19 Commits

Author SHA1 Message Date
Xintao
d226e86f6c v1.3.7 2022-09-12 22:40:25 +08:00
Xintao
bb2f916764 update 2022-09-12 22:29:46 +08:00
Xintao
fe3beac9dc v1.3.6 2022-09-12 22:17:48 +08:00
Xintao
126c55c68d add restoreformer and codeformer inference codes 2022-09-12 21:33:06 +08:00
Xintao
8d2447a2d9 update cog predict 2022-09-04 23:27:02 +08:00
Xintao
af7569775d v1.3.5 2022-09-04 22:18:25 +08:00
Xintao
c6593e7221 update cog_predict 2022-09-04 20:28:24 +08:00
Xintao
7272e45887 update replicate (#248)
* update util

* update predict

* update predict

* update predict

* update predict

* update predict

* update predict

* update predict

* update predict

* merge replicate update
2022-09-04 20:12:31 +08:00
Xintao
3e27784b1b update replicate related 2022-08-31 17:36:25 +08:00
Xintao
2c420ee565 update readme 2022-08-31 16:33:30 +08:00
Xintao
8e7cf5d723 update readme 2022-08-30 23:02:22 +08:00
Xintao
c541e97f83 update readme 2022-08-30 23:01:28 +08:00
Xintao
86756cba65 update readme 2022-08-30 22:57:22 +08:00
Chenxi
a9a2e3ae15 Add Docker environment & web demo (#67)
* enable cog

* Update README.md

* Update README.md

* refactor

* fix temp input dir bug

Co-authored-by: CJWBW <70536672+CJWBW@users.noreply.github.com>
Co-authored-by: Chenxi <chenxi@Chenxis-MacBook-Pro-2.local>
Co-authored-by: Xintao <wxt1994@126.com>
2022-08-29 17:28:16 +08:00
Xintao
9c3f2d62cb v1.3.4 2022-07-13 10:21:28 +08:00
Xintao
ccd30af837 add release workflow 2022-07-13 10:19:50 +08:00
AJ
7d657f26b6 fix basicsr losses import (#210) 2022-07-13 10:01:06 +08:00
Xintao
c7ccc098a7 update facelib; use seg to paste back 2022-06-07 16:49:26 +08:00
Xintao
bc3f0c4d91 add device to GFPGANer for multiGPU support 2022-05-04 13:23:54 +08:00
13 changed files with 1570 additions and 25 deletions

41
.github/workflows/release.yml vendored Normal file
View File

@@ -0,0 +1,41 @@
name: release
on:
push:
tags:
- '*'
jobs:
build:
permissions: write-all
name: Create Release
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Create Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ github.ref }}
release_name: GFPGAN ${{ github.ref }} Release Note
body: |
🚀 See you again 😸
🚀Have a nice day 😸 and happy everyday 😃
🚀 Long time no see ☄️
✨ **Highlights**
✅ [Features] Support ...
🐛 **Bug Fixes**
🌴 **Improvements**
📢📢📢
<p align="center">
<img src="https://raw.githubusercontent.com/TencentARC/GFPGAN/master/assets/gfpgan_logo.png" height=150>
</p>
draft: true
prerelease: false

View File

@@ -4,6 +4,11 @@
## <div align="center"><b><a href="README.md">English</a> | <a href="README_CN.md">简体中文</a></b></div>
<div align="center">
<!-- <a href="https://twitter.com/_Xintao_" style="text-decoration:none;">
<img src="https://user-images.githubusercontent.com/17445847/187162058-c764ced6-952f-404b-ac85-ba95cce18e7b.png" width="4%" alt="" />
</a> -->
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
[![PyPI](https://img.shields.io/pypi/v/gfpgan)](https://pypi.org/project/gfpgan/)
[![Open issue](https://img.shields.io/github/issues/TencentARC/GFPGAN)](https://github.com/TencentARC/GFPGAN/issues)
@@ -11,12 +16,15 @@
[![LICENSE](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/TencentARC/GFPGAN/blob/master/LICENSE)
[![python lint](https://github.com/TencentARC/GFPGAN/actions/workflows/pylint.yml/badge.svg)](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/pylint.yml)
[![Publish-pip](https://github.com/TencentARC/GFPGAN/actions/workflows/publish-pip.yml/badge.svg)](https://github.com/TencentARC/GFPGAN/blob/master/.github/workflows/publish-pip.yml)
</div>
1. :boom: **Updated** online demo: [![Replicate](https://img.shields.io/static/v1?label=Demo&message=Replicate&color=blue)](https://replicate.com/tencentarc/gfpgan). Here is the [backup](https://replicate.com/xinntao/gfpgan).
1. :boom: **Updated** online demo: [![Huggingface Gradio](https://img.shields.io/static/v1?label=Demo&message=Huggingface%20Gradio&color=orange)](https://huggingface.co/spaces/Xintao/GFPGAN)
1. [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) for GFPGAN <a href="https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>; (Another [Colab Demo](https://colab.research.google.com/drive/1Oa1WwKB4M4l1GmR7CtswDVgOCOeSLChA?usp=sharing) for the original paper model)
2. Online demo: [Huggingface](https://huggingface.co/spaces/akhaliq/GFPGAN) (return only the cropped face)
3. Online demo: [Replicate.ai](https://replicate.com/xinntao/gfpgan) (may need to sign in, return the whole image)
<!-- 3. Online demo: [Replicate.ai](https://replicate.com/xinntao/gfpgan) (may need to sign in, return the whole image)
4. Online demo: [Baseten.co](https://app.baseten.co/applications/Q04Lz0d/operator_views/8qZG6Bg) (backed by GPU, returns the whole image)
5. We provide a *clean* version of GFPGAN, which can run without CUDA extensions. So that it can run in **Windows** or on **CPU mode**.
5. We provide a *clean* version of GFPGAN, which can run without CUDA extensions. So that it can run in **Windows** or on **CPU mode**. -->
> :rocket: **Thanks for your interest in our work. You may also want to check our new updates on the *tiny models* for *anime images and videos* in [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN/blob/master/docs/anime_video_model.md)** :blush:
@@ -27,7 +35,9 @@ It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g
:triangular_flag_on_post: **Updates**
- :fire::fire::white_check_mark: Add **[V1.3 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth)**, which produces **more natural** restoration results, and better results on *very low-quality* / *high-quality* inputs. See more in [Model zoo](#european_castle-model-zoo), [Comparisons.md](Comparisons.md)
- :white_check_mark: Add CodeFormer ([CC BY-NC-SA 4.0 License](https://creativecommons.org/licenses/by-nc-sa/4.0/)) and RestoreFormer.
- :white_check_mark: Add [V1.4 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth), which produces slightly more details and better identity than V1.3.
- :white_check_mark: Add **[V1.3 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth)**, which produces **more natural** restoration results, and better results on *very low-quality* / *high-quality* inputs. See more in [Model zoo](#european_castle-model-zoo), [Comparisons.md](Comparisons.md)
- :white_check_mark: Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/GFPGAN).
- :white_check_mark: Support enhancing non-face regions (background) with [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
- :white_check_mark: We provide a *clean* version of GFPGAN, which does not require CUDA extensions.

View File

@@ -1 +1 @@
1.3.2
1.3.7

22
cog.yaml Normal file
View File

@@ -0,0 +1,22 @@
# This file is used for constructing replicate env
image: "r8.im/tencentarc/gfpgan"
build:
gpu: true
python_version: "3.8"
system_packages:
- "libgl1-mesa-glx"
- "libglib2.0-0"
python_packages:
- "torch==1.7.1"
- "torchvision==0.8.2"
- "numpy==1.21.1"
- "lmdb==1.2.1"
- "opencv-python==4.5.3.56"
- "PyYAML==5.4.1"
- "tqdm==4.62.2"
- "yapf==0.31.0"
- "basicsr==1.4.2"
- "facexlib==0.2.5"
predict: "cog_predict.py:Predictor"

151
cog_predict.py Normal file
View File

@@ -0,0 +1,151 @@
# flake8: noqa
# This file is used for deploying replicate models
# running: cog predict -i img=@inputs/whole_imgs/10045.png -i version='v1.4' -i scale=2
# push: cog push r8.im/tencentarc/gfpgan
# push (backup): cog push r8.im/xinntao/gfpgan
import os
os.system('python setup.py develop')
os.system('pip install realesrgan')
import cv2
import shutil
import tempfile
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan import GFPGANer
try:
from cog import BasePredictor, Input, Path
from realesrgan.utils import RealESRGANer
except Exception:
print('please install cog and realesrgan package')
class Predictor(BasePredictor):
def setup(self):
os.makedirs('output', exist_ok=True)
# download weights
if not os.path.exists('gfpgan/weights/realesr-general-x4v3.pth'):
os.system(
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./gfpgan/weights'
)
if not os.path.exists('gfpgan/weights/GFPGANv1.2.pth'):
os.system(
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./gfpgan/weights')
if not os.path.exists('gfpgan/weights/GFPGANv1.3.pth'):
os.system(
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./gfpgan/weights')
if not os.path.exists('gfpgan/weights/GFPGANv1.4.pth'):
os.system(
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./gfpgan/weights')
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'gfpgan/weights/realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
# Use GFPGAN for face enhancement
self.face_enhancer = GFPGANer(
model_path='gfpgan/weights/GFPGANv1.4.pth',
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=self.upsampler)
self.current_version = 'v1.4'
def predict(
self,
img: Path = Input(description='Input'),
version: str = Input(
description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.',
choices=['v1.2', 'v1.3', 'v1.4'],
default='v1.4'),
scale: float = Input(description='Rescaling factor', default=2)
) -> Path:
print(img, version, scale)
try:
extension = os.path.splitext(os.path.basename(str(img)))[1]
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2:
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if self.current_version != version:
if version == 'v1.2':
self.face_enhancer = GFPGANer(
model_path='gfpgan/weights/GFPGANv1.2.pth',
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=self.upsampler)
self.current_version = 'v1.2'
elif version == 'v1.3':
self.face_enhancer = GFPGANer(
model_path='gfpgan/weights/GFPGANv1.3.pth',
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=self.upsampler)
self.current_version = 'v1.3'
elif version == 'v1.4':
self.face_enhancer = GFPGANer(
model_path='gfpgan/weights/GFPGANv1.4.pth',
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=self.upsampler)
self.current_version = 'v1.4'
try:
_, _, output = self.face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True)
except RuntimeError as error:
print('Error', error)
else:
extension = 'png'
try:
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
except Exception as error:
print('wrong scale input.', error)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
# save_path = f'output/out.{extension}'
# cv2.imwrite(save_path, output)
out_path = Path(tempfile.mkdtemp()) / f'out.{extension}'
cv2.imwrite(str(out_path), output)
except Exception as error:
print('global exception: ', error)
finally:
clean_folder('output')
return out_path
def clean_folder(folder):
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')

View File

@@ -0,0 +1,630 @@
"""
Modified from https://github.com/sczhou/CodeFormer
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY
from torch import Tensor
from typing import Optional
class VectorQuantizer(nn.Module):
def __init__(self, codebook_size, emb_dim, beta):
super(VectorQuantizer, self).__init__()
self.codebook_size = codebook_size # number of embeddings
self.emb_dim = emb_dim # dimension of embedding
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
def forward(self, z):
# reshape z -> (batch, height, width, channel) and flatten
z = z.permute(0, 2, 3, 1).contiguous()
z_flattened = z.view(-1, self.emb_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
2 * torch.matmul(z_flattened, self.embedding.weight.t())
mean_distance = torch.mean(d)
# find closest encodings
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
# [0-1], higher score, higher confidence
min_encoding_scores = torch.exp(-min_encoding_scores / 10)
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
min_encodings.scatter_(1, min_encoding_indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
# compute loss for embedding
loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2)
# preserve gradients
z_q = z + (z_q - z).detach()
# perplexity
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q, loss, {
'perplexity': perplexity,
'min_encodings': min_encodings,
'min_encoding_indices': min_encoding_indices,
'min_encoding_scores': min_encoding_scores,
'mean_distance': mean_distance
}
def get_codebook_feat(self, indices, shape):
# input indices: batch*token_num -> (batch*token_num)*1
# shape: batch, height, width, channel
indices = indices.view(-1, 1)
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
min_encodings.scatter_(1, indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
if shape is not None: # reshape back to match original input shape
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
return z_q
class GumbelQuantizer(nn.Module):
def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
super().__init__()
self.codebook_size = codebook_size # number of embeddings
self.emb_dim = emb_dim # dimension of embedding
self.straight_through = straight_through
self.temperature = temp_init
self.kl_weight = kl_weight
self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
self.embed = nn.Embedding(codebook_size, emb_dim)
def forward(self, z):
hard = self.straight_through if self.training else True
logits = self.proj(z)
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
z_q = torch.einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight)
# + kl divergence to the prior loss
qy = F.softmax(logits, dim=1)
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
min_encoding_indices = soft_one_hot.argmax(dim=1)
return z_q, diff, {'min_encoding_indices': min_encoding_indices}
class Downsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x):
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode='constant', value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
x = self.conv(x)
return x
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1)
k = k.reshape(b, c, h * w)
w_ = torch.bmm(q, k)
w_ = w_ * (int(c)**(-0.5))
w_ = F.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x + h_
class Encoder(nn.Module):
def __init__(self, in_channels, nf, out_channels, ch_mult, num_res_blocks, resolution, attn_resolutions):
super().__init__()
self.nf = nf
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.attn_resolutions = attn_resolutions
curr_res = self.resolution
in_ch_mult = (1, ) + tuple(ch_mult)
blocks = []
# initial convultion
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
# residual and downsampling blocks, with attention on smaller res (16x16)
for i in range(self.num_resolutions):
block_in_ch = nf * in_ch_mult[i]
block_out_ch = nf * ch_mult[i]
for _ in range(self.num_res_blocks):
blocks.append(ResBlock(block_in_ch, block_out_ch))
block_in_ch = block_out_ch
if curr_res in attn_resolutions:
blocks.append(AttnBlock(block_in_ch))
if i != self.num_resolutions - 1:
blocks.append(Downsample(block_in_ch))
curr_res = curr_res // 2
# non-local attention block
blocks.append(ResBlock(block_in_ch, block_in_ch))
blocks.append(AttnBlock(block_in_ch))
blocks.append(ResBlock(block_in_ch, block_in_ch))
# normalise and convert to latent size
blocks.append(normalize(block_in_ch))
blocks.append(nn.Conv2d(block_in_ch, out_channels, kernel_size=3, stride=1, padding=1))
self.blocks = nn.ModuleList(blocks)
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class Generator(nn.Module):
def __init__(self, nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim):
super().__init__()
self.nf = nf
self.ch_mult = ch_mult
self.num_resolutions = len(self.ch_mult)
self.num_res_blocks = res_blocks
self.resolution = img_size
self.attn_resolutions = attn_resolutions
self.in_channels = emb_dim
self.out_channels = 3
block_in_ch = self.nf * self.ch_mult[-1]
curr_res = self.resolution // 2**(self.num_resolutions - 1)
blocks = []
# initial conv
blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
# non-local attention block
blocks.append(ResBlock(block_in_ch, block_in_ch))
blocks.append(AttnBlock(block_in_ch))
blocks.append(ResBlock(block_in_ch, block_in_ch))
for i in reversed(range(self.num_resolutions)):
block_out_ch = self.nf * self.ch_mult[i]
for _ in range(self.num_res_blocks):
blocks.append(ResBlock(block_in_ch, block_out_ch))
block_in_ch = block_out_ch
if curr_res in self.attn_resolutions:
blocks.append(AttnBlock(block_in_ch))
if i != 0:
blocks.append(Upsample(block_in_ch))
curr_res = curr_res * 2
blocks.append(normalize(block_in_ch))
blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
self.blocks = nn.ModuleList(blocks)
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class VQAutoEncoder(nn.Module):
def __init__(self,
img_size,
nf,
ch_mult,
quantizer='nearest',
res_blocks=2,
attn_resolutions=[16],
codebook_size=1024,
emb_dim=256,
beta=0.25,
gumbel_straight_through=False,
gumbel_kl_weight=1e-8,
model_path=None):
super().__init__()
logger = get_root_logger()
self.in_channels = 3
self.nf = nf
self.n_blocks = res_blocks
self.codebook_size = codebook_size
self.embed_dim = emb_dim
self.ch_mult = ch_mult
self.resolution = img_size
self.attn_resolutions = attn_resolutions
self.quantizer_type = quantizer
self.encoder = Encoder(self.in_channels, self.nf, self.embed_dim, self.ch_mult, self.n_blocks, self.resolution,
self.attn_resolutions)
if self.quantizer_type == 'nearest':
self.beta = beta # 0.25
self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
elif self.quantizer_type == 'gumbel':
self.gumbel_num_hiddens = emb_dim
self.straight_through = gumbel_straight_through
self.kl_weight = gumbel_kl_weight
self.quantize = GumbelQuantizer(self.codebook_size, self.embed_dim, self.gumbel_num_hiddens,
self.straight_through, self.kl_weight)
self.generator = Generator(nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim)
if model_path is not None:
chkpt = torch.load(model_path, map_location='cpu')
if 'params_ema' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
elif 'params' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
logger.info(f'vqgan is loaded from: {model_path} [params]')
else:
raise ValueError('Wrong params!')
def forward(self, x):
x = self.encoder(x)
quant, codebook_loss, quant_stats = self.quantize(x)
x = self.generator(quant)
return x, codebook_loss, quant_stats
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
Args:
feat (Tensor): 4D tensor.
eps (float): A small value added to the variance to avoid
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, 'The input feature should be 4D tensor.'
b, c = size[:2]
feat_var = feat.view(b, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(b, c, 1, 1)
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
"""Adaptive instance normalization.
Adjust the reference features to have the similar color and illuminations
as those in the degradate features.
Args:
content_feat (Tensor): The reference feature.
style_feat (Tensor): The degradate features.
"""
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError('normalize should be True if scale is passed')
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask=None):
if mask is None:
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == 'relu':
return F.relu
if activation == 'gelu':
return F.gelu
if activation == 'glu':
return F.glu
raise RuntimeError(F'activation should be relu/gelu, not {activation}.')
class TransformerSALayer(nn.Module):
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation='gelu'):
super().__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
# Implementation of Feedforward model - MLP
self.linear1 = nn.Linear(embed_dim, dim_mlp)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_mlp, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward(self,
tgt,
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
# self attention
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
# ffn
tgt2 = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout2(tgt2)
return tgt
def normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
@torch.jit.script
def swish(x):
return x * torch.sigmoid(x)
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels=None):
super(ResBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.norm1 = normalize(in_channels)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = normalize(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x_in):
x = x_in
x = self.norm1(x)
x = swish(x)
x = self.conv1(x)
x = self.norm2(x)
x = swish(x)
x = self.conv2(x)
if self.in_channels != self.out_channels:
x_in = self.conv_out(x_in)
return x + x_in
class Fuse_sft_block(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.encode_enc = ResBlock(2 * in_ch, out_ch)
self.scale = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
self.shift = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
def forward(self, enc_feat, dec_feat, w=1):
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
scale = self.scale(enc_feat)
shift = self.shift(enc_feat)
residual = w * (dec_feat * scale + shift)
out = dec_feat + residual
return out
@ARCH_REGISTRY.register()
class CodeFormer(VQAutoEncoder):
def __init__(self,
dim_embd=512,
n_head=8,
n_layers=9,
codebook_size=1024,
latent_size=256,
connect_list=['32', '64', '128', '256'],
fix_modules=['quantize', 'generator']):
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest', 2, [16], codebook_size)
if fix_modules is not None:
for module in fix_modules:
for param in getattr(self, module).parameters():
param.requires_grad = False
self.connect_list = connect_list
self.n_layers = n_layers
self.dim_embd = dim_embd
self.dim_mlp = dim_embd * 2
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
self.feat_emb = nn.Linear(256, self.dim_embd)
# transformer
self.ft_layers = nn.Sequential(*[
TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
for _ in range(self.n_layers)
])
# logits_predict head
self.idx_pred_layer = nn.Sequential(nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False))
self.channels = {'16': 512, '32': 256, '64': 256, '128': 128, '256': 128, '512': 64}
# after second residual block for > 16, before attn layer for ==16
self.fuse_encoder_block = {'512': 2, '256': 5, '128': 8, '64': 11, '32': 14, '16': 18}
# after first residual block for > 16, before attn layer for ==16
self.fuse_generator_block = {'16': 6, '32': 9, '64': 12, '128': 15, '256': 18, '512': 21}
# fuse_convs_dict
self.fuse_convs_dict = nn.ModuleDict()
for f_size in self.connect_list:
in_ch = self.channels[f_size]
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, x, weight=0.5, **kwargs):
detach_16 = True
code_only = False
adain = True
# ################### Encoder #####################
enc_feat_dict = {}
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.encoder.blocks):
x = block(x)
if i in out_list:
enc_feat_dict[str(x.shape[-1])] = x.clone()
lq_feat = x
# ################# Transformer ###################
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1)
# BCHW -> BC(HW) -> (HW)BC
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1))
query_emb = feat_emb
# Transformer encoder
for layer in self.ft_layers:
query_emb = layer(query_emb, query_pos=pos_emb)
# output logits
logits = self.idx_pred_layer(query_emb) # (hw)bn
logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n
if code_only: # for training stage II
# logits doesn't need softmax before cross_entropy loss
return logits, lq_feat
# ################# Quantization ###################
# if self.training:
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
# # b(hw)c -> bc(hw) -> bchw
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
# ------------
soft_one_hot = F.softmax(logits, dim=2)
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0], 16, 16, 256])
# preserve gradients
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
if detach_16:
quant_feat = quant_feat.detach() # for training stage III
if adain:
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
# ################## Generator ####################
x = quant_feat
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.generator.blocks):
x = block(x)
if i in fuse_list: # fuse after i-th block
f_size = str(x.shape[-1])
if weight > 0:
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, weight)
out = x
# logits doesn't need softmax before cross_entropy loss
# return out, logits, lq_feat
return out, logits

View File

@@ -350,7 +350,7 @@ class GFPGANv1(nn.Module):
ScaledLeakyReLU(0.2),
EqualConv2d(out_channels, sft_out_channels, 3, stride=1, padding=1, bias=True, bias_init_val=0)))
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs):
"""Forward function for GFPGANv1.
Args:
@@ -416,7 +416,7 @@ class FacialComponentDiscriminator(nn.Module):
self.conv5 = ConvLayer(256, 256, 3, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True)
self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False)
def forward(self, x, return_feats=False):
def forward(self, x, return_feats=False, **kwargs):
"""Forward function for FacialComponentDiscriminator.
Args:

View File

@@ -274,7 +274,7 @@ class GFPGANv1Clean(nn.Module):
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs):
"""Forward function for GFPGANv1Clean.
Args:

View File

@@ -0,0 +1,658 @@
"""Modified from https://github.com/wzhouxiff/RestoreFormer
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class VectorQuantizer(nn.Module):
"""
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
____________________________________________
Discretization bottleneck part of the VQ-VAE.
Inputs:
- n_e : number of embeddings
- e_dim : dimension of embedding
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
_____________________________________________
"""
def __init__(self, n_e, e_dim, beta):
super(VectorQuantizer, self).__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
def forward(self, z):
"""
Inputs the output of the encoder network z and maps it to a discrete
one-hot vector that is the index of the closest embedding vector e_j
z (continuous) -> z_q (discrete)
z.shape = (batch, channel, height, width)
quantization pipeline:
1. get encoder input (B,C,H,W)
2. flatten input to (B*H*W,C)
"""
# reshape z -> (batch, height, width, channel) and flatten
z = z.permute(0, 2, 3, 1).contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
torch.matmul(z_flattened, self.embedding.weight.t())
# could possible replace this here
# #\start...
# find closest encodings
min_value, min_encoding_indices = torch.min(d, dim=1)
min_encoding_indices = min_encoding_indices.unsqueeze(1)
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.n_e).to(z)
min_encodings.scatter_(1, min_encoding_indices, 1)
# dtype min encodings: torch.float32
# min_encodings shape: torch.Size([2048, 512])
# min_encoding_indices.shape: torch.Size([2048, 1])
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
# .........\end
# with:
# .........\start
# min_encoding_indices = torch.argmin(d, dim=1)
# z_q = self.embedding(min_encoding_indices)
# ......\end......... (TODO)
# compute loss for embedding
loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2)
# preserve gradients
z_q = z + (z_q - z).detach()
# perplexity
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d)
def get_codebook_entry(self, indices, shape):
# shape specifying (batch, height, width, channel)
# TODO: check for more easy handling with nn.Embedding
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices)
min_encodings.scatter_(1, indices[:, None], 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
# pytorch_diffusion + derived encoder decoder
def nonlinearity(x):
# swish
return x * torch.sigmoid(x)
def Normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode='nearest')
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode='constant', value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class MultiHeadAttnBlock(nn.Module):
def __init__(self, in_channels, head_size=1):
super().__init__()
self.in_channels = in_channels
self.head_size = head_size
self.att_size = in_channels // head_size
assert (in_channels % head_size == 0), 'The size of head should be divided by the number of channels.'
self.norm1 = Normalize(in_channels)
self.norm2 = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.num = 0
def forward(self, x, y=None):
h_ = x
h_ = self.norm1(h_)
if y is None:
y = h_
else:
y = self.norm2(y)
q = self.q(y)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, self.head_size, self.att_size, h * w)
q = q.permute(0, 3, 1, 2) # b, hw, head, att
k = k.reshape(b, self.head_size, self.att_size, h * w)
k = k.permute(0, 3, 1, 2)
v = v.reshape(b, self.head_size, self.att_size, h * w)
v = v.permute(0, 3, 1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
k = k.transpose(1, 2).transpose(2, 3)
scale = int(self.att_size)**(-0.5)
q.mul_(scale)
w_ = torch.matmul(q, k)
w_ = F.softmax(w_, dim=3)
w_ = w_.matmul(v)
w_ = w_.transpose(1, 2).contiguous() # [b, h*w, head, att]
w_ = w_.view(b, h, w, -1)
w_ = w_.permute(0, 3, 1, 2)
w_ = self.proj_out(w_)
return x + w_
class MultiHeadEncoder(nn.Module):
def __init__(self,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks=2,
attn_resolutions=(16, ),
dropout=0.0,
resamp_with_conv=True,
in_channels=3,
resolution=512,
z_channels=256,
double_z=True,
enable_mid=True,
head_size=1,
**ignore_kwargs):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.enable_mid = enable_mid
# downsampling
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1, ) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(MultiHeadAttnBlock(block_in, head_size))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
if self.enable_mid:
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
self.mid.block_2 = ResnetBlock(
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
hs = {}
# timestep embedding
temb = None
# downsampling
h = self.conv_in(x)
hs['in'] = h
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h, temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions - 1:
# hs.append(h)
hs['block_' + str(i_level)] = h
h = self.down[i_level].downsample(h)
# middle
# h = hs[-1]
if self.enable_mid:
h = self.mid.block_1(h, temb)
hs['block_' + str(i_level) + '_atten'] = h
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
hs['mid_atten'] = h
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
# hs.append(h)
hs['out'] = h
return hs
class MultiHeadDecoder(nn.Module):
def __init__(self,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks=2,
attn_resolutions=(16, ),
dropout=0.0,
resamp_with_conv=True,
in_channels=3,
resolution=512,
z_channels=256,
give_pre_end=False,
enable_mid=True,
head_size=1,
**ignorekwargs):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.enable_mid = enable_mid
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2**(self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
print('Working with z of shape {} = {} dimensions.'.format(self.z_shape, np.prod(self.z_shape)))
# z to block_in
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
if self.enable_mid:
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
self.mid.block_2 = ResnetBlock(
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(MultiHeadAttnBlock(block_in, head_size))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z):
# assert z.shape[1:] == self.z_shape[1:]
self.last_z_shape = z.shape
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
if self.enable_mid:
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class MultiHeadDecoderTransformer(nn.Module):
def __init__(self,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks=2,
attn_resolutions=(16, ),
dropout=0.0,
resamp_with_conv=True,
in_channels=3,
resolution=512,
z_channels=256,
give_pre_end=False,
enable_mid=True,
head_size=1,
**ignorekwargs):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.enable_mid = enable_mid
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2**(self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
print('Working with z of shape {} = {} dimensions.'.format(self.z_shape, np.prod(self.z_shape)))
# z to block_in
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
if self.enable_mid:
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size)
self.mid.block_2 = ResnetBlock(
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(MultiHeadAttnBlock(block_in, head_size))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z, hs):
# assert z.shape[1:] == self.z_shape[1:]
# self.last_z_shape = z.shape
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
if self.enable_mid:
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h, hs['mid_atten'])
h = self.mid.block_2(h, temb)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h, hs['block_' + str(i_level) + '_atten'])
# hfeature = h.clone()
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class RestoreFormer(nn.Module):
def __init__(self,
n_embed=1024,
embed_dim=256,
ch=64,
out_ch=3,
ch_mult=(1, 2, 2, 4, 4, 8),
num_res_blocks=2,
attn_resolutions=(16, ),
dropout=0.0,
in_channels=3,
resolution=512,
z_channels=256,
double_z=False,
enable_mid=True,
fix_decoder=False,
fix_codebook=True,
fix_encoder=False,
head_size=8):
super(RestoreFormer, self).__init__()
self.encoder = MultiHeadEncoder(
ch=ch,
out_ch=out_ch,
ch_mult=ch_mult,
num_res_blocks=num_res_blocks,
attn_resolutions=attn_resolutions,
dropout=dropout,
in_channels=in_channels,
resolution=resolution,
z_channels=z_channels,
double_z=double_z,
enable_mid=enable_mid,
head_size=head_size)
self.decoder = MultiHeadDecoderTransformer(
ch=ch,
out_ch=out_ch,
ch_mult=ch_mult,
num_res_blocks=num_res_blocks,
attn_resolutions=attn_resolutions,
dropout=dropout,
in_channels=in_channels,
resolution=resolution,
z_channels=z_channels,
enable_mid=enable_mid,
head_size=head_size)
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25)
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
if fix_decoder:
for _, param in self.decoder.named_parameters():
param.requires_grad = False
for _, param in self.post_quant_conv.named_parameters():
param.requires_grad = False
for _, param in self.quantize.named_parameters():
param.requires_grad = False
elif fix_codebook:
for _, param in self.quantize.named_parameters():
param.requires_grad = False
if fix_encoder:
for _, param in self.encoder.named_parameters():
param.requires_grad = False
def encode(self, x):
hs = self.encoder(x)
h = self.quant_conv(hs['out'])
quant, emb_loss, info = self.quantize(h)
return quant, emb_loss, info, hs
def decode(self, quant, hs):
quant = self.post_quant_conv(quant)
dec = self.decoder(quant, hs)
return dec
def forward(self, input, **kwargs):
quant, diff, info, hs = self.encode(input)
dec = self.decode(quant, hs)
return dec, None

View File

@@ -3,7 +3,7 @@ import os.path as osp
import torch
from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.losses.losses import r1_penalty
from basicsr.losses.gan_loss import r1_penalty
from basicsr.metrics import calculate_metric
from basicsr.models.base_model import BaseModel
from basicsr.utils import get_root_logger, imwrite, tensor2img

View File

@@ -29,12 +29,12 @@ class GFPGANer():
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
"""
def __init__(self, model_path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None):
def __init__(self, model_path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None, device=None):
self.upscale = upscale
self.bg_upsampler = bg_upsampler
# initialize model
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
# initialize the GFP-GAN
if arch == 'clean':
self.gfpgan = GFPGANv1Clean(
@@ -72,6 +72,13 @@ class GFPGANer():
different_w=True,
narrow=1,
sft_half=True)
elif arch == 'RestoreFormer':
from gfpgan.archs.restoreformer_arch import RestoreFormer
self.gfpgan = RestoreFormer()
elif arch == 'CodeFormer':
from gfpgan.archs.codeformer_arch import CodeFormer
self.gfpgan = CodeFormer(
dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256'])
# initialize face helper
self.face_helper = FaceRestoreHelper(
upscale,
@@ -79,7 +86,9 @@ class GFPGANer():
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=self.device)
use_parse=True,
device=self.device,
model_rootpath='gfpgan/weights')
if model_path.startswith('https://'):
model_path = load_file_from_url(
@@ -94,7 +103,7 @@ class GFPGANer():
self.gfpgan = self.gfpgan.to(self.device)
@torch.no_grad()
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True):
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True, weight=0.5):
self.face_helper.clean_all()
if has_aligned: # the inputs are already aligned
@@ -117,7 +126,7 @@ class GFPGANer():
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
try:
output = self.gfpgan(cropped_face_t, return_rgb=False)[0]
output = self.gfpgan(cropped_face_t, return_rgb=False, weight=weight)[0]
# convert to image
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
except RuntimeError as error:

View File

@@ -41,6 +41,7 @@ def main():
type=str,
default='auto',
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto')
parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights for CodeFormer.')
args = parser.parse_args()
args = parser.parse_args()
@@ -82,23 +83,42 @@ def main():
arch = 'original'
channel_multiplier = 1
model_name = 'GFPGANv1'
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth'
elif args.version == '1.2':
arch = 'clean'
channel_multiplier = 2
model_name = 'GFPGANCleanv1-NoCE-C2'
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth'
elif args.version == '1.3':
arch = 'clean'
channel_multiplier = 2
model_name = 'GFPGANv1.3'
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
elif args.version == '1.4':
arch = 'clean'
channel_multiplier = 2
model_name = 'GFPGANv1.4'
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'
elif args.version == 'RestoreFormer':
arch = 'RestoreFormer'
channel_multiplier = 2
model_name = 'RestoreFormer'
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'
elif args.version == 'CodeFormer':
arch = 'CodeFormer'
channel_multiplier = 2
model_name = 'CodeFormer'
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth'
else:
raise ValueError(f'Wrong model version {args.version}.')
# determine model paths
model_path = os.path.join('experiments/pretrained_models', model_name + '.pth')
if not os.path.isfile(model_path):
model_path = os.path.join('realesrgan/weights', model_name + '.pth')
model_path = os.path.join('gfpgan/weights', model_name + '.pth')
if not os.path.isfile(model_path):
raise ValueError(f'Model {model_name} does not exist.')
# download pre-trained models from url
model_path = url
restorer = GFPGANer(
model_path=model_path,
@@ -117,7 +137,11 @@ def main():
# restore faces and background if necessary
cropped_faces, restored_faces, restored_img = restorer.enhance(
input_img, has_aligned=args.aligned, only_center_face=args.only_center_face, paste_back=True)
input_img,
has_aligned=args.aligned,
only_center_face=args.only_center_face,
paste_back=True,
weight=args.weight)
# save faces
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)):

View File

@@ -1,12 +1,12 @@
torch>=1.7
numpy<1.21 # numba requires numpy<1.21,>=1.17
opencv-python
torchvision
scipy
tqdm
basicsr>=1.3.4.0
facexlib>=0.2.0.3
basicsr>=1.4.2
facexlib>=0.2.5
lmdb
numpy
opencv-python
pyyaml
scipy
tb-nightly
torch>=1.7
torchvision
tqdm
yapf