||
)
|
||||
|
||||
return out
|
||||
|
||||
def __repr__(self):
|
||||
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
|
||||
f'out_channels={self.out_channels}, '
|
||||
f'kernel_size={self.kernel_size},'
|
||||
f' stride={self.stride}, padding={self.padding}, '
|
||||
f'bias={self.bias is not None})')
|
||||
|
||||
|
||||
class ConvLayer(nn.Sequential):
|
||||
"""Conv Layer used in StyleGAN2 Discriminator.
|
||||
|
||||
Args:
|
||||
in_channels (int): Channel number of the input.
|
||||
out_channels (int): Channel number of the output.
|
||||
kernel_size (int): Kernel size.
|
||||
downsample (bool): Whether downsample by a factor of 2.
|
||||
Default: False.
|
||||
bias (bool): Whether with bias. Default: True.
|
||||
activate (bool): Whether use activateion. Default: True.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
downsample=False,
|
||||
bias=True,
|
||||
activate=True,
|
||||
interpolation_mode='bilinear'):
|
||||
layers = []
|
||||
self.interpolation_mode = interpolation_mode
|
||||
# downsample
|
||||
if downsample:
|
||||
if self.interpolation_mode == 'nearest':
|
||||
self.align_corners = None
|
||||
else:
|
||||
self.align_corners = False
|
||||
|
||||
layers.append(
|
||||
torch.nn.Upsample(scale_factor=0.5, mode=interpolation_mode, align_corners=self.align_corners))
|
||||
stride = 1
|
||||
self.padding = kernel_size // 2
|
||||
# conv
|
||||
layers.append(
|
||||
EqualConv2d(
|
||||
in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias
|
||||
and not activate))
|
||||
# activation
|
||||
if activate:
|
||||
if bias:
|
||||
layers.append(FusedLeakyReLU(out_channels))
|
||||
else:
|
||||
layers.append(ScaledLeakyReLU(0.2))
|
||||
|
||||
super(ConvLayer, self).__init__(*layers)
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
"""Residual block used in StyleGAN2 Discriminator.
|
||||
|
||||
Args:
|
||||
in_channels (int): Channel number of the input.
|
||||
out_channels (int): Channel number of the output.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, interpolation_mode='bilinear'):
|
||||
super(ResBlock, self).__init__()
|
||||
|
||||
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
|
||||
self.conv2 = ConvLayer(
|
||||
in_channels,
|
||||
out_channels,
|
||||
3,
|
||||
downsample=True,
|
||||
interpolation_mode=interpolation_mode,
|
||||
bias=True,
|
||||
activate=True)
|
||||
self.skip = ConvLayer(
|
||||
in_channels,
|
||||
out_channels,
|
||||
1,
|
||||
downsample=True,
|
||||
interpolation_mode=interpolation_mode,
|
||||
bias=False,
|
||||
activate=False)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(x)
|
||||
out = self.conv2(out)
|
||||
skip = self.skip(x)
|
||||
out = (out + skip) / math.sqrt(2)
|
||||
return out
|
||||
@@ -3,7 +3,7 @@ import os.path as osp
|
||||
import torch
|
||||
from basicsr.archs import build_network
|
||||
from basicsr.losses import build_loss
|
||||
from basicsr.losses.losses import r1_penalty
|
||||
from basicsr.losses.gan_loss import r1_penalty
|
||||
from basicsr.metrics import calculate_metric
|
||||
from basicsr.models.base_model import BaseModel
|
||||
from basicsr.utils import get_root_logger, imwrite, tensor2img
|
||||
|
||||
@@ -29,12 +29,12 @@ class GFPGANer():
|
||||
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self, model_path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None):
|
||||
def __init__(self, model_path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None, device=None):
|
||||
self.upscale = upscale
|
||||
self.bg_upsampler = bg_upsampler
|
||||
|
||||
# initialize model
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
||||
# initialize the GFP-GAN
|
||||
if arch == 'clean':
|
||||
self.gfpgan = GFPGANv1Clean(
|
||||
@@ -72,6 +72,9 @@ class GFPGANer():
|
||||
different_w=True,
|
||||
narrow=1,
|
||||
sft_half=True)
|
||||
elif arch == 'RestoreFormer':
|
||||
from gfpgan.archs.restoreformer_arch import RestoreFormer
|
||||
self.gfpgan = RestoreFormer()
|
||||
# initialize face helper
|
||||
self.face_helper = FaceRestoreHelper(
|
||||
upscale,
|
||||
@@ -79,7 +82,9 @@ class GFPGANer():
|
||||
crop_ratio=(1, 1),
|
||||
det_model='retinaface_resnet50',
|
||||
save_ext='png',
|
||||
device=self.device)
|
||||
use_parse=True,
|
||||
device=self.device,
|
||||
model_rootpath='gfpgan/weights')
|
||||
|
||||
if model_path.startswith('https://'):
|
||||
model_path = load_file_from_url(
|
||||
@@ -94,7 +99,7 @@ class GFPGANer():
|
||||
self.gfpgan = self.gfpgan.to(self.device)
|
||||
|
||||
@torch.no_grad()
|
||||
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True):
|
||||
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True, weight=0.5):
|
||||
self.face_helper.clean_all()
|
||||
|
||||
if has_aligned: # the inputs are already aligned
|
||||
@@ -117,7 +122,7 @@ class GFPGANer():
|
||||
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
|
||||
|
||||
try:
|
||||
output = self.gfpgan(cropped_face_t, return_rgb=False)[0]
|
||||
output = self.gfpgan(cropped_face_t, return_rgb=False, weight=weight)[0]
|
||||
# convert to image
|
||||
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
|
||||
except RuntimeError as error:
|
||||
|
||||
@@ -41,6 +41,7 @@ def main():
|
||||
type=str,
|
||||
default='auto',
|
||||
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto')
|
||||
parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights.')
|
||||
args = parser.parse_args()
|
||||
|
||||
args = parser.parse_args()
|
||||
@@ -82,23 +83,37 @@ def main():
|
||||
arch = 'original'
|
||||
channel_multiplier = 1
|
||||
model_name = 'GFPGANv1'
|
||||
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth'
|
||||
elif args.version == '1.2':
|
||||
arch = 'clean'
|
||||
channel_multiplier = 2
|
||||
model_name = 'GFPGANCleanv1-NoCE-C2'
|
||||
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth'
|
||||
elif args.version == '1.3':
|
||||
arch = 'clean'
|
||||
channel_multiplier = 2
|
||||
model_name = 'GFPGANv1.3'
|
||||
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
|
||||
elif args.version == '1.4':
|
||||
arch = 'clean'
|
||||
channel_multiplier = 2
|
||||
model_name = 'GFPGANv1.4'
|
||||
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'
|
||||
elif args.version == 'RestoreFormer':
|
||||
arch = 'RestoreFormer'
|
||||
channel_multiplier = 2
|
||||
model_name = 'RestoreFormer'
|
||||
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'
|
||||
else:
|
||||
raise ValueError(f'Wrong model version {args.version}.')
|
||||
|
||||
# determine model paths
|
||||
model_path = os.path.join('experiments/pretrained_models', model_name + '.pth')
|
||||
if not os.path.isfile(model_path):
|
||||
model_path = os.path.join('realesrgan/weights', model_name + '.pth')
|
||||
model_path = os.path.join('gfpgan/weights', model_name + '.pth')
|
||||
if not os.path.isfile(model_path):
|
||||
raise ValueError(f'Model {model_name} does not exist.')
|
||||
# download pre-trained models from url
|
||||
model_path = url
|
||||
|
||||
restorer = GFPGANer(
|
||||
model_path=model_path,
|
||||
@@ -117,7 +132,11 @@ def main():
|
||||
|
||||
# restore faces and background if necessary
|
||||
cropped_faces, restored_faces, restored_img = restorer.enhance(
|
||||
input_img, has_aligned=args.aligned, only_center_face=args.only_center_face, paste_back=True)
|
||||
input_img,
|
||||
has_aligned=args.aligned,
|
||||
only_center_face=args.only_center_face,
|
||||
paste_back=True,
|
||||
weight=args.weight)
|
||||
|
||||
# save faces
|
||||
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)):
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
torch>=1.7
|
||||
numpy<1.21 # numba requires numpy<1.21,>=1.17
|
||||
opencv-python
|
||||
torchvision
|
||||
scipy
|
||||
tqdm
|
||||
basicsr>=1.3.4.0
|
||||
facexlib>=0.2.0.3
|
||||
basicsr>=1.4.2
|
||||
facexlib>=0.2.5
|
||||
lmdb
|
||||
numpy
|
||||
opencv-python
|
||||
pyyaml
|
||||
scipy
|
||||
tb-nightly
|
||||
torch>=1.7
|
||||
torchvision
|
||||
tqdm
|
||||
yapf
|
||||
|
||||
Reference in New Issue
Block a user