mirror of
https://github.com/TencentARC/GFPGAN.git
synced 2026-02-08 05:44:40 +00:00
Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7552a7791c | ||
|
|
2eac203389 | ||
|
|
2f46d95254 | ||
|
|
bc5a5deb95 | ||
|
|
3fd33abc47 | ||
|
|
d226e86f6c | ||
|
|
bb2f916764 |
33
.github/workflows/no-response.yml
vendored
33
.github/workflows/no-response.yml
vendored
@@ -1,33 +0,0 @@
|
||||
name: No Response
|
||||
|
||||
# TODO: it seems not to work
|
||||
# Modified from: https://raw.githubusercontent.com/github/docs/main/.github/workflows/no-response.yaml
|
||||
|
||||
# **What it does**: Closes issues that don't have enough information to be actionable.
|
||||
# **Why we have it**: To remove the need for maintainers to remember to check back on issues periodically
|
||||
# to see if contributors have responded.
|
||||
# **Who does it impact**: Everyone that works on docs or docs-internal.
|
||||
|
||||
on:
|
||||
issue_comment:
|
||||
types: [created]
|
||||
|
||||
schedule:
|
||||
# Schedule for five minutes after the hour every hour
|
||||
- cron: '5 * * * *'
|
||||
|
||||
jobs:
|
||||
noResponse:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: lee-dohm/no-response@v0.5.0
|
||||
with:
|
||||
token: ${{ github.token }}
|
||||
closeComment: >
|
||||
This issue has been automatically closed because there has been no response
|
||||
to our request for more information from the original author. With only the
|
||||
information that is currently in the issue, we don't have enough information
|
||||
to take action. Please reach out if you have or find the answers we need so
|
||||
that we can investigate further.
|
||||
If you still have questions, please improve your description and re-open it.
|
||||
Thanks :-)
|
||||
@@ -35,7 +35,7 @@ It leverages rich and diverse priors encapsulated in a pretrained face GAN (*e.g
|
||||
|
||||
:triangular_flag_on_post: **Updates**
|
||||
|
||||
- :white_check_mark: Add CodeFormer ([CC BY-NC-SA 4.0 License](https://creativecommons.org/licenses/by-nc-sa/4.0/)) and RestoreFormer.
|
||||
- :white_check_mark: Add [RestoreFormer](https://github.com/wzhouxiff/RestoreFormer) inference codes.
|
||||
- :white_check_mark: Add [V1.4 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth), which produces slightly more details and better identity than V1.3.
|
||||
- :white_check_mark: Add **[V1.3 model](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth)**, which produces **more natural** restoration results, and better results on *very low-quality* / *high-quality* inputs. See more in [Model zoo](#european_castle-model-zoo), [Comparisons.md](Comparisons.md)
|
||||
- :white_check_mark: Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/GFPGAN).
|
||||
|
||||
@@ -42,6 +42,10 @@ class Predictor(BasePredictor):
|
||||
if not os.path.exists('gfpgan/weights/GFPGANv1.4.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./gfpgan/weights')
|
||||
if not os.path.exists('gfpgan/weights/RestoreFormer.pth'):
|
||||
os.system(
|
||||
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P ./gfpgan/weights'
|
||||
)
|
||||
|
||||
# background enhancer with RealESRGAN
|
||||
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
||||
@@ -60,15 +64,16 @@ class Predictor(BasePredictor):
|
||||
self.current_version = 'v1.4'
|
||||
|
||||
def predict(
|
||||
self,
|
||||
img: Path = Input(description='Input'),
|
||||
version: str = Input(
|
||||
description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.',
|
||||
choices=['v1.2', 'v1.3', 'v1.4'],
|
||||
default='v1.4'),
|
||||
scale: float = Input(description='Rescaling factor', default=2)
|
||||
self,
|
||||
img: Path = Input(description='Input'),
|
||||
version: str = Input(
|
||||
description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.',
|
||||
choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'],
|
||||
default='v1.4'),
|
||||
scale: float = Input(description='Rescaling factor', default=2),
|
||||
) -> Path:
|
||||
print(img, version, scale)
|
||||
weight = 0.5
|
||||
print(img, version, scale, weight)
|
||||
try:
|
||||
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
||||
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
|
||||
@@ -109,14 +114,19 @@ class Predictor(BasePredictor):
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
self.current_version = 'v1.4'
|
||||
elif version == 'RestoreFormer':
|
||||
self.face_enhancer = GFPGANer(
|
||||
model_path='gfpgan/weights/RestoreFormer.pth',
|
||||
upscale=2,
|
||||
arch='RestoreFormer',
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=self.upsampler)
|
||||
|
||||
try:
|
||||
_, _, output = self.face_enhancer.enhance(
|
||||
img, has_aligned=False, only_center_face=False, paste_back=True)
|
||||
img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
||||
except RuntimeError as error:
|
||||
print('Error', error)
|
||||
else:
|
||||
extension = 'png'
|
||||
|
||||
try:
|
||||
if scale != 2:
|
||||
|
||||
@@ -1,630 +0,0 @@
|
||||
"""
|
||||
Modified from https://github.com/sczhou/CodeFormer
|
||||
VQGAN code, adapted from the original created by the Unleashing Transformers authors:
|
||||
https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py
|
||||
"""
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from basicsr.utils import get_root_logger
|
||||
from basicsr.utils.registry import ARCH_REGISTRY
|
||||
from torch import Tensor
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class VectorQuantizer(nn.Module):
|
||||
|
||||
def __init__(self, codebook_size, emb_dim, beta):
|
||||
super(VectorQuantizer, self).__init__()
|
||||
self.codebook_size = codebook_size # number of embeddings
|
||||
self.emb_dim = emb_dim # dimension of embedding
|
||||
self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
||||
self.embedding = nn.Embedding(self.codebook_size, self.emb_dim)
|
||||
self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size)
|
||||
|
||||
def forward(self, z):
|
||||
# reshape z -> (batch, height, width, channel) and flatten
|
||||
z = z.permute(0, 2, 3, 1).contiguous()
|
||||
z_flattened = z.view(-1, self.emb_dim)
|
||||
|
||||
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
||||
d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \
|
||||
2 * torch.matmul(z_flattened, self.embedding.weight.t())
|
||||
|
||||
mean_distance = torch.mean(d)
|
||||
# find closest encodings
|
||||
# min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
|
||||
min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False)
|
||||
# [0-1], higher score, higher confidence
|
||||
min_encoding_scores = torch.exp(-min_encoding_scores / 10)
|
||||
|
||||
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z)
|
||||
min_encodings.scatter_(1, min_encoding_indices, 1)
|
||||
|
||||
# get quantized latent vectors
|
||||
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape)
|
||||
# compute loss for embedding
|
||||
loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2)
|
||||
# preserve gradients
|
||||
z_q = z + (z_q - z).detach()
|
||||
|
||||
# perplexity
|
||||
e_mean = torch.mean(min_encodings, dim=0)
|
||||
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10)))
|
||||
# reshape back to match original input shape
|
||||
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q, loss, {
|
||||
'perplexity': perplexity,
|
||||
'min_encodings': min_encodings,
|
||||
'min_encoding_indices': min_encoding_indices,
|
||||
'min_encoding_scores': min_encoding_scores,
|
||||
'mean_distance': mean_distance
|
||||
}
|
||||
|
||||
def get_codebook_feat(self, indices, shape):
|
||||
# input indices: batch*token_num -> (batch*token_num)*1
|
||||
# shape: batch, height, width, channel
|
||||
indices = indices.view(-1, 1)
|
||||
min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices)
|
||||
min_encodings.scatter_(1, indices, 1)
|
||||
# get quantized latent vectors
|
||||
z_q = torch.matmul(min_encodings.float(), self.embedding.weight)
|
||||
|
||||
if shape is not None: # reshape back to match original input shape
|
||||
z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
return z_q
|
||||
|
||||
|
||||
class GumbelQuantizer(nn.Module):
|
||||
|
||||
def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0):
|
||||
super().__init__()
|
||||
self.codebook_size = codebook_size # number of embeddings
|
||||
self.emb_dim = emb_dim # dimension of embedding
|
||||
self.straight_through = straight_through
|
||||
self.temperature = temp_init
|
||||
self.kl_weight = kl_weight
|
||||
self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits
|
||||
self.embed = nn.Embedding(codebook_size, emb_dim)
|
||||
|
||||
def forward(self, z):
|
||||
hard = self.straight_through if self.training else True
|
||||
|
||||
logits = self.proj(z)
|
||||
|
||||
soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard)
|
||||
|
||||
z_q = torch.einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight)
|
||||
|
||||
# + kl divergence to the prior loss
|
||||
qy = F.softmax(logits, dim=1)
|
||||
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean()
|
||||
min_encoding_indices = soft_one_hot.argmax(dim=1)
|
||||
|
||||
return z_q, diff, {'min_encoding_indices': min_encoding_indices}
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
pad = (0, 1, 0, 1)
|
||||
x = torch.nn.functional.pad(x, pad, mode='constant', value=0)
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
||||
x = self.conv(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
q = q.reshape(b, c, h * w)
|
||||
q = q.permute(0, 2, 1)
|
||||
k = k.reshape(b, c, h * w)
|
||||
w_ = torch.bmm(q, k)
|
||||
w_ = w_ * (int(c)**(-0.5))
|
||||
w_ = F.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = v.reshape(b, c, h * w)
|
||||
w_ = w_.permute(0, 2, 1)
|
||||
h_ = torch.bmm(v, w_)
|
||||
h_ = h_.reshape(b, c, h, w)
|
||||
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x + h_
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, nf, out_channels, ch_mult, num_res_blocks, resolution, attn_resolutions):
|
||||
super().__init__()
|
||||
self.nf = nf
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.attn_resolutions = attn_resolutions
|
||||
|
||||
curr_res = self.resolution
|
||||
in_ch_mult = (1, ) + tuple(ch_mult)
|
||||
|
||||
blocks = []
|
||||
# initial convultion
|
||||
blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1))
|
||||
|
||||
# residual and downsampling blocks, with attention on smaller res (16x16)
|
||||
for i in range(self.num_resolutions):
|
||||
block_in_ch = nf * in_ch_mult[i]
|
||||
block_out_ch = nf * ch_mult[i]
|
||||
for _ in range(self.num_res_blocks):
|
||||
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
||||
block_in_ch = block_out_ch
|
||||
if curr_res in attn_resolutions:
|
||||
blocks.append(AttnBlock(block_in_ch))
|
||||
|
||||
if i != self.num_resolutions - 1:
|
||||
blocks.append(Downsample(block_in_ch))
|
||||
curr_res = curr_res // 2
|
||||
|
||||
# non-local attention block
|
||||
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
||||
blocks.append(AttnBlock(block_in_ch))
|
||||
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
||||
|
||||
# normalise and convert to latent size
|
||||
blocks.append(normalize(block_in_ch))
|
||||
blocks.append(nn.Conv2d(block_in_ch, out_channels, kernel_size=3, stride=1, padding=1))
|
||||
self.blocks = nn.ModuleList(blocks)
|
||||
|
||||
def forward(self, x):
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Generator(nn.Module):
|
||||
|
||||
def __init__(self, nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim):
|
||||
super().__init__()
|
||||
self.nf = nf
|
||||
self.ch_mult = ch_mult
|
||||
self.num_resolutions = len(self.ch_mult)
|
||||
self.num_res_blocks = res_blocks
|
||||
self.resolution = img_size
|
||||
self.attn_resolutions = attn_resolutions
|
||||
self.in_channels = emb_dim
|
||||
self.out_channels = 3
|
||||
block_in_ch = self.nf * self.ch_mult[-1]
|
||||
curr_res = self.resolution // 2**(self.num_resolutions - 1)
|
||||
|
||||
blocks = []
|
||||
# initial conv
|
||||
blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1))
|
||||
|
||||
# non-local attention block
|
||||
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
||||
blocks.append(AttnBlock(block_in_ch))
|
||||
blocks.append(ResBlock(block_in_ch, block_in_ch))
|
||||
|
||||
for i in reversed(range(self.num_resolutions)):
|
||||
block_out_ch = self.nf * self.ch_mult[i]
|
||||
|
||||
for _ in range(self.num_res_blocks):
|
||||
blocks.append(ResBlock(block_in_ch, block_out_ch))
|
||||
block_in_ch = block_out_ch
|
||||
|
||||
if curr_res in self.attn_resolutions:
|
||||
blocks.append(AttnBlock(block_in_ch))
|
||||
|
||||
if i != 0:
|
||||
blocks.append(Upsample(block_in_ch))
|
||||
curr_res = curr_res * 2
|
||||
|
||||
blocks.append(normalize(block_in_ch))
|
||||
blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
|
||||
|
||||
self.blocks = nn.ModuleList(blocks)
|
||||
|
||||
def forward(self, x):
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class VQAutoEncoder(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
img_size,
|
||||
nf,
|
||||
ch_mult,
|
||||
quantizer='nearest',
|
||||
res_blocks=2,
|
||||
attn_resolutions=[16],
|
||||
codebook_size=1024,
|
||||
emb_dim=256,
|
||||
beta=0.25,
|
||||
gumbel_straight_through=False,
|
||||
gumbel_kl_weight=1e-8,
|
||||
model_path=None):
|
||||
super().__init__()
|
||||
logger = get_root_logger()
|
||||
self.in_channels = 3
|
||||
self.nf = nf
|
||||
self.n_blocks = res_blocks
|
||||
self.codebook_size = codebook_size
|
||||
self.embed_dim = emb_dim
|
||||
self.ch_mult = ch_mult
|
||||
self.resolution = img_size
|
||||
self.attn_resolutions = attn_resolutions
|
||||
self.quantizer_type = quantizer
|
||||
self.encoder = Encoder(self.in_channels, self.nf, self.embed_dim, self.ch_mult, self.n_blocks, self.resolution,
|
||||
self.attn_resolutions)
|
||||
if self.quantizer_type == 'nearest':
|
||||
self.beta = beta # 0.25
|
||||
self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta)
|
||||
elif self.quantizer_type == 'gumbel':
|
||||
self.gumbel_num_hiddens = emb_dim
|
||||
self.straight_through = gumbel_straight_through
|
||||
self.kl_weight = gumbel_kl_weight
|
||||
self.quantize = GumbelQuantizer(self.codebook_size, self.embed_dim, self.gumbel_num_hiddens,
|
||||
self.straight_through, self.kl_weight)
|
||||
self.generator = Generator(nf, ch_mult, res_blocks, img_size, attn_resolutions, emb_dim)
|
||||
|
||||
if model_path is not None:
|
||||
chkpt = torch.load(model_path, map_location='cpu')
|
||||
if 'params_ema' in chkpt:
|
||||
self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema'])
|
||||
logger.info(f'vqgan is loaded from: {model_path} [params_ema]')
|
||||
elif 'params' in chkpt:
|
||||
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
|
||||
logger.info(f'vqgan is loaded from: {model_path} [params]')
|
||||
else:
|
||||
raise ValueError('Wrong params!')
|
||||
|
||||
def forward(self, x):
|
||||
x = self.encoder(x)
|
||||
quant, codebook_loss, quant_stats = self.quantize(x)
|
||||
x = self.generator(quant)
|
||||
return x, codebook_loss, quant_stats
|
||||
|
||||
|
||||
def calc_mean_std(feat, eps=1e-5):
|
||||
"""Calculate mean and std for adaptive_instance_normalization.
|
||||
|
||||
Args:
|
||||
feat (Tensor): 4D tensor.
|
||||
eps (float): A small value added to the variance to avoid
|
||||
divide-by-zero. Default: 1e-5.
|
||||
"""
|
||||
size = feat.size()
|
||||
assert len(size) == 4, 'The input feature should be 4D tensor.'
|
||||
b, c = size[:2]
|
||||
feat_var = feat.view(b, c, -1).var(dim=2) + eps
|
||||
feat_std = feat_var.sqrt().view(b, c, 1, 1)
|
||||
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
|
||||
return feat_mean, feat_std
|
||||
|
||||
|
||||
def adaptive_instance_normalization(content_feat, style_feat):
|
||||
"""Adaptive instance normalization.
|
||||
|
||||
Adjust the reference features to have the similar color and illuminations
|
||||
as those in the degradate features.
|
||||
|
||||
Args:
|
||||
content_feat (Tensor): The reference feature.
|
||||
style_feat (Tensor): The degradate features.
|
||||
"""
|
||||
size = content_feat.size()
|
||||
style_mean, style_std = calc_mean_std(style_feat)
|
||||
content_mean, content_std = calc_mean_std(content_feat)
|
||||
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
|
||||
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
|
||||
|
||||
|
||||
class PositionEmbeddingSine(nn.Module):
|
||||
"""
|
||||
This is a more standard version of the position embedding, very similar to the one
|
||||
used by the Attention is all you need paper, generalized to work on images.
|
||||
"""
|
||||
|
||||
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
||||
super().__init__()
|
||||
self.num_pos_feats = num_pos_feats
|
||||
self.temperature = temperature
|
||||
self.normalize = normalize
|
||||
if scale is not None and normalize is False:
|
||||
raise ValueError('normalize should be True if scale is passed')
|
||||
if scale is None:
|
||||
scale = 2 * math.pi
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
if mask is None:
|
||||
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
|
||||
not_mask = ~mask
|
||||
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
||||
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
||||
if self.normalize:
|
||||
eps = 1e-6
|
||||
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
||||
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
||||
|
||||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
||||
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats)
|
||||
|
||||
pos_x = x_embed[:, :, :, None] / dim_t
|
||||
pos_y = y_embed[:, :, :, None] / dim_t
|
||||
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
||||
return pos
|
||||
|
||||
|
||||
def _get_activation_fn(activation):
|
||||
"""Return an activation function given a string"""
|
||||
if activation == 'relu':
|
||||
return F.relu
|
||||
if activation == 'gelu':
|
||||
return F.gelu
|
||||
if activation == 'glu':
|
||||
return F.glu
|
||||
raise RuntimeError(F'activation should be relu/gelu, not {activation}.')
|
||||
|
||||
|
||||
class TransformerSALayer(nn.Module):
|
||||
|
||||
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation='gelu'):
|
||||
super().__init__()
|
||||
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
|
||||
# Implementation of Feedforward model - MLP
|
||||
self.linear1 = nn.Linear(embed_dim, dim_mlp)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_mlp, embed_dim)
|
||||
|
||||
self.norm1 = nn.LayerNorm(embed_dim)
|
||||
self.norm2 = nn.LayerNorm(embed_dim)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
|
||||
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward(self,
|
||||
tgt,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None):
|
||||
|
||||
# self attention
|
||||
tgt2 = self.norm1(tgt)
|
||||
q = k = self.with_pos_embed(tgt2, query_pos)
|
||||
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
|
||||
# ffn
|
||||
tgt2 = self.norm2(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
return tgt
|
||||
|
||||
|
||||
def normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def swish(x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels=None):
|
||||
super(ResBlock, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = in_channels if out_channels is None else out_channels
|
||||
self.norm1 = normalize(in_channels)
|
||||
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
self.norm2 = normalize(out_channels)
|
||||
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x_in):
|
||||
x = x_in
|
||||
x = self.norm1(x)
|
||||
x = swish(x)
|
||||
x = self.conv1(x)
|
||||
x = self.norm2(x)
|
||||
x = swish(x)
|
||||
x = self.conv2(x)
|
||||
if self.in_channels != self.out_channels:
|
||||
x_in = self.conv_out(x_in)
|
||||
|
||||
return x + x_in
|
||||
|
||||
|
||||
class Fuse_sft_block(nn.Module):
|
||||
|
||||
def __init__(self, in_ch, out_ch):
|
||||
super().__init__()
|
||||
self.encode_enc = ResBlock(2 * in_ch, out_ch)
|
||||
|
||||
self.scale = nn.Sequential(
|
||||
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True),
|
||||
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
|
||||
|
||||
self.shift = nn.Sequential(
|
||||
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.LeakyReLU(0.2, True),
|
||||
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))
|
||||
|
||||
def forward(self, enc_feat, dec_feat, w=1):
|
||||
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
|
||||
scale = self.scale(enc_feat)
|
||||
shift = self.shift(enc_feat)
|
||||
residual = w * (dec_feat * scale + shift)
|
||||
out = dec_feat + residual
|
||||
return out
|
||||
|
||||
|
||||
@ARCH_REGISTRY.register()
|
||||
class CodeFormer(VQAutoEncoder):
|
||||
|
||||
def __init__(self,
|
||||
dim_embd=512,
|
||||
n_head=8,
|
||||
n_layers=9,
|
||||
codebook_size=1024,
|
||||
latent_size=256,
|
||||
connect_list=['32', '64', '128', '256'],
|
||||
fix_modules=['quantize', 'generator']):
|
||||
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest', 2, [16], codebook_size)
|
||||
|
||||
if fix_modules is not None:
|
||||
for module in fix_modules:
|
||||
for param in getattr(self, module).parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
self.connect_list = connect_list
|
||||
self.n_layers = n_layers
|
||||
self.dim_embd = dim_embd
|
||||
self.dim_mlp = dim_embd * 2
|
||||
|
||||
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
|
||||
self.feat_emb = nn.Linear(256, self.dim_embd)
|
||||
|
||||
# transformer
|
||||
self.ft_layers = nn.Sequential(*[
|
||||
TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
|
||||
for _ in range(self.n_layers)
|
||||
])
|
||||
|
||||
# logits_predict head
|
||||
self.idx_pred_layer = nn.Sequential(nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False))
|
||||
|
||||
self.channels = {'16': 512, '32': 256, '64': 256, '128': 128, '256': 128, '512': 64}
|
||||
|
||||
# after second residual block for > 16, before attn layer for ==16
|
||||
self.fuse_encoder_block = {'512': 2, '256': 5, '128': 8, '64': 11, '32': 14, '16': 18}
|
||||
# after first residual block for > 16, before attn layer for ==16
|
||||
self.fuse_generator_block = {'16': 6, '32': 9, '64': 12, '128': 15, '256': 18, '512': 21}
|
||||
|
||||
# fuse_convs_dict
|
||||
self.fuse_convs_dict = nn.ModuleDict()
|
||||
for f_size in self.connect_list:
|
||||
in_ch = self.channels[f_size]
|
||||
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)
|
||||
|
||||
def _init_weights(self, module):
|
||||
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||||
module.weight.data.normal_(mean=0.0, std=0.02)
|
||||
if isinstance(module, nn.Linear) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
def forward(self, x, weight=0.5, **kwargs):
|
||||
detach_16 = True
|
||||
code_only = False
|
||||
adain = True
|
||||
# ################### Encoder #####################
|
||||
enc_feat_dict = {}
|
||||
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
|
||||
for i, block in enumerate(self.encoder.blocks):
|
||||
x = block(x)
|
||||
if i in out_list:
|
||||
enc_feat_dict[str(x.shape[-1])] = x.clone()
|
||||
|
||||
lq_feat = x
|
||||
# ################# Transformer ###################
|
||||
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
|
||||
pos_emb = self.position_emb.unsqueeze(1).repeat(1, x.shape[0], 1)
|
||||
# BCHW -> BC(HW) -> (HW)BC
|
||||
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2, 0, 1))
|
||||
query_emb = feat_emb
|
||||
# Transformer encoder
|
||||
for layer in self.ft_layers:
|
||||
query_emb = layer(query_emb, query_pos=pos_emb)
|
||||
|
||||
# output logits
|
||||
logits = self.idx_pred_layer(query_emb) # (hw)bn
|
||||
logits = logits.permute(1, 0, 2) # (hw)bn -> b(hw)n
|
||||
|
||||
if code_only: # for training stage II
|
||||
# logits doesn't need softmax before cross_entropy loss
|
||||
return logits, lq_feat
|
||||
|
||||
# ################# Quantization ###################
|
||||
# if self.training:
|
||||
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
|
||||
# # b(hw)c -> bc(hw) -> bchw
|
||||
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
|
||||
# ------------
|
||||
soft_one_hot = F.softmax(logits, dim=2)
|
||||
_, top_idx = torch.topk(soft_one_hot, 1, dim=2)
|
||||
quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0], 16, 16, 256])
|
||||
# preserve gradients
|
||||
# quant_feat = lq_feat + (quant_feat - lq_feat).detach()
|
||||
|
||||
if detach_16:
|
||||
quant_feat = quant_feat.detach() # for training stage III
|
||||
if adain:
|
||||
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)
|
||||
|
||||
# ################## Generator ####################
|
||||
x = quant_feat
|
||||
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
|
||||
|
||||
for i, block in enumerate(self.generator.blocks):
|
||||
x = block(x)
|
||||
if i in fuse_list: # fuse after i-th block
|
||||
f_size = str(x.shape[-1])
|
||||
if weight > 0:
|
||||
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, weight)
|
||||
out = x
|
||||
# logits doesn't need softmax before cross_entropy loss
|
||||
# return out, logits, lq_feat
|
||||
return out, logits
|
||||
@@ -1,325 +0,0 @@
|
||||
import math
|
||||
import random
|
||||
import torch
|
||||
from basicsr.utils.registry import ARCH_REGISTRY
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .stylegan2_cleanonnx_arch import StyleGAN2GeneratorCleanONNX
|
||||
|
||||
|
||||
class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorCleanONNX):
|
||||
"""StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
|
||||
|
||||
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
|
||||
|
||||
Args:
|
||||
out_size (int): The spatial size of outputs.
|
||||
num_style_feat (int): Channel number of style features. Default: 512.
|
||||
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
||||
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
||||
narrow (float): The narrow ratio for channels. Default: 1.
|
||||
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
|
||||
"""
|
||||
|
||||
def __init__(self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1, sft_half=False):
|
||||
super(StyleGAN2GeneratorCSFT, self).__init__(
|
||||
out_size,
|
||||
num_style_feat=num_style_feat,
|
||||
num_mlp=num_mlp,
|
||||
channel_multiplier=channel_multiplier,
|
||||
narrow=narrow)
|
||||
self.sft_half = sft_half
|
||||
|
||||
def forward(self,
|
||||
styles,
|
||||
conditions,
|
||||
input_is_latent=False,
|
||||
noise=None,
|
||||
randomize_noise=True,
|
||||
truncation=1,
|
||||
truncation_latent=None,
|
||||
inject_index=None,
|
||||
return_latents=False):
|
||||
"""Forward function for StyleGAN2GeneratorCSFT.
|
||||
|
||||
Args:
|
||||
styles (list[Tensor]): Sample codes of styles.
|
||||
conditions (list[Tensor]): SFT conditions to generators.
|
||||
input_is_latent (bool): Whether input is latent style. Default: False.
|
||||
noise (Tensor | None): Input noise or None. Default: None.
|
||||
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
||||
truncation (float): The truncation ratio. Default: 1.
|
||||
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
|
||||
inject_index (int | None): The injection index for mixing noise. Default: None.
|
||||
return_latents (bool): Whether to return style latents. Default: False.
|
||||
"""
|
||||
# style codes -> latents with Style MLP layer
|
||||
if not input_is_latent:
|
||||
styles = [self.style_mlp(s) for s in styles]
|
||||
# noises
|
||||
if noise is None:
|
||||
if randomize_noise:
|
||||
noise = [None] * self.num_layers # for each style conv layer
|
||||
else: # use the stored noise
|
||||
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
|
||||
# style truncation
|
||||
if truncation < 1:
|
||||
style_truncation = []
|
||||
for style in styles:
|
||||
style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
|
||||
styles = style_truncation
|
||||
# get style latents with injection
|
||||
if len(styles) == 1:
|
||||
inject_index = self.num_latent
|
||||
|
||||
if styles[0].ndim < 3:
|
||||
# repeat latent code for all the layers
|
||||
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
||||
else: # used for encoder with different latent code for each layer
|
||||
latent = styles[0]
|
||||
elif len(styles) == 2: # mixing noises
|
||||
if inject_index is None:
|
||||
inject_index = random.randint(1, self.num_latent - 1)
|
||||
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
||||
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
||||
latent = torch.cat([latent1, latent2], 1)
|
||||
|
||||
# main generation
|
||||
out = self.constant_input(latent.shape[0])
|
||||
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
||||
skip = self.to_rgb1(out, latent[:, 1])
|
||||
|
||||
i = 1
|
||||
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
|
||||
noise[2::2], self.to_rgbs):
|
||||
out = conv1(out, latent[:, i], noise=noise1)
|
||||
|
||||
# the conditions may have fewer levels
|
||||
if i < len(conditions):
|
||||
# SFT part to combine the conditions
|
||||
if self.sft_half: # only apply SFT to half of the channels
|
||||
out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
|
||||
# print(out_sft.size(), conditions[i - 1].size(), conditions[i].size())
|
||||
out_sft = out_sft * conditions[i - 1] + conditions[i]
|
||||
out = torch.cat([out_same, out_sft], dim=1)
|
||||
else: # apply SFT to all the channels
|
||||
out = out * conditions[i - 1] + conditions[i]
|
||||
|
||||
out = conv2(out, latent[:, i + 1], noise=noise2)
|
||||
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
|
||||
i += 2
|
||||
|
||||
image = skip
|
||||
|
||||
if return_latents:
|
||||
return image, latent
|
||||
else:
|
||||
return image, None
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
"""Residual block with bilinear upsampling/downsampling.
|
||||
|
||||
Args:
|
||||
in_channels (int): Channel number of the input.
|
||||
out_channels (int): Channel number of the output.
|
||||
mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, mode='down'):
|
||||
super(ResBlock, self).__init__()
|
||||
|
||||
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
|
||||
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
|
||||
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
||||
if mode == 'down':
|
||||
self.scale_factor = 0.5
|
||||
elif mode == 'up':
|
||||
self.scale_factor = 2
|
||||
|
||||
def forward(self, x):
|
||||
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
|
||||
# upsample/downsample
|
||||
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
||||
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
|
||||
# skip
|
||||
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
||||
skip = self.skip(x)
|
||||
out = out + skip
|
||||
return out
|
||||
|
||||
|
||||
@ARCH_REGISTRY.register()
|
||||
class GFPGANv1CleanONNX(nn.Module):
|
||||
"""The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
|
||||
|
||||
It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
|
||||
|
||||
Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
|
||||
|
||||
Args:
|
||||
out_size (int): The spatial size of outputs.
|
||||
num_style_feat (int): Channel number of style features. Default: 512.
|
||||
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
||||
decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
|
||||
fix_decoder (bool): Whether to fix the decoder. Default: True.
|
||||
|
||||
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
||||
input_is_latent (bool): Whether input is latent style. Default: False.
|
||||
different_w (bool): Whether to use different latent w for different layers. Default: False.
|
||||
narrow (float): The narrow ratio for channels. Default: 1.
|
||||
sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
out_size,
|
||||
num_style_feat=512,
|
||||
channel_multiplier=1,
|
||||
decoder_load_path=None,
|
||||
fix_decoder=True,
|
||||
# for stylegan decoder
|
||||
num_mlp=8,
|
||||
input_is_latent=False,
|
||||
different_w=False,
|
||||
narrow=1,
|
||||
sft_half=False):
|
||||
|
||||
super(GFPGANv1CleanONNX, self).__init__()
|
||||
self.input_is_latent = input_is_latent
|
||||
self.different_w = different_w
|
||||
self.num_style_feat = num_style_feat
|
||||
|
||||
unet_narrow = narrow * 0.5 # by default, use a half of input channels
|
||||
channels = {
|
||||
'4': int(512 * unet_narrow),
|
||||
'8': int(512 * unet_narrow),
|
||||
'16': int(512 * unet_narrow),
|
||||
'32': int(512 * unet_narrow),
|
||||
'64': int(256 * channel_multiplier * unet_narrow),
|
||||
'128': int(128 * channel_multiplier * unet_narrow),
|
||||
'256': int(64 * channel_multiplier * unet_narrow),
|
||||
'512': int(32 * channel_multiplier * unet_narrow),
|
||||
'1024': int(16 * channel_multiplier * unet_narrow)
|
||||
}
|
||||
|
||||
self.log_size = int(math.log(out_size, 2))
|
||||
first_out_size = 2**(int(math.log(out_size, 2)))
|
||||
|
||||
self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1)
|
||||
|
||||
# downsample
|
||||
in_channels = channels[f'{first_out_size}']
|
||||
self.conv_body_down = nn.ModuleList()
|
||||
for i in range(self.log_size, 2, -1):
|
||||
out_channels = channels[f'{2**(i - 1)}']
|
||||
self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
|
||||
in_channels = out_channels
|
||||
|
||||
self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
|
||||
|
||||
# upsample
|
||||
in_channels = channels['4']
|
||||
self.conv_body_up = nn.ModuleList()
|
||||
for i in range(3, self.log_size + 1):
|
||||
out_channels = channels[f'{2**i}']
|
||||
self.conv_body_up.append(ResBlock(in_channels, out_channels, mode='up'))
|
||||
in_channels = out_channels
|
||||
|
||||
# to RGB
|
||||
self.toRGB = nn.ModuleList()
|
||||
for i in range(3, self.log_size + 1):
|
||||
self.toRGB.append(nn.Conv2d(channels[f'{2**i}'], 3, 1))
|
||||
|
||||
if different_w:
|
||||
linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
|
||||
else:
|
||||
linear_out_channel = num_style_feat
|
||||
|
||||
self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
|
||||
|
||||
# the decoder: stylegan2 generator with SFT modulations
|
||||
self.stylegan_decoder = StyleGAN2GeneratorCSFT(
|
||||
out_size=out_size,
|
||||
num_style_feat=num_style_feat,
|
||||
num_mlp=num_mlp,
|
||||
channel_multiplier=channel_multiplier,
|
||||
narrow=narrow,
|
||||
sft_half=sft_half)
|
||||
|
||||
# load pre-trained stylegan2 model if necessary
|
||||
if decoder_load_path:
|
||||
self.stylegan_decoder.load_state_dict(
|
||||
torch.load(decoder_load_path, map_location=lambda storage, loc: storage)['params_ema'])
|
||||
# fix decoder without updating params
|
||||
if fix_decoder:
|
||||
for _, param in self.stylegan_decoder.named_parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
# for SFT modulations (scale and shift)
|
||||
self.condition_scale = nn.ModuleList()
|
||||
self.condition_shift = nn.ModuleList()
|
||||
for i in range(3, self.log_size + 1):
|
||||
out_channels = channels[f'{2**i}']
|
||||
if sft_half:
|
||||
sft_out_channels = out_channels
|
||||
else:
|
||||
sft_out_channels = out_channels * 2
|
||||
self.condition_scale.append(
|
||||
nn.Sequential(
|
||||
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
|
||||
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
|
||||
self.condition_shift.append(
|
||||
nn.Sequential(
|
||||
nn.Conv2d(out_channels, out_channels, 3, 1, 1), nn.LeakyReLU(0.2, True),
|
||||
nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1)))
|
||||
|
||||
def forward(self, x, return_latents=False, return_rgb=True, randomize_noise=True):
|
||||
"""Forward function for GFPGANv1Clean.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input images.
|
||||
return_latents (bool): Whether to return style latents. Default: False.
|
||||
return_rgb (bool): Whether return intermediate rgb images. Default: True.
|
||||
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
||||
"""
|
||||
conditions = []
|
||||
unet_skips = []
|
||||
out_rgbs = []
|
||||
|
||||
# encoder
|
||||
feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
|
||||
for i in range(self.log_size - 2):
|
||||
feat = self.conv_body_down[i](feat)
|
||||
unet_skips.insert(0, feat)
|
||||
feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
|
||||
|
||||
# style code
|
||||
style_code = self.final_linear(feat.view(feat.size(0), -1))
|
||||
if self.different_w:
|
||||
style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
|
||||
|
||||
# decode
|
||||
for i in range(self.log_size - 2):
|
||||
# add unet skip
|
||||
feat = feat + unet_skips[i]
|
||||
# ResUpLayer
|
||||
feat = self.conv_body_up[i](feat)
|
||||
# generate scale and shift for SFT layers
|
||||
scale = self.condition_scale[i](feat)
|
||||
conditions.append(scale.clone())
|
||||
shift = self.condition_shift[i](feat)
|
||||
conditions.append(shift.clone())
|
||||
# generate rgb images
|
||||
if return_rgb:
|
||||
out_rgbs.append(self.toRGB[i](feat))
|
||||
|
||||
# decoder
|
||||
image, _ = self.stylegan_decoder([style_code],
|
||||
conditions,
|
||||
return_latents=return_latents,
|
||||
input_is_latent=self.input_is_latent,
|
||||
randomize_noise=randomize_noise)
|
||||
|
||||
return image
|
||||
@@ -75,10 +75,6 @@ class GFPGANer():
|
||||
elif arch == 'RestoreFormer':
|
||||
from gfpgan.archs.restoreformer_arch import RestoreFormer
|
||||
self.gfpgan = RestoreFormer()
|
||||
elif arch == 'CodeFormer':
|
||||
from gfpgan.archs.codeformer_arch import CodeFormer
|
||||
self.gfpgan = CodeFormer(
|
||||
dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256'])
|
||||
# initialize face helper
|
||||
self.face_helper = FaceRestoreHelper(
|
||||
upscale,
|
||||
|
||||
@@ -41,7 +41,7 @@ def main():
|
||||
type=str,
|
||||
default='auto',
|
||||
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto')
|
||||
parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights for CodeFormer.')
|
||||
parser.add_argument('-w', '--weight', type=float, default=0.5, help='Adjustable weights.')
|
||||
args = parser.parse_args()
|
||||
|
||||
args = parser.parse_args()
|
||||
@@ -104,11 +104,6 @@ def main():
|
||||
channel_multiplier = 2
|
||||
model_name = 'RestoreFormer'
|
||||
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'
|
||||
elif args.version == 'CodeFormer':
|
||||
arch = 'CodeFormer'
|
||||
channel_multiplier = 2
|
||||
model_name = 'CodeFormer'
|
||||
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth'
|
||||
else:
|
||||
raise ValueError(f'Wrong model version {args.version}.')
|
||||
|
||||
|
||||
Reference in New Issue
Block a user