Refactor variable names for consistency and readability across multiple files

This commit is contained in:
2025-09-30 15:11:27 +01:00
parent 352850a698
commit dda0ee89e8
25 changed files with 1271 additions and 1252 deletions

View File

@@ -67,7 +67,7 @@ CheckOptions:
- key: readability-identifier-naming.LocalVariableCase
value: 'lower_case'
- key: readability-identifier-naming.StructCase
value: 'lower_case'
value: 'CamelCase'
- key: readability-identifier-naming.UnionCase
value: 'lower_case'
- key: readability-identifier-naming.EnumCase

View File

@@ -31,6 +31,7 @@
/**
* Contains an enumeration of all known types of media.
*/
// NOLINTBEGIN(readability-identifier-naming)
typedef enum
{
// Generics, types 0 to 9
@@ -995,6 +996,8 @@ typedef enum
//
} MediaType;
// NOLINTEND(readability-identifier-naming)
/**
* Contains information about a dump image and its contents
*/
@@ -1090,6 +1093,7 @@ typedef enum
/*
* Metadata present for each media.
*/
// NOLINTBEGIN(readability-identifier-naming)
typedef enum
{
/* CD table of contents */
@@ -1167,6 +1171,8 @@ typedef enum
CD_LeadIn = 68
} MediaTagType;
// NOLINTEND(readability-identifier-naming)
#endif // LIBAARUFORMAT_AARU_H
#ifndef _MSC_VER

View File

@@ -45,10 +45,10 @@ typedef struct Crc64Context
typedef struct CdEccContext
{
bool initedEdc;
uint8_t *eccBTable;
uint8_t *eccFTable;
uint32_t *edcTable;
bool inited_edc;
uint8_t *ecc_b_table;
uint8_t *ecc_f_table;
uint32_t *edc_table;
} CdEccContext;
typedef struct Checksums

View File

@@ -58,15 +58,15 @@
AARU_EXPORT int AARU_CALL aaruf_identify(const char *filename);
AARU_EXPORT int AARU_CALL aaruf_identify_stream(FILE *imageStream);
AARU_EXPORT int AARU_CALL aaruf_identify_stream(FILE *image_stream);
AARU_EXPORT void *AARU_CALL aaruf_open(const char *filepath);
AARU_EXPORT void *AARU_CALL aaruf_create(const char *filepath, uint32_t mediaType, uint32_t sectorSize,
uint64_t userSectors, uint64_t negativeSectors, uint64_t overflowSectors,
const char *options, const uint8_t *applicationName,
uint8_t applicationNameLength, uint8_t applicationMajorVersion,
uint8_t applicationMinorVersion);
AARU_EXPORT void *AARU_CALL aaruf_create(const char *filepath, uint32_t media_type, uint32_t sector_size,
uint64_t user_sectors, uint64_t negative_sectors, uint64_t overflow_sectors,
const char *options, const uint8_t *application_name,
uint8_t application_name_length, uint8_t application_major_version,
uint8_t application_minor_version);
AARU_EXPORT int AARU_CALL aaruf_close(void *context);
@@ -79,12 +79,13 @@ AARU_EXPORT void AARU_CALL aaruf_crc64_free(crc64_ctx *ctx);
AARU_EXPORT void AARU_CALL aaruf_crc64_slicing(uint64_t *previous_crc, const uint8_t *data, uint32_t len);
AARU_EXPORT uint64_t AARU_CALL aaruf_crc64_data(const uint8_t *data, uint32_t len);
AARU_EXPORT int32_t AARU_CALL aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data, uint32_t *length);
AARU_EXPORT int32_t AARU_CALL aaruf_read_sector_long(void *context, uint64_t sectorAddress, uint8_t *data,
AARU_EXPORT int32_t AARU_CALL aaruf_read_sector(void *context, uint64_t sector_address, uint8_t *data,
uint32_t *length);
AARU_EXPORT int32_t AARU_CALL aaruf_read_sector_long(void *context, uint64_t sector_address, uint8_t *data,
uint32_t *length);
AARU_EXPORT int32_t AARU_CALL aaruf_write_sector(void *context, uint64_t sectorAddress, const uint8_t *data,
uint8_t sectorStatus, uint32_t length);
AARU_EXPORT int32_t AARU_CALL aaruf_write_sector(void *context, uint64_t sector_address, const uint8_t *data,
uint8_t sector_status, uint32_t length);
AARU_EXPORT int32_t AARU_CALL aaruf_verify_image(void *context);
@@ -99,18 +100,18 @@ AARU_EXPORT bool AARU_CALL aaruf_ecc_cd_is_suffix_correct(void *context, const u
AARU_EXPORT bool AARU_CALL aaruf_ecc_cd_is_suffix_correct_mode2(void *context, const uint8_t *sector);
AARU_EXPORT bool AARU_CALL aaruf_ecc_cd_check(void *context, const uint8_t *address, const uint8_t *data,
uint32_t majorCount, uint32_t minorCount, uint32_t majorMult,
uint32_t minorInc, const uint8_t *ecc, int32_t addressOffset,
int32_t dataOffset, int32_t eccOffset);
uint32_t major_count, uint32_t minor_count, uint32_t major_mult,
uint32_t minor_inc, const uint8_t *ecc, int32_t address_offset,
int32_t data_offset, int32_t ecc_offset);
AARU_EXPORT void AARU_CALL aaruf_ecc_cd_write(void *context, const uint8_t *address, const uint8_t *data,
uint32_t majorCount, uint32_t minorCount, uint32_t majorMult,
uint32_t minorInc, uint8_t *ecc, int32_t addressOffset,
int32_t dataOffset, int32_t eccOffset);
uint32_t major_count, uint32_t minor_count, uint32_t major_mult,
uint32_t minor_inc, uint8_t *ecc, int32_t address_offset,
int32_t data_offset, int32_t ecc_offset);
AARU_EXPORT void AARU_CALL aaruf_ecc_cd_write_sector(void *context, const uint8_t *address, const uint8_t *data,
uint8_t *ecc, int32_t addressOffset, int32_t dataOffset,
int32_t eccOffset);
uint8_t *ecc, int32_t address_offset, int32_t data_offset,
int32_t ecc_offset);
AARU_LOCAL void AARU_CALL aaruf_cd_lba_to_msf(int64_t pos, uint8_t *minute, uint8_t *second, uint8_t *frame);
@@ -120,7 +121,7 @@ AARU_EXPORT void AARU_CALL aaruf_ecc_cd_reconstruct(void *context, uint8_t *sect
AARU_EXPORT uint32_t AARU_CALL aaruf_edc_cd_compute(void *context, uint32_t edc, const uint8_t *src, int size, int pos);
AARU_EXPORT int32_t AARU_CALL aaruf_read_track_sector(void *context, uint8_t *data, uint64_t sectorAddress,
AARU_EXPORT int32_t AARU_CALL aaruf_read_track_sector(void *context, uint8_t *data, uint64_t sector_address,
uint32_t *length, uint8_t track);
AARU_LOCAL int32_t AARU_CALL aaruf_get_media_tag_type_for_datatype(int32_t type);
@@ -148,12 +149,12 @@ AARU_EXPORT size_t AARU_CALL aaruf_flac_encode_redbook_buffer(
uint32_t application_id_len);
AARU_EXPORT int32_t AARU_CALL aaruf_lzma_decode_buffer(uint8_t *dst_buffer, size_t *dst_size, const uint8_t *src_buffer,
size_t *src_size, const uint8_t *props, size_t propsSize);
size_t *src_size, const uint8_t *props, size_t props_size);
AARU_EXPORT int32_t AARU_CALL aaruf_lzma_encode_buffer(uint8_t *dst_buffer, size_t *dst_size, const uint8_t *src_buffer,
size_t src_size, uint8_t *outProps, size_t *outPropsSize,
int32_t level, uint32_t dictSize, int32_t lc, int32_t lp,
int32_t pb, int32_t fb, int32_t numThreads);
size_t src_size, uint8_t *out_props, size_t *out_props_size,
int32_t level, uint32_t dict_size, int32_t lc, int32_t lp,
int32_t pb, int32_t fb, int32_t num_threads);
#if defined(__x86_64__) || defined(__amd64) || defined(_M_AMD64) || defined(_M_X64) || defined(__I386__) || \
defined(__i386__) || defined(__THW_INTEL) || defined(_M_IX86)

View File

@@ -28,8 +28,8 @@ int32_t verify_index_v2(aaruformatContext *ctx);
UT_array *process_index_v3(aaruformatContext *ctx);
int32_t verify_index_v3(aaruformatContext *ctx);
int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry);
int32_t process_ddt_v1(aaruformatContext *ctx, IndexEntry *entry, bool *foundUserDataDdt);
int32_t process_ddt_v2(aaruformatContext *ctx, IndexEntry *entry, bool *foundUserDataDdt);
int32_t process_ddt_v1(aaruformatContext *ctx, IndexEntry *entry, bool *found_user_data_ddt);
int32_t process_ddt_v2(aaruformatContext *ctx, IndexEntry *entry, bool *found_user_data_ddt);
void process_metadata_block(aaruformatContext *ctx, const IndexEntry *entry);
void process_geometry_block(aaruformatContext *ctx, const IndexEntry *entry);
void process_tracks_block(aaruformatContext *ctx, const IndexEntry *entry);
@@ -37,20 +37,20 @@ void process_cicm_block(aaruformatContext *ctx, const IndexEntry *entry);
void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry);
void process_checksum_block(aaruformatContext *ctx, const IndexEntry *entry);
void add_subindex_entries(aaruformatContext *ctx, UT_array *index_entries, IndexEntry *subindex_entry);
int32_t decode_ddt_entry_v1(aaruformatContext *ctx, uint64_t sectorAddress, uint64_t *offset, uint64_t *blockOffset,
uint8_t *sectorStatus);
int32_t decode_ddt_entry_v2(aaruformatContext *ctx, uint64_t sectorAddress, uint64_t *offset, uint64_t *blockOffset,
uint8_t *sectorStatus);
int32_t decode_ddt_single_level_v2(aaruformatContext *ctx, uint64_t sectorAddress, uint64_t *offset,
uint64_t *blockOffset, uint8_t *sectorStatus);
int32_t decode_ddt_multi_level_v2(aaruformatContext *ctx, uint64_t sectorAddress, uint64_t *offset,
uint64_t *blockOffset, uint8_t *sectorStatus);
void set_ddt_entry_v2(aaruformatContext *ctx, uint64_t sectorAddress, uint64_t offset, uint64_t blockOffset,
uint8_t sectorStatus);
void set_ddt_single_level_v2(aaruformatContext *ctx, uint64_t sectorAddress, bool negative, uint64_t offset,
uint64_t blockOffset, uint8_t sectorStatus);
void set_ddt_multi_level_v2(aaruformatContext *ctx, uint64_t sectorAddress, bool negative, uint64_t offset,
uint64_t blockOffset, uint8_t sectorStatus);
int32_t decode_ddt_entry_v1(aaruformatContext *ctx, uint64_t sector_address, uint64_t *offset, uint64_t *block_offset,
uint8_t *sector_status);
int32_t decode_ddt_entry_v2(aaruformatContext *ctx, uint64_t sector_address, uint64_t *offset, uint64_t *block_offset,
uint8_t *sector_status);
int32_t decode_ddt_single_level_v2(aaruformatContext *ctx, uint64_t sector_address, uint64_t *offset,
uint64_t *block_offset, uint8_t *sector_status);
int32_t decode_ddt_multi_level_v2(aaruformatContext *ctx, uint64_t sector_address, uint64_t *offset,
uint64_t *block_offset, uint8_t *sector_status);
void set_ddt_entry_v2(aaruformatContext *ctx, uint64_t sector_address, uint64_t offset, uint64_t block_offset,
uint8_t sector_status);
void set_ddt_single_level_v2(aaruformatContext *ctx, uint64_t sector_address, bool negative, uint64_t offset,
uint64_t block_offset, uint8_t sector_status);
void set_ddt_multi_level_v2(aaruformatContext *ctx, uint64_t sector_address, bool negative, uint64_t offset,
uint64_t block_offset, uint8_t sector_status);
aaru_options parse_options(const char *options);
uint64_t get_filetime_uint64();
int32_t aaruf_close_current_block(aaruformatContext *ctx);

View File

@@ -36,12 +36,12 @@ void process_checksum_block(aaruformatContext *ctx, const IndexEntry *entry)
{
TRACE("Entering process_checksum_block(%p, %p)", ctx, entry);
int pos = 0;
size_t readBytes = 0;
int pos = 0;
size_t read_bytes = 0;
ChecksumHeader checksum_header;
ChecksumEntry const *checksum_entry = NULL;
uint8_t *data = NULL;
int j = 0;
ChecksumEntry const *checksum_entry = NULL;
uint8_t *data = NULL;
int j = 0;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
@@ -61,9 +61,9 @@ void process_checksum_block(aaruformatContext *ctx, const IndexEntry *entry)
// Even if those two checks shall have been done before
TRACE("Reading checksum block header at position %" PRIu64, entry->offset);
readBytes = fread(&checksum_header, 1, sizeof(ChecksumHeader), ctx->imageStream);
read_bytes = fread(&checksum_header, 1, sizeof(ChecksumHeader), ctx->imageStream);
if(readBytes != sizeof(ChecksumHeader))
if(read_bytes != sizeof(ChecksumHeader))
{
memset(&checksum_header, 0, sizeof(ChecksumHeader));
FATAL("Could not read checksums block header, continuing...\n");
@@ -87,9 +87,9 @@ void process_checksum_block(aaruformatContext *ctx, const IndexEntry *entry)
}
TRACE("Reading checksum block data at position %" PRIu64, entry->offset + sizeof(ChecksumHeader));
readBytes = fread(data, 1, checksum_header.length, ctx->imageStream);
read_bytes = fread(data, 1, checksum_header.length, ctx->imageStream);
if(readBytes != checksum_header.length)
if(read_bytes != checksum_header.length)
{
memset(&checksum_header, 0, sizeof(ChecksumHeader));
free(data);

View File

@@ -37,17 +37,17 @@
int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry)
{
TRACE("Entering process_data_block(%p, %p)", ctx, entry);
BlockHeader blockHeader;
int pos = 0;
size_t readBytes = 0;
size_t lzmaSize = 0;
uint8_t *cmpData = NULL;
uint8_t *cstData = NULL;
mediaTagEntry *oldMediaTag = NULL;
mediaTagEntry *mediaTag = NULL;
uint8_t *data = NULL;
int errorNo = 0;
uint8_t lzmaProperties[LZMA_PROPERTIES_LENGTH];
BlockHeader block_header;
int pos = 0;
size_t read_bytes = 0;
size_t lzma_size = 0;
uint8_t *cmp_data = NULL;
uint8_t *cst_data = NULL;
mediaTagEntry *old_media_tag = NULL;
mediaTagEntry *media_tag = NULL;
uint8_t *data = NULL;
int error_no = 0;
uint8_t lzma_properties[LZMA_PROPERTIES_LENGTH];
uint64_t crc64 = 0;
// Check if the context and image stream are valid
@@ -74,9 +74,9 @@ int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry)
if(entry->dataType == NoData) return AARUF_STATUS_OK;
TRACE("Reading block header at position %" PRIu64, entry->offset);
readBytes = fread(&blockHeader, 1, sizeof(BlockHeader), ctx->imageStream);
read_bytes = fread(&block_header, 1, sizeof(BlockHeader), ctx->imageStream);
if(readBytes != sizeof(BlockHeader))
if(read_bytes != sizeof(BlockHeader))
{
FATAL("Could not read block header at %" PRIu64, entry->offset);
@@ -84,22 +84,22 @@ int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry)
return AARUF_STATUS_OK;
}
ctx->imageInfo.ImageSize += blockHeader.cmpLength;
ctx->imageInfo.ImageSize += block_header.cmpLength;
// Unused, skip
if(entry->dataType == UserData)
{
if(blockHeader.sectorSize > ctx->imageInfo.SectorSize)
if(block_header.sectorSize > ctx->imageInfo.SectorSize)
{
TRACE("Setting sector size to %" PRIu64 " bytes", blockHeader.sectorSize);
ctx->imageInfo.SectorSize = blockHeader.sectorSize;
TRACE("Setting sector size to %" PRIu64 " bytes", block_header.sectorSize);
ctx->imageInfo.SectorSize = block_header.sectorSize;
}
TRACE("Exiting process_data_block() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
if(blockHeader.identifier != entry->blockType)
if(block_header.identifier != entry->blockType)
{
TRACE("Incorrect identifier for data block at position %" PRIu64, entry->offset);
@@ -107,10 +107,10 @@ int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry)
return AARUF_STATUS_OK;
}
if(blockHeader.type != entry->dataType)
if(block_header.type != entry->dataType)
{
TRACE("Expected block with data type %4.4s at position %" PRIu64 " but found data type %4.4s",
(char *)&entry->blockType, entry->offset, (char *)&blockHeader.type);
(char *)&entry->blockType, entry->offset, (char *)&block_header.type);
TRACE("Exiting process_data_block() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
@@ -118,21 +118,21 @@ int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry)
TRACE("Found data block with type %4.4s at position %" PRIu64, (char *)&entry->blockType, entry->offset);
if(blockHeader.compression == Lzma || blockHeader.compression == LzmaClauniaSubchannelTransform)
if(block_header.compression == Lzma || block_header.compression == LzmaClauniaSubchannelTransform)
{
if(blockHeader.compression == LzmaClauniaSubchannelTransform && blockHeader.type != CdSectorSubchannel)
if(block_header.compression == LzmaClauniaSubchannelTransform && block_header.type != CdSectorSubchannel)
{
TRACE("Invalid compression type %d for block with data type %d, continuing...", blockHeader.compression,
blockHeader.type);
TRACE("Invalid compression type %d for block with data type %d, continuing...", block_header.compression,
block_header.type);
TRACE("Exiting process_data_block() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
lzmaSize = blockHeader.cmpLength - LZMA_PROPERTIES_LENGTH;
lzma_size = block_header.cmpLength - LZMA_PROPERTIES_LENGTH;
cmpData = (uint8_t *)malloc(lzmaSize);
if(cmpData == NULL)
cmp_data = (uint8_t *)malloc(lzma_size);
if(cmp_data == NULL)
{
TRACE("Cannot allocate memory for block, continuing...");
@@ -140,86 +140,86 @@ int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry)
return AARUF_STATUS_OK;
}
data = (uint8_t *)malloc(blockHeader.length);
data = (uint8_t *)malloc(block_header.length);
if(data == NULL)
{
TRACE("Cannot allocate memory for block, continuing...");
free(cmpData);
free(cmp_data);
TRACE("Exiting process_data_block() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
readBytes = fread(lzmaProperties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(readBytes != LZMA_PROPERTIES_LENGTH)
read_bytes = fread(lzma_properties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(read_bytes != LZMA_PROPERTIES_LENGTH)
{
TRACE("Could not read LZMA properties, continuing...");
free(cmpData);
free(cmp_data);
free(data);
TRACE("Exiting process_data_block() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
readBytes = fread(cmpData, 1, lzmaSize, ctx->imageStream);
if(readBytes != lzmaSize)
read_bytes = fread(cmp_data, 1, lzma_size, ctx->imageStream);
if(read_bytes != lzma_size)
{
TRACE("Could not read compressed block, continuing...");
free(cmpData);
free(cmp_data);
free(data);
TRACE("Exiting process_data_block() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
readBytes = blockHeader.length;
errorNo =
aaruf_lzma_decode_buffer(data, &readBytes, cmpData, &lzmaSize, lzmaProperties, LZMA_PROPERTIES_LENGTH);
read_bytes = block_header.length;
error_no =
aaruf_lzma_decode_buffer(data, &read_bytes, cmp_data, &lzma_size, lzma_properties, LZMA_PROPERTIES_LENGTH);
if(errorNo != 0)
if(error_no != 0)
{
TRACE("Got error %d from LZMA, continuing...", errorNo);
free(cmpData);
TRACE("Got error %d from LZMA, continuing...", error_no);
free(cmp_data);
free(data);
TRACE("Exiting process_data_block() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(readBytes != blockHeader.length)
if(read_bytes != block_header.length)
{
TRACE("Error decompressing block, should be {0} bytes but got {1} bytes., continuing...");
free(cmpData);
free(cmp_data);
free(data);
TRACE("Exiting process_data_block() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(blockHeader.compression == LzmaClauniaSubchannelTransform)
if(block_header.compression == LzmaClauniaSubchannelTransform)
{
cstData = malloc(blockHeader.length);
if(cstData == NULL)
cst_data = malloc(block_header.length);
if(cst_data == NULL)
{
TRACE("Cannot allocate memory for block, continuing...");
free(cmpData);
free(cmp_data);
free(data);
TRACE("Exiting process_data_block() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
aaruf_cst_untransform(data, cstData, blockHeader.length);
aaruf_cst_untransform(data, cst_data, block_header.length);
free(data);
data = cstData;
cstData = NULL;
data = cst_data;
cst_data = NULL;
}
free(cmpData);
free(cmp_data);
}
else if(blockHeader.compression == None)
else if(block_header.compression == None)
{
data = (uint8_t *)malloc(blockHeader.length);
data = (uint8_t *)malloc(block_header.length);
if(data == NULL)
{
fprintf(stderr, "Cannot allocate memory for block, continuing...");
@@ -228,9 +228,9 @@ int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry)
return AARUF_STATUS_OK;
}
readBytes = fread(data, 1, blockHeader.length, ctx->imageStream);
read_bytes = fread(data, 1, block_header.length, ctx->imageStream);
if(readBytes != blockHeader.length)
if(read_bytes != block_header.length)
{
free(data);
fprintf(stderr, "Could not read block, continuing...");
@@ -241,23 +241,23 @@ int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry)
}
else
{
TRACE("Found unknown compression type %d, continuing...", blockHeader.compression);
TRACE("Found unknown compression type %d, continuing...", block_header.compression);
TRACE("Exiting process_data_block() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
if(blockHeader.length > 0)
if(block_header.length > 0)
{
crc64 = aaruf_crc64_data(data, blockHeader.length);
crc64 = aaruf_crc64_data(data, block_header.length);
// Due to how C# wrote it, it is effectively reversed
if(ctx->header.imageMajorVersion <= AARUF_VERSION_V1) crc64 = bswap_64(crc64);
if(crc64 != blockHeader.crc64)
if(crc64 != block_header.crc64)
{
TRACE("Incorrect CRC found: 0x%" PRIx64 " found, expected 0x%" PRIx64 ", continuing...", crc64,
blockHeader.crc64);
block_header.crc64);
TRACE("Exiting process_data_block() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
@@ -304,27 +304,27 @@ int32_t process_data_block(aaruformatContext *ctx, IndexEntry *entry)
ctx->mode2Subheaders = data;
break;
default:
mediaTag = (mediaTagEntry *)malloc(sizeof(mediaTagEntry));
media_tag = (mediaTagEntry *)malloc(sizeof(mediaTagEntry));
if(mediaTag == NULL)
if(media_tag == NULL)
{
TRACE("Cannot allocate memory for media tag entry.");
break;
}
memset(mediaTag, 0, sizeof(mediaTagEntry));
memset(media_tag, 0, sizeof(mediaTagEntry));
mediaTag->type = aaruf_get_media_tag_type_for_datatype(blockHeader.type);
mediaTag->data = data;
mediaTag->length = blockHeader.length;
media_tag->type = aaruf_get_media_tag_type_for_datatype(block_header.type);
media_tag->data = data;
media_tag->length = block_header.length;
HASH_REPLACE_INT(ctx->mediaTags, type, mediaTag, oldMediaTag);
HASH_REPLACE_INT(ctx->mediaTags, type, media_tag, old_media_tag);
if(oldMediaTag != NULL)
if(old_media_tag != NULL)
{
TRACE("Replaced media tag with type %d", oldMediaTag->type);
free(oldMediaTag->data);
free(oldMediaTag);
oldMediaTag = NULL;
TRACE("Replaced media tag with type %d", old_media_tag->type);
free(old_media_tag->data);
free(old_media_tag);
old_media_tag = NULL;
}
break;

View File

@@ -35,11 +35,11 @@
void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
{
TRACE("Entering process_dumphw_block(%p, %p)", ctx, entry);
int pos = 0;
size_t readBytes = 0;
uint64_t crc64 = 0;
uint16_t e = 0;
uint8_t *data = NULL;
int pos = 0;
size_t read_bytes = 0;
uint64_t crc64 = 0;
uint16_t e = 0;
uint8_t *data = NULL;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
@@ -62,9 +62,9 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
// Even if those two checks shall have been done before
TRACE("Reading dump hardware block header at position %" PRIu64, entry->offset);
readBytes = fread(&ctx->dumpHardwareHeader, 1, sizeof(DumpHardwareHeader), ctx->imageStream);
read_bytes = fread(&ctx->dumpHardwareHeader, 1, sizeof(DumpHardwareHeader), ctx->imageStream);
if(readBytes != sizeof(DumpHardwareHeader))
if(read_bytes != sizeof(DumpHardwareHeader))
{
memset(&ctx->dumpHardwareHeader, 0, sizeof(DumpHardwareHeader));
TRACE("Could not read dump hardware block header, continuing...");
@@ -89,9 +89,9 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
return;
}
readBytes = fread(data, 1, ctx->dumpHardwareHeader.length, ctx->imageStream);
read_bytes = fread(data, 1, ctx->dumpHardwareHeader.length, ctx->imageStream);
if(readBytes == ctx->dumpHardwareHeader.length)
if(read_bytes == ctx->dumpHardwareHeader.length)
{
crc64 = aaruf_crc64_data(data, ctx->dumpHardwareHeader.length);
@@ -109,7 +109,7 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
}
free(data);
fseek(ctx->imageStream, -(long)readBytes, SEEK_CUR);
fseek(ctx->imageStream, -(long)read_bytes, SEEK_CUR);
ctx->dumpHardwareEntriesWithData =
(DumpHardwareEntriesWithData *)malloc(sizeof(DumpHardwareEntriesWithData) * ctx->dumpHardwareHeader.entries);
@@ -127,9 +127,9 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
TRACE("Processing %u dump hardware block entries", ctx->dumpHardwareHeader.entries);
for(e = 0; e < ctx->dumpHardwareHeader.entries; e++)
{
readBytes = fread(&ctx->dumpHardwareEntriesWithData[e].entry, 1, sizeof(DumpHardwareEntry), ctx->imageStream);
read_bytes = fread(&ctx->dumpHardwareEntriesWithData[e].entry, 1, sizeof(DumpHardwareEntry), ctx->imageStream);
if(readBytes != sizeof(DumpHardwareEntry))
if(read_bytes != sizeof(DumpHardwareEntry))
{
ctx->dumpHardwareHeader.entries = e;
TRACE("Could not read dump hardware block entry, continuing...");
@@ -145,10 +145,10 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
{
ctx->dumpHardwareEntriesWithData[e]
.manufacturer[ctx->dumpHardwareEntriesWithData[e].entry.manufacturerLength] = 0;
readBytes = fread(ctx->dumpHardwareEntriesWithData[e].manufacturer, 1,
ctx->dumpHardwareEntriesWithData[e].entry.manufacturerLength, ctx->imageStream);
read_bytes = fread(ctx->dumpHardwareEntriesWithData[e].manufacturer, 1,
ctx->dumpHardwareEntriesWithData[e].entry.manufacturerLength, ctx->imageStream);
if(readBytes != ctx->dumpHardwareEntriesWithData[e].entry.manufacturerLength)
if(read_bytes != ctx->dumpHardwareEntriesWithData[e].entry.manufacturerLength)
{
free(ctx->dumpHardwareEntriesWithData[e].manufacturer);
ctx->dumpHardwareEntriesWithData[e].entry.manufacturerLength = 0;
@@ -166,10 +166,10 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
if(ctx->dumpHardwareEntriesWithData[e].model != NULL)
{
ctx->dumpHardwareEntriesWithData[e].model[ctx->dumpHardwareEntriesWithData[e].entry.modelLength] = 0;
readBytes = fread(ctx->dumpHardwareEntriesWithData[e].model, 1,
ctx->dumpHardwareEntriesWithData[e].entry.modelLength, ctx->imageStream);
read_bytes = fread(ctx->dumpHardwareEntriesWithData[e].model, 1,
ctx->dumpHardwareEntriesWithData[e].entry.modelLength, ctx->imageStream);
if(readBytes != ctx->dumpHardwareEntriesWithData[e].entry.modelLength)
if(read_bytes != ctx->dumpHardwareEntriesWithData[e].entry.modelLength)
{
free(ctx->dumpHardwareEntriesWithData[e].model);
ctx->dumpHardwareEntriesWithData[e].entry.modelLength = 0;
@@ -187,10 +187,10 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
{
ctx->dumpHardwareEntriesWithData[e].revision[ctx->dumpHardwareEntriesWithData[e].entry.revisionLength] =
0;
readBytes = fread(ctx->dumpHardwareEntriesWithData[e].revision, 1,
ctx->dumpHardwareEntriesWithData[e].entry.revisionLength, ctx->imageStream);
read_bytes = fread(ctx->dumpHardwareEntriesWithData[e].revision, 1,
ctx->dumpHardwareEntriesWithData[e].entry.revisionLength, ctx->imageStream);
if(readBytes != ctx->dumpHardwareEntriesWithData[e].entry.revisionLength)
if(read_bytes != ctx->dumpHardwareEntriesWithData[e].entry.revisionLength)
{
free(ctx->dumpHardwareEntriesWithData[e].revision);
ctx->dumpHardwareEntriesWithData[e].entry.revisionLength = 0;
@@ -209,10 +209,10 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
{
ctx->dumpHardwareEntriesWithData[e].firmware[ctx->dumpHardwareEntriesWithData[e].entry.firmwareLength] =
0;
readBytes = fread(ctx->dumpHardwareEntriesWithData[e].firmware, 1,
ctx->dumpHardwareEntriesWithData[e].entry.firmwareLength, ctx->imageStream);
read_bytes = fread(ctx->dumpHardwareEntriesWithData[e].firmware, 1,
ctx->dumpHardwareEntriesWithData[e].entry.firmwareLength, ctx->imageStream);
if(readBytes != ctx->dumpHardwareEntriesWithData[e].entry.firmwareLength)
if(read_bytes != ctx->dumpHardwareEntriesWithData[e].entry.firmwareLength)
{
free(ctx->dumpHardwareEntriesWithData[e].firmware);
ctx->dumpHardwareEntriesWithData[e].entry.firmwareLength = 0;
@@ -230,10 +230,10 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
if(ctx->dumpHardwareEntriesWithData[e].serial != NULL)
{
ctx->dumpHardwareEntriesWithData[e].serial[ctx->dumpHardwareEntriesWithData[e].entry.serialLength] = 0;
readBytes = fread(ctx->dumpHardwareEntriesWithData[e].serial, 1,
ctx->dumpHardwareEntriesWithData[e].entry.serialLength, ctx->imageStream);
read_bytes = fread(ctx->dumpHardwareEntriesWithData[e].serial, 1,
ctx->dumpHardwareEntriesWithData[e].entry.serialLength, ctx->imageStream);
if(readBytes != ctx->dumpHardwareEntriesWithData[e].entry.serialLength)
if(read_bytes != ctx->dumpHardwareEntriesWithData[e].entry.serialLength)
{
free(ctx->dumpHardwareEntriesWithData[e].serial);
ctx->dumpHardwareEntriesWithData[e].entry.serialLength = 0;
@@ -251,10 +251,10 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
{
ctx->dumpHardwareEntriesWithData[e]
.softwareName[ctx->dumpHardwareEntriesWithData[e].entry.softwareNameLength] = 0;
readBytes = fread(ctx->dumpHardwareEntriesWithData[e].softwareName, 1,
ctx->dumpHardwareEntriesWithData[e].entry.softwareNameLength, ctx->imageStream);
read_bytes = fread(ctx->dumpHardwareEntriesWithData[e].softwareName, 1,
ctx->dumpHardwareEntriesWithData[e].entry.softwareNameLength, ctx->imageStream);
if(readBytes != ctx->dumpHardwareEntriesWithData[e].entry.softwareNameLength)
if(read_bytes != ctx->dumpHardwareEntriesWithData[e].entry.softwareNameLength)
{
free(ctx->dumpHardwareEntriesWithData[e].softwareName);
ctx->dumpHardwareEntriesWithData[e].entry.softwareNameLength = 0;
@@ -273,10 +273,10 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
{
ctx->dumpHardwareEntriesWithData[e]
.softwareVersion[ctx->dumpHardwareEntriesWithData[e].entry.softwareVersionLength] = 0;
readBytes = fread(ctx->dumpHardwareEntriesWithData[e].softwareVersion, 1,
ctx->dumpHardwareEntriesWithData[e].entry.softwareVersionLength, ctx->imageStream);
read_bytes = fread(ctx->dumpHardwareEntriesWithData[e].softwareVersion, 1,
ctx->dumpHardwareEntriesWithData[e].entry.softwareVersionLength, ctx->imageStream);
if(readBytes != ctx->dumpHardwareEntriesWithData[e].entry.softwareVersionLength)
if(read_bytes != ctx->dumpHardwareEntriesWithData[e].entry.softwareVersionLength)
{
free(ctx->dumpHardwareEntriesWithData[e].softwareVersion);
ctx->dumpHardwareEntriesWithData[e].entry.softwareVersionLength = 0;
@@ -296,11 +296,11 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
ctx->dumpHardwareEntriesWithData[e]
.softwareOperatingSystem[ctx->dumpHardwareEntriesWithData[e].entry.softwareOperatingSystemLength] =
0;
readBytes =
read_bytes =
fread(ctx->dumpHardwareEntriesWithData[e].softwareOperatingSystem, 1,
ctx->dumpHardwareEntriesWithData[e].entry.softwareOperatingSystemLength, ctx->imageStream);
if(readBytes != ctx->dumpHardwareEntriesWithData[e].entry.softwareOperatingSystemLength)
if(read_bytes != ctx->dumpHardwareEntriesWithData[e].entry.softwareOperatingSystemLength)
{
free(ctx->dumpHardwareEntriesWithData[e].softwareOperatingSystem);
ctx->dumpHardwareEntriesWithData[e].entry.softwareOperatingSystemLength = 0;
@@ -320,10 +320,10 @@ void process_dumphw_block(aaruformatContext *ctx, const IndexEntry *entry)
continue;
}
readBytes = fread(ctx->dumpHardwareEntriesWithData[e].extents, sizeof(DumpExtent),
ctx->dumpHardwareEntriesWithData[e].entry.extents, ctx->imageStream);
read_bytes = fread(ctx->dumpHardwareEntriesWithData[e].extents, sizeof(DumpExtent),
ctx->dumpHardwareEntriesWithData[e].entry.extents, ctx->imageStream);
if(readBytes != ctx->dumpHardwareEntriesWithData->entry.extents)
if(read_bytes != ctx->dumpHardwareEntriesWithData->entry.extents)
{
free(ctx->dumpHardwareEntriesWithData[e].extents);
TRACE("Could not read dump hardware block extents, continuing...");

View File

@@ -35,8 +35,8 @@
void process_metadata_block(aaruformatContext *ctx, const IndexEntry *entry)
{
TRACE("Entering process_metadata_block(%p, %p)", ctx, entry);
int pos = 0;
size_t readBytes = 0;
int pos = 0;
size_t read_bytes = 0;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
@@ -59,9 +59,9 @@ void process_metadata_block(aaruformatContext *ctx, const IndexEntry *entry)
// Even if those two checks shall have been done before
TRACE("Reading metadata block header at position %" PRIu64, entry->offset);
readBytes = fread(&ctx->metadataBlockHeader, 1, sizeof(MetadataBlockHeader), ctx->imageStream);
read_bytes = fread(&ctx->metadataBlockHeader, 1, sizeof(MetadataBlockHeader), ctx->imageStream);
if(readBytes != sizeof(MetadataBlockHeader))
if(read_bytes != sizeof(MetadataBlockHeader))
{
memset(&ctx->metadataBlockHeader, 0, sizeof(MetadataBlockHeader));
FATAL("Could not read metadata block header, continuing...");
@@ -94,9 +94,9 @@ void process_metadata_block(aaruformatContext *ctx, const IndexEntry *entry)
TRACE("Reading metadata block of size %u at position %" PRIu64, ctx->metadataBlockHeader.blockSize,
entry->offset + sizeof(MetadataBlockHeader));
readBytes = fread(ctx->metadataBlock, 1, ctx->metadataBlockHeader.blockSize, ctx->imageStream);
read_bytes = fread(ctx->metadataBlock, 1, ctx->metadataBlockHeader.blockSize, ctx->imageStream);
if(readBytes != ctx->metadataBlockHeader.blockSize)
if(read_bytes != ctx->metadataBlockHeader.blockSize)
{
memset(&ctx->metadataBlockHeader, 0, sizeof(MetadataBlockHeader));
free(ctx->metadataBlock);
@@ -249,7 +249,7 @@ void process_metadata_block(aaruformatContext *ctx, const IndexEntry *entry)
void process_geometry_block(aaruformatContext *ctx, const IndexEntry *entry)
{
TRACE("Entering process_geometry_block(%p, %p)", ctx, entry);
size_t readBytes = 0;
size_t read_bytes = 0;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
@@ -270,9 +270,9 @@ void process_geometry_block(aaruformatContext *ctx, const IndexEntry *entry)
}
TRACE("Reading geometry block header at position %" PRIu64, entry->offset);
readBytes = fread(&ctx->geometryBlock, 1, sizeof(GeometryBlockHeader), ctx->imageStream);
read_bytes = fread(&ctx->geometryBlock, 1, sizeof(GeometryBlockHeader), ctx->imageStream);
if(readBytes != sizeof(GeometryBlockHeader))
if(read_bytes != sizeof(GeometryBlockHeader))
{
memset(&ctx->geometryBlock, 0, sizeof(GeometryBlockHeader));
TRACE("Could not read geometry block header, continuing...");
@@ -309,8 +309,8 @@ void process_geometry_block(aaruformatContext *ctx, const IndexEntry *entry)
void process_cicm_block(aaruformatContext *ctx, const IndexEntry *entry)
{
TRACE("Entering process_cicm_block(%p, %p)", ctx, entry);
int pos = 0;
size_t readBytes = 0;
int pos = 0;
size_t read_bytes = 0;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
@@ -334,9 +334,9 @@ void process_cicm_block(aaruformatContext *ctx, const IndexEntry *entry)
// Even if those two checks shall have been done before
TRACE("Reading CICM XML metadata block header at position %" PRIu64, entry->offset);
readBytes = fread(&ctx->cicmBlockHeader, 1, sizeof(CicmMetadataBlock), ctx->imageStream);
read_bytes = fread(&ctx->cicmBlockHeader, 1, sizeof(CicmMetadataBlock), ctx->imageStream);
if(readBytes != sizeof(CicmMetadataBlock))
if(read_bytes != sizeof(CicmMetadataBlock))
{
memset(&ctx->cicmBlockHeader, 0, sizeof(CicmMetadataBlock));
TRACE("Could not read CICM XML metadata header, continuing...");
@@ -364,9 +364,9 @@ void process_cicm_block(aaruformatContext *ctx, const IndexEntry *entry)
TRACE("Reading CICM XML metadata block of size %u at position %" PRIu64, ctx->cicmBlockHeader.length,
entry->offset + sizeof(CicmMetadataBlock));
readBytes = fread(ctx->cicmBlock, 1, ctx->cicmBlockHeader.length, ctx->imageStream);
read_bytes = fread(ctx->cicmBlock, 1, ctx->cicmBlockHeader.length, ctx->imageStream);
if(readBytes != ctx->metadataBlockHeader.blockSize)
if(read_bytes != ctx->metadataBlockHeader.blockSize)
{
memset(&ctx->cicmBlockHeader, 0, sizeof(CicmMetadataBlock));
free(ctx->cicmBlock);

View File

@@ -34,9 +34,9 @@
*/
void process_tracks_block(aaruformatContext *ctx, const IndexEntry *entry)
{
int pos = 0;
size_t readBytes = 0;
uint64_t crc64 = 0;
int pos = 0;
size_t read_bytes = 0;
uint64_t crc64 = 0;
int j = 0, k = 0;
// Check if the context and image stream are valid
@@ -56,9 +56,9 @@ void process_tracks_block(aaruformatContext *ctx, const IndexEntry *entry)
}
// Even if those two checks shall have been done before
readBytes = fread(&ctx->tracksHeader, 1, sizeof(TracksHeader), ctx->imageStream);
read_bytes = fread(&ctx->tracksHeader, 1, sizeof(TracksHeader), ctx->imageStream);
if(readBytes != sizeof(TracksHeader))
if(read_bytes != sizeof(TracksHeader))
{
memset(&ctx->tracksHeader, 0, sizeof(TracksHeader));
TRACE("Could not read tracks header, continuing...\n");
@@ -82,9 +82,9 @@ void process_tracks_block(aaruformatContext *ctx, const IndexEntry *entry)
return;
}
readBytes = fread(ctx->trackEntries, sizeof(TrackEntry), ctx->tracksHeader.entries, ctx->imageStream);
read_bytes = fread(ctx->trackEntries, sizeof(TrackEntry), ctx->tracksHeader.entries, ctx->imageStream);
if(readBytes != ctx->tracksHeader.entries)
if(read_bytes != ctx->tracksHeader.entries)
{
memset(&ctx->tracksHeader, 0, sizeof(TracksHeader));
free(ctx->trackEntries);

View File

@@ -44,32 +44,32 @@ void *aaruf_ecc_cd_init()
if(context == NULL) return NULL;
TRACE("Allocating memory for ECC F table");
context->eccFTable = (uint8_t *)malloc(sizeof(uint8_t) * 256);
context->ecc_f_table = (uint8_t *)malloc(sizeof(uint8_t) * 256);
if(context->eccFTable == NULL)
if(context->ecc_f_table == NULL)
{
free(context);
return NULL;
}
TRACE("Allocating memory for ECC B table");
context->eccBTable = (uint8_t *)malloc(sizeof(uint8_t) * 256);
context->ecc_b_table = (uint8_t *)malloc(sizeof(uint8_t) * 256);
if(context->eccBTable == NULL)
if(context->ecc_b_table == NULL)
{
free(context->eccFTable);
free(context->ecc_f_table);
free(context);
return NULL;
}
TRACE("Allocating memory for EDC table");
context->edcTable = (uint32_t *)malloc(sizeof(uint32_t) * 256);
context->edc_table = (uint32_t *)malloc(sizeof(uint32_t) * 256);
if(context->edcTable == NULL)
if(context->edc_table == NULL)
{
free(context->eccFTable);
free(context->eccBTable);
free(context->ecc_f_table);
free(context->ecc_b_table);
free(context);
return NULL;
}
@@ -77,15 +77,15 @@ void *aaruf_ecc_cd_init()
TRACE("Initializing EDC tables");
for(i = 0; i < 256; i++)
{
edc = i;
j = (uint32_t)((i << 1) ^ ((i & 0x80) == 0x80 ? 0x11D : 0));
context->eccFTable[i] = (uint8_t)j;
context->eccBTable[i ^ j] = (uint8_t)i;
edc = i;
j = (uint32_t)((i << 1) ^ ((i & 0x80) == 0x80 ? 0x11D : 0));
context->ecc_f_table[i] = (uint8_t)j;
context->ecc_b_table[i ^ j] = (uint8_t)i;
for(j = 0; j < 8; j++) edc = (edc >> 1) ^ ((edc & 1) > 0 ? 0xD8018001 : 0);
context->edcTable[i] = edc;
context->edc_table[i] = edc;
}
context->initedEdc = true;
context->inited_edc = true;
TRACE("Exiting aaruf_ecc_cd_init()");
return context;
@@ -102,7 +102,7 @@ bool aaruf_ecc_cd_is_suffix_correct(void *context, const uint8_t *sector)
{
TRACE("Entering aaruf_ecc_cd_is_suffix_correct(%p, %p)", context, sector);
CdEccContext *ctx;
uint32_t storedEdc, edc, calculatedEdc;
uint32_t stored_edc, edc, calculated_edc;
int size, pos;
if(context == NULL || sector == NULL)
@@ -112,7 +112,7 @@ bool aaruf_ecc_cd_is_suffix_correct(void *context, const uint8_t *sector)
}
ctx = (CdEccContext *)context;
if(!ctx->initedEdc)
if(!ctx->inited_edc)
{
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct() without initialized context");
return false;
@@ -127,29 +127,32 @@ bool aaruf_ecc_cd_is_suffix_correct(void *context, const uint8_t *sector)
return false;
}
bool correctEccP = aaruf_ecc_cd_check(context, sector, sector, 86, 24, 2, 86, sector, 0xC, 0x10, 0x81C);
if(!correctEccP)
bool correct_ecc_p = aaruf_ecc_cd_check(context, sector, sector, 86, 24, 2, 86, sector, 0xC, 0x10, 0x81C);
if(!correct_ecc_p)
{
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct() = false");
return false;
}
bool correctEccQ = aaruf_ecc_cd_check(context, sector, sector, 52, 43, 86, 88, sector, 0xC, 0x10, 0x81C + 0xAC);
if(!correctEccQ)
bool correct_ecc_q = aaruf_ecc_cd_check(context, sector, sector, 52, 43, 86, 88, sector, 0xC, 0x10, 0x81C + 0xAC);
if(!correct_ecc_q)
{
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct() = false");
return false;
}
storedEdc = (sector[0x813] << 24) + (sector[0x812] << 16) + (sector[0x811] << 8) + sector[0x810];
edc = 0;
size = 0x810;
pos = 0;
for(; size > 0; size--) edc = (edc >> 8) ^ ctx->edcTable[(edc ^ sector[pos++]) & 0xFF];
calculatedEdc = edc;
stored_edc = (uint32_t)sector[0x808] | (uint32_t)sector[0x809] << 8 | (uint32_t)sector[0x80A] << 16 |
(uint32_t)sector[0x80B] << 24;
calculated_edc = aaruf_edc_cd_compute(context, 0, sector + 16, size, pos);
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct() = %u == %u", calculatedEdc, storedEdc);
return calculatedEdc == storedEdc;
if(stored_edc != calculated_edc)
{
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct() = false");
return false;
}
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct() = %u == %u", calculated_edc, stored_edc);
return calculated_edc == stored_edc;
}
/**
@@ -163,7 +166,7 @@ bool aaruf_ecc_cd_is_suffix_correct_mode2(void *context, const uint8_t *sector)
{
TRACE("Entering aaruf_ecc_cd_is_suffix_correct_mode2(%p, %p)", context, sector);
CdEccContext *ctx;
uint32_t storedEdc, edc, calculatedEdc;
uint32_t stored_edc, edc, calculated_edc;
int size, pos;
uint8_t zeroaddress[4];
@@ -175,7 +178,7 @@ bool aaruf_ecc_cd_is_suffix_correct_mode2(void *context, const uint8_t *sector)
ctx = (CdEccContext *)context;
if(!ctx->initedEdc)
if(!ctx->inited_edc)
{
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct_mode2() without initialized context");
return false;
@@ -183,27 +186,25 @@ bool aaruf_ecc_cd_is_suffix_correct_mode2(void *context, const uint8_t *sector)
memset(&zeroaddress, 4, sizeof(uint8_t));
bool correctEccP = aaruf_ecc_cd_check(context, zeroaddress, sector, 86, 24, 2, 86, sector, 0, 0x10, 0x81C);
if(!correctEccP)
bool correct_ecc_p = aaruf_ecc_cd_check(context, zeroaddress, sector, 86, 24, 2, 86, sector, 0, 0x10, 0x81C);
if(!correct_ecc_p)
{
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct_mode2() = false");
return false;
}
bool correctEccQ = aaruf_ecc_cd_check(context, zeroaddress, sector, 52, 43, 86, 88, sector, 0, 0x10, 0x81C + 0xAC);
if(!correctEccQ)
bool correct_ecc_q =
aaruf_ecc_cd_check(context, zeroaddress, sector, 52, 43, 86, 88, sector, 0, 0x10, 0x81C + 0xAC);
if(!correct_ecc_q)
{
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct_mode2() = false");
return false;
}
storedEdc = (sector[0x81B] << 24) + (sector[0x81A] << 16) + (sector[0x819] << 8) + sector[0x818];
edc = 0;
size = 0x808;
pos = 0x10;
for(; size > 0; size--) edc = (edc >> 8) ^ ctx->edcTable[(edc ^ sector[pos++]) & 0xFF];
calculatedEdc = edc;
stored_edc = (uint32_t)sector[0x92C] | (uint32_t)sector[0x92D] << 8 | (uint32_t)sector[0x92E] << 16 |
(uint32_t)sector[0x92F] << 24;
calculated_edc = aaruf_edc_cd_compute(context, 0, sector + 16, size, pos);
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct_mode2() = %u == %u", calculatedEdc, storedEdc);
return calculatedEdc == storedEdc;
TRACE("Exiting aaruf_ecc_cd_is_suffix_correct_mode2() = %u == %u", calculated_edc, stored_edc);
return calculated_edc == stored_edc;
}
/**
@@ -212,26 +213,26 @@ bool aaruf_ecc_cd_is_suffix_correct_mode2(void *context, const uint8_t *sector)
* @param context Pointer to the ECC context.
* @param address Pointer to the address field.
* @param data Pointer to the data field.
* @param majorCount Number of major iterations.
* @param minorCount Number of minor iterations.
* @param majorMult Major multiplier.
* @param minorInc Minor increment.
* @param major_count Number of major iterations.
* @param minor_count Number of minor iterations.
* @param major_mult Major multiplier.
* @param minor_inc Minor increment.
* @param ecc Pointer to the ECC field.
* @param addressOffset Offset for the address field.
* @param dataOffset Offset for the data field.
* @param eccOffset Offset for the ECC field.
* @param address_offset Offset for the address field.
* @param data_offset Offset for the data field.
* @param ecc_offset Offset for the ECC field.
* @return true if ECC is correct, false otherwise.
*/
bool aaruf_ecc_cd_check(void *context, const uint8_t *address, const uint8_t *data, uint32_t majorCount,
uint32_t minorCount, uint32_t majorMult, uint32_t minorInc, const uint8_t *ecc,
int32_t addressOffset, int32_t dataOffset, int32_t eccOffset)
bool aaruf_ecc_cd_check(void *context, const uint8_t *address, const uint8_t *data, uint32_t major_count,
uint32_t minor_count, uint32_t major_mult, uint32_t minor_inc, const uint8_t *ecc,
int32_t address_offset, int32_t data_offset, int32_t ecc_offset)
{
TRACE("Entering aaruf_ecc_cd_check(%p, %p, %p, %u, %u, %u, %u, %p, %d, %d, %d)", context, address, data, majorCount,
minorCount, majorMult, minorInc, ecc, addressOffset, dataOffset, eccOffset);
TRACE("Entering aaruf_ecc_cd_check(%p, %p, %p, %u, %u, %u, %u, %p, %d, %d, %d)", context, address, data,
major_count, minor_count, major_mult, minor_inc, ecc, address_offset, data_offset, ecc_offset);
CdEccContext *ctx;
uint32_t size, major, idx, minor;
uint8_t eccA, eccB, temp;
uint8_t ecc_a, ecc_b, temp;
if(context == NULL || address == NULL || data == NULL || ecc == NULL)
{
@@ -241,30 +242,30 @@ bool aaruf_ecc_cd_check(void *context, const uint8_t *address, const uint8_t *da
ctx = (CdEccContext *)context;
if(!ctx->initedEdc)
if(!ctx->inited_edc)
{
TRACE("Exiting aaruf_ecc_cd_check() without initialized context");
return false;
}
size = majorCount * minorCount;
for(major = 0; major < majorCount; major++)
size = major_count * minor_count;
for(major = 0; major < major_count; major++)
{
idx = (major >> 1) * majorMult + (major & 1);
eccA = 0;
eccB = 0;
for(minor = 0; minor < minorCount; minor++)
idx = (major >> 1) * major_mult + (major & 1);
ecc_a = 0;
ecc_b = 0;
for(minor = 0; minor < minor_count; minor++)
{
temp = idx < 4 ? address[idx + addressOffset] : data[idx + dataOffset - 4];
idx += minorInc;
temp = idx < 4 ? address[idx + address_offset] : data[idx + data_offset - 4];
idx += minor_inc;
if(idx >= size) idx -= size;
eccA ^= temp;
eccB ^= temp;
eccA = ctx->eccFTable[eccA];
ecc_a ^= temp;
ecc_b ^= temp;
ecc_a = ctx->ecc_f_table[ecc_a];
}
eccA = ctx->eccBTable[ctx->eccFTable[eccA] ^ eccB];
if(ecc[major + eccOffset] != eccA || ecc[major + majorCount + eccOffset] != (eccA ^ eccB))
ecc_a = ctx->ecc_b_table[ctx->ecc_f_table[ecc_a] ^ ecc_b];
if(ecc[major + ecc_offset] != ecc_a || ecc[major + major_count + ecc_offset] != (ecc_a ^ ecc_b))
{
TRACE("Exiting aaruf_ecc_cd_check() = false, ECC mismatch at major %u", major);
return false;
@@ -281,25 +282,25 @@ bool aaruf_ecc_cd_check(void *context, const uint8_t *address, const uint8_t *da
* @param context Pointer to the ECC context.
* @param address Pointer to the address field.
* @param data Pointer to the data field.
* @param majorCount Number of major iterations.
* @param minorCount Number of minor iterations.
* @param majorMult Major multiplier.
* @param minorInc Minor increment.
* @param major_count Number of major iterations.
* @param minor_count Number of minor iterations.
* @param major_mult Major multiplier.
* @param minor_inc Minor increment.
* @param ecc Pointer to the ECC field to write.
* @param addressOffset Offset for the address field.
* @param dataOffset Offset for the data field.
* @param eccOffset Offset for the ECC field.
* @param address_offset Offset for the address field.
* @param data_offset Offset for the data field.
* @param ecc_offset Offset for the ECC field.
*/
void aaruf_ecc_cd_write(void *context, const uint8_t *address, const uint8_t *data, uint32_t majorCount,
uint32_t minorCount, uint32_t majorMult, uint32_t minorInc, uint8_t *ecc, int32_t addressOffset,
int32_t dataOffset, int32_t eccOffset)
void aaruf_ecc_cd_write(void *context, const uint8_t *address, const uint8_t *data, uint32_t major_count,
uint32_t minor_count, uint32_t major_mult, uint32_t minor_inc, uint8_t *ecc,
int32_t address_offset, int32_t data_offset, int32_t ecc_offset)
{
TRACE("Entering aaruf_ecc_cd_write(%p, %p, %p, %u, %u, %u, %u, %p, %d, %d, %d)", context, address, data, majorCount,
minorCount, majorMult, minorInc, ecc, addressOffset, dataOffset, eccOffset);
TRACE("Entering aaruf_ecc_cd_write(%p, %p, %p, %u, %u, %u, %u, %p, %d, %d, %d)", context, address, data,
major_count, minor_count, major_mult, minor_inc, ecc, address_offset, data_offset, ecc_offset);
CdEccContext *ctx;
uint32_t size, major, idx, minor;
uint8_t eccA, eccB, temp;
uint8_t ecc_a, ecc_b, temp;
if(context == NULL || address == NULL || data == NULL || ecc == NULL)
{
@@ -309,32 +310,32 @@ void aaruf_ecc_cd_write(void *context, const uint8_t *address, const uint8_t *da
ctx = (CdEccContext *)context;
if(!ctx->initedEdc)
if(!ctx->inited_edc)
{
TRACE("Exiting aaruf_ecc_cd_write() without initialized context");
return;
}
size = majorCount * minorCount;
for(major = 0; major < majorCount; major++)
size = major_count * minor_count;
for(major = 0; major < major_count; major++)
{
idx = (major >> 1) * majorMult + (major & 1);
eccA = 0;
eccB = 0;
idx = (major >> 1) * major_mult + (major & 1);
ecc_a = 0;
ecc_b = 0;
for(minor = 0; minor < minorCount; minor++)
for(minor = 0; minor < minor_count; minor++)
{
temp = idx < 4 ? address[idx + addressOffset] : data[idx + dataOffset - 4];
idx += minorInc;
temp = idx < 4 ? address[idx + address_offset] : data[idx + data_offset - 4];
idx += minor_inc;
if(idx >= size) idx -= size;
eccA ^= temp;
eccB ^= temp;
eccA = ctx->eccFTable[eccA];
ecc_a ^= temp;
ecc_b ^= temp;
ecc_a = ctx->ecc_f_table[ecc_a];
}
eccA = ctx->eccBTable[ctx->eccFTable[eccA] ^ eccB];
ecc[major + eccOffset] = eccA;
ecc[major + majorCount + eccOffset] = (eccA ^ eccB);
ecc_a = ctx->ecc_b_table[ctx->ecc_f_table[ecc_a] ^ ecc_b];
ecc[major + ecc_offset] = ecc_a;
ecc[major + major_count + ecc_offset] = (ecc_a ^ ecc_b);
}
TRACE("Exiting aaruf_ecc_cd_write()");
@@ -347,18 +348,19 @@ void aaruf_ecc_cd_write(void *context, const uint8_t *address, const uint8_t *da
* @param address Pointer to the address field.
* @param data Pointer to the data field.
* @param ecc Pointer to the ECC field to write.
* @param addressOffset Offset for the address field.
* @param dataOffset Offset for the data field.
* @param eccOffset Offset for the ECC field.
* @param address_offset Offset for the address field.
* @param data_offset Offset for the data field.
* @param ecc_offset Offset for the ECC field.
*/
void aaruf_ecc_cd_write_sector(void *context, const uint8_t *address, const uint8_t *data, uint8_t *ecc,
int32_t addressOffset, int32_t dataOffset, int32_t eccOffset)
int32_t address_offset, int32_t data_offset, int32_t ecc_offset)
{
TRACE("Entering aaruf_ecc_cd_write_sector(%p, %p, %p, %p, %d, %d, %d)", context, address, data, ecc, addressOffset,
dataOffset, eccOffset);
TRACE("Entering aaruf_ecc_cd_write_sector(%p, %p, %p, %p, %d, %d, %d)", context, address, data, ecc, address_offset,
data_offset, ecc_offset);
aaruf_ecc_cd_write(context, address, data, 86, 24, 2, 86, ecc, addressOffset, dataOffset, eccOffset); // P
aaruf_ecc_cd_write(context, address, data, 52, 43, 86, 88, ecc, addressOffset, dataOffset, eccOffset + 0xAC); // Q
aaruf_ecc_cd_write(context, address, data, 86, 24, 2, 86, ecc, address_offset, data_offset, ecc_offset); // P
aaruf_ecc_cd_write(context, address, data, 52, 43, 86, 88, ecc, address_offset, data_offset,
ecc_offset + 0xAC); // Q
TRACE("Exiting aaruf_ecc_cd_write_sector()");
}
@@ -460,7 +462,7 @@ void aaruf_ecc_cd_reconstruct(void *context, uint8_t *sector, uint8_t type)
{
TRACE("Entering aaruf_ecc_cd_reconstruct(%p, %p, %u)", context, sector, type);
uint32_t computedEdc;
uint32_t computed_edc;
uint8_t zeroaddress[4];
CdEccContext *ctx;
@@ -473,7 +475,7 @@ void aaruf_ecc_cd_reconstruct(void *context, uint8_t *sector, uint8_t type)
ctx = (CdEccContext *)context;
if(!ctx->initedEdc)
if(!ctx->inited_edc)
{
TRACE("Exiting aaruf_ecc_cd_reconstruct() without initialized context");
return;
@@ -485,16 +487,16 @@ void aaruf_ecc_cd_reconstruct(void *context, uint8_t *sector, uint8_t type)
// Compute EDC
//
case CdMode1:
computedEdc = aaruf_edc_cd_compute(context, 0, sector, 0x810, 0);
memcpy(sector + 0x810, &computedEdc, 4);
computed_edc = aaruf_edc_cd_compute(context, 0, sector, 0x810, 0);
memcpy(sector + 0x810, &computed_edc, 4);
break;
case CdMode2Form1:
computedEdc = aaruf_edc_cd_compute(context, 0, sector, 0x808, 0x10);
memcpy(sector + 0x818, &computedEdc, 4);
computed_edc = aaruf_edc_cd_compute(context, 0, sector, 0x808, 0x10);
memcpy(sector + 0x818, &computed_edc, 4);
break;
case CdMode2Form2:
computedEdc = aaruf_edc_cd_compute(context, 0, sector, 0x91C, 0x10);
memcpy(sector + 0x92C, &computedEdc, 4);
computed_edc = aaruf_edc_cd_compute(context, 0, sector, 0x91C, 0x10);
memcpy(sector + 0x92C, &computed_edc, 4);
break;
default:
TRACE("Exiting aaruf_ecc_cd_reconstruct() with unknown type %u", type);
@@ -560,13 +562,13 @@ uint32_t aaruf_edc_cd_compute(void *context, uint32_t edc, const uint8_t *src, i
ctx = (CdEccContext *)context;
if(!ctx->initedEdc)
if(!ctx->inited_edc)
{
TRACE("Exiting aaruf_edc_cd_compute() without initialized context");
return 0;
}
for(; size > 0; size--) edc = (edc >> 8) ^ ctx->edcTable[(edc ^ src[pos++]) & 0xFF];
for(; size > 0; size--) edc = (edc >> 8) ^ ctx->edc_table[(edc ^ src[pos++]) & 0xFF];
TRACE("Exiting aaruf_edc_cd_compute() = 0x%08X", edc);
return edc;

View File

@@ -41,9 +41,9 @@ int aaruf_close(void *context)
{
TRACE("Entering aaruf_close(%p)", context);
int i = 0;
mediaTagEntry *mediaTag = NULL;
mediaTagEntry *tmpMediaTag = NULL;
int i = 0;
mediaTagEntry *media_tag = NULL;
mediaTagEntry *tmp_media_tag = NULL;
if(context == NULL)
{
@@ -90,95 +90,97 @@ int aaruf_close(void *context)
// Write cached secondary table to file end and update primary table entry with its position
// Check if we have a cached table that needs to be written (either it has an offset or exists in memory)
bool hasCachedSecondaryDdt = (ctx->userDataDdtHeader.tableShift > 0) &&
((ctx->cachedDdtOffset != 0) ||
(ctx->cachedSecondaryDdtSmall != NULL || ctx->cachedSecondaryDdtBig != NULL));
bool has_cached_secondary_ddt = (ctx->userDataDdtHeader.tableShift > 0) &&
((ctx->cachedDdtOffset != 0) ||
(ctx->cachedSecondaryDdtSmall != NULL || ctx->cachedSecondaryDdtBig != NULL));
if(hasCachedSecondaryDdt)
if(has_cached_secondary_ddt)
{
TRACE("Writing cached secondary DDT table to file");
fseek(ctx->imageStream, 0, SEEK_END);
long endOfFile = ftell(ctx->imageStream);
long end_of_file = ftell(ctx->imageStream);
// Align the position according to block alignment shift
uint64_t alignmentMask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(endOfFile & alignmentMask)
uint64_t alignment_mask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(end_of_file & alignment_mask)
{
// Calculate the next aligned position
uint64_t alignedPosition = (endOfFile + alignmentMask) & ~alignmentMask;
uint64_t aligned_position = (end_of_file + alignment_mask) & ~alignment_mask;
// Seek to the aligned position and pad with zeros if necessary
fseek(ctx->imageStream, alignedPosition, SEEK_SET);
endOfFile = alignedPosition;
fseek(ctx->imageStream, aligned_position, SEEK_SET);
end_of_file = aligned_position;
TRACE("Aligned DDT write position from %ld to %" PRIu64 " (alignment shift: %d)",
ftell(ctx->imageStream) - (alignedPosition - endOfFile), alignedPosition,
ftell(ctx->imageStream) - (aligned_position - end_of_file), aligned_position,
ctx->userDataDdtHeader.blockAlignmentShift);
}
// Prepare DDT header for the cached table
DdtHeader2 ddtHeader = {0};
ddtHeader.identifier = DeDuplicationTable2;
ddtHeader.type = UserData;
ddtHeader.compression = None;
ddtHeader.levels = ctx->userDataDdtHeader.levels;
ddtHeader.tableLevel = ctx->userDataDdtHeader.tableLevel + 1;
ddtHeader.previousLevelOffset = ctx->primaryDdtOffset;
ddtHeader.negative = ctx->userDataDdtHeader.negative;
ddtHeader.overflow = ctx->userDataDdtHeader.overflow;
ddtHeader.blockAlignmentShift = ctx->userDataDdtHeader.blockAlignmentShift;
ddtHeader.dataShift = ctx->userDataDdtHeader.dataShift;
ddtHeader.tableShift = 0; // Secondary tables are single level
ddtHeader.sizeType = ctx->userDataDdtHeader.sizeType;
DdtHeader2 ddt_header;
memset(&ddt_header, 0, sizeof(DdtHeader2));
ddt_header.identifier = DeDuplicationTable2;
ddt_header.type = UserData;
ddt_header.compression = None;
ddt_header.levels = ctx->userDataDdtHeader.levels;
ddt_header.tableLevel = ctx->userDataDdtHeader.tableLevel + 1;
ddt_header.previousLevelOffset = ctx->primaryDdtOffset;
ddt_header.negative = ctx->userDataDdtHeader.negative;
ddt_header.overflow = ctx->userDataDdtHeader.overflow;
ddt_header.blockAlignmentShift = ctx->userDataDdtHeader.blockAlignmentShift;
ddt_header.dataShift = ctx->userDataDdtHeader.dataShift;
ddt_header.tableShift = 0; // Secondary tables are single level
ddt_header.sizeType = ctx->userDataDdtHeader.sizeType;
uint64_t itemsPerDdtEntry = 1 << ctx->userDataDdtHeader.tableShift;
ddtHeader.blocks = itemsPerDdtEntry;
ddtHeader.entries = itemsPerDdtEntry;
ddtHeader.start = ctx->cachedDdtPosition * itemsPerDdtEntry;
uint64_t items_per_ddt_entry = 1 << ctx->userDataDdtHeader.tableShift;
ddt_header.blocks = items_per_ddt_entry;
ddt_header.entries = items_per_ddt_entry;
ddt_header.start = ctx->cachedDdtPosition * items_per_ddt_entry;
// Calculate data size
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
ddtHeader.length = itemsPerDdtEntry * sizeof(uint16_t);
ddt_header.length = items_per_ddt_entry * sizeof(uint16_t);
else
ddtHeader.length = itemsPerDdtEntry * sizeof(uint32_t);
ddt_header.length = items_per_ddt_entry * sizeof(uint32_t);
ddtHeader.cmpLength = ddtHeader.length;
ddt_header.cmpLength = ddt_header.length;
// Calculate CRC64 of the data
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtSmall, ddtHeader.length);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtSmall, ddt_header.length);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtBig, ddtHeader.length);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtBig, ddt_header.length);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
ddtHeader.crc64 = crc64;
ddtHeader.cmpCrc64 = crc64;
ddt_header.crc64 = crc64;
ddt_header.cmpCrc64 = crc64;
}
// Write header
if(fwrite(&ddtHeader, sizeof(DdtHeader2), 1, ctx->imageStream) == 1)
if(fwrite(&ddt_header, sizeof(DdtHeader2), 1, ctx->imageStream) == 1)
{
// Write data
size_t writtenBytes = 0;
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
writtenBytes = fwrite(ctx->cachedSecondaryDdtSmall, ddtHeader.length, 1, ctx->imageStream);
written_bytes = fwrite(ctx->cachedSecondaryDdtSmall, ddt_header.length, 1, ctx->imageStream);
else
writtenBytes = fwrite(ctx->cachedSecondaryDdtBig, ddtHeader.length, 1, ctx->imageStream);
written_bytes = fwrite(ctx->cachedSecondaryDdtBig, ddt_header.length, 1, ctx->imageStream);
if(writtenBytes == 1)
if(written_bytes == 1)
{
// Update primary table entry to point to new location
uint64_t newSecondaryTableBlockOffset = endOfFile >> ctx->userDataDdtHeader.blockAlignmentShift;
uint64_t new_secondary_table_block_offset =
end_of_file >> ctx->userDataDdtHeader.blockAlignmentShift;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
ctx->userDataDdtMini[ctx->cachedDdtPosition] = (uint16_t)newSecondaryTableBlockOffset;
ctx->userDataDdtMini[ctx->cachedDdtPosition] = (uint16_t)new_secondary_table_block_offset;
else
ctx->userDataDdtBig[ctx->cachedDdtPosition] = (uint32_t)newSecondaryTableBlockOffset;
ctx->userDataDdtBig[ctx->cachedDdtPosition] = (uint32_t)new_secondary_table_block_offset;
// Update index: remove old entry for cached DDT and add new one
TRACE("Updating index for cached secondary DDT");
@@ -204,35 +206,35 @@ int aaruf_close(void *context)
}
// Add new index entry for the newly written secondary DDT
IndexEntry newDdtEntry;
newDdtEntry.blockType = DeDuplicationTable2;
newDdtEntry.dataType = UserData;
newDdtEntry.offset = endOfFile;
IndexEntry new_ddt_entry;
new_ddt_entry.blockType = DeDuplicationTable2;
new_ddt_entry.dataType = UserData;
new_ddt_entry.offset = end_of_file;
utarray_push_back(ctx->indexEntries, &newDdtEntry);
TRACE("Added new DDT index entry at offset %" PRIu64, endOfFile);
utarray_push_back(ctx->indexEntries, &new_ddt_entry);
TRACE("Added new DDT index entry at offset %" PRIu64, end_of_file);
// Write the updated primary table back to its original position in the file
long savedPos = ftell(ctx->imageStream);
long saved_pos = ftell(ctx->imageStream);
fseek(ctx->imageStream, ctx->primaryDdtOffset + sizeof(DdtHeader2), SEEK_SET);
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primaryWrittenBytes = 0;
size_t primary_written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
primaryWrittenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream);
primary_written_bytes = fwrite(ctx->userDataDdtMini, primary_table_size, 1, ctx->imageStream);
else
primaryWrittenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream);
primary_written_bytes = fwrite(ctx->userDataDdtBig, primary_table_size, 1, ctx->imageStream);
if(primaryWrittenBytes != 1)
if(primary_written_bytes != 1)
{
TRACE("Could not flush primary DDT table to file.");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
fseek(ctx->imageStream, savedPos, SEEK_SET);
fseek(ctx->imageStream, saved_pos, SEEK_SET);
}
else
TRACE("Failed to write cached secondary DDT data");
@@ -266,14 +268,14 @@ int aaruf_close(void *context)
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primaryTableSize);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primary_table_size);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primaryTableSize);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primary_table_size);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
@@ -286,8 +288,8 @@ int aaruf_close(void *context)
// dataShift, tableShift, sizeType, entries, blocks, start are already set during creation
ctx->userDataDdtHeader.crc64 = crc64;
ctx->userDataDdtHeader.cmpCrc64 = crc64;
ctx->userDataDdtHeader.length = primaryTableSize;
ctx->userDataDdtHeader.cmpLength = primaryTableSize;
ctx->userDataDdtHeader.length = primary_table_size;
ctx->userDataDdtHeader.cmpLength = primary_table_size;
TRACE("Calculated CRC64 for primary DDT: 0x%16lX", crc64);
}
@@ -303,30 +305,30 @@ int aaruf_close(void *context)
}
// Then write the table data (position is already after the header)
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
// Write the primary table data
size_t writtenBytes = 0;
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
writtenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream);
written_bytes = fwrite(ctx->userDataDdtMini, primary_table_size, 1, ctx->imageStream);
else
writtenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream);
written_bytes = fwrite(ctx->userDataDdtBig, primary_table_size, 1, ctx->imageStream);
if(writtenBytes == 1)
if(written_bytes == 1)
{
TRACE("Successfully wrote primary DDT header and table to file (%" PRIu64 " entries, %zu bytes)",
ctx->userDataDdtHeader.entries, primaryTableSize);
ctx->userDataDdtHeader.entries, primary_table_size);
// Add primary DDT to index
TRACE("Adding primary DDT to index");
IndexEntry primaryDdtEntry;
primaryDdtEntry.blockType = DeDuplicationTable2;
primaryDdtEntry.dataType = UserData;
primaryDdtEntry.offset = ctx->primaryDdtOffset;
IndexEntry primary_ddt_entry;
primary_ddt_entry.blockType = DeDuplicationTable2;
primary_ddt_entry.dataType = UserData;
primary_ddt_entry.offset = ctx->primaryDdtOffset;
utarray_push_back(ctx->indexEntries, &primaryDdtEntry);
utarray_push_back(ctx->indexEntries, &primary_ddt_entry);
TRACE("Added primary DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset);
}
else
@@ -342,14 +344,14 @@ int aaruf_close(void *context)
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primaryTableSize);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primary_table_size);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primaryTableSize);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primary_table_size);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
@@ -365,8 +367,8 @@ int aaruf_close(void *context)
// blockAlignmentShift, dataShift, tableShift, sizeType, entries, blocks, start are already set
ctx->userDataDdtHeader.crc64 = crc64;
ctx->userDataDdtHeader.cmpCrc64 = crc64;
ctx->userDataDdtHeader.length = primaryTableSize;
ctx->userDataDdtHeader.cmpLength = primaryTableSize;
ctx->userDataDdtHeader.length = primary_table_size;
ctx->userDataDdtHeader.cmpLength = primary_table_size;
TRACE("Calculated CRC64 for single-level DDT: 0x%16lX", crc64);
}
@@ -382,30 +384,30 @@ int aaruf_close(void *context)
}
// Then write the table data (position is already after the header)
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
// Write the primary table data
size_t writtenBytes = 0;
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
writtenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream);
written_bytes = fwrite(ctx->userDataDdtMini, primary_table_size, 1, ctx->imageStream);
else
writtenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream);
written_bytes = fwrite(ctx->userDataDdtBig, primary_table_size, 1, ctx->imageStream);
if(writtenBytes == 1)
if(written_bytes == 1)
{
TRACE("Successfully wrote single-level DDT header and table to file (%" PRIu64 " entries, %zu bytes)",
ctx->userDataDdtHeader.entries, primaryTableSize);
ctx->userDataDdtHeader.entries, primary_table_size);
// Add single-level DDT to index
TRACE("Adding single-level DDT to index");
IndexEntry singleDdtEntry;
singleDdtEntry.blockType = DeDuplicationTable2;
singleDdtEntry.dataType = UserData;
singleDdtEntry.offset = ctx->primaryDdtOffset;
IndexEntry single_ddt_entry;
single_ddt_entry.blockType = DeDuplicationTable2;
single_ddt_entry.dataType = UserData;
single_ddt_entry.offset = ctx->primaryDdtOffset;
utarray_push_back(ctx->indexEntries, &singleDdtEntry);
utarray_push_back(ctx->indexEntries, &single_ddt_entry);
TRACE("Added single-level DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset);
}
else
@@ -415,70 +417,70 @@ int aaruf_close(void *context)
// Write the complete index at the end of the file
TRACE("Writing index at the end of the file");
fseek(ctx->imageStream, 0, SEEK_END);
long indexPosition = ftell(ctx->imageStream);
long index_position = ftell(ctx->imageStream);
// Align index position to block boundary if needed
uint64_t alignmentMask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(indexPosition & alignmentMask)
uint64_t alignment_mask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(index_position & alignment_mask)
{
uint64_t alignedPosition = (indexPosition + alignmentMask) & ~alignmentMask;
fseek(ctx->imageStream, alignedPosition, SEEK_SET);
indexPosition = alignedPosition;
TRACE("Aligned index position to %" PRIu64, alignedPosition);
uint64_t aligned_position = (index_position + alignment_mask) & ~alignment_mask;
fseek(ctx->imageStream, aligned_position, SEEK_SET);
index_position = aligned_position;
TRACE("Aligned index position to %" PRIu64, aligned_position);
}
// Prepare index header
IndexHeader3 indexHeader;
indexHeader.identifier = IndexBlock3;
indexHeader.entries = utarray_len(ctx->indexEntries);
indexHeader.previous = 0; // No previous index for now
IndexHeader3 index_header;
index_header.identifier = IndexBlock3;
index_header.entries = utarray_len(ctx->indexEntries);
index_header.previous = 0; // No previous index for now
TRACE("Writing index with %" PRIu64 " entries at position %ld", indexHeader.entries, indexPosition);
TRACE("Writing index with %" PRIu64 " entries at position %ld", index_header.entries, index_position);
// Calculate CRC64 of index entries
crc64_ctx *indexCrc64Context = aaruf_crc64_init();
if(indexCrc64Context != NULL && indexHeader.entries > 0)
crc64_ctx *index_crc64_context = aaruf_crc64_init();
if(index_crc64_context != NULL && index_header.entries > 0)
{
size_t indexDataSize = indexHeader.entries * sizeof(IndexEntry);
aaruf_crc64_update(indexCrc64Context, (uint8_t *)utarray_front(ctx->indexEntries), indexDataSize);
aaruf_crc64_final(indexCrc64Context, &indexHeader.crc64);
TRACE("Calculated index CRC64: 0x%16lX", indexHeader.crc64);
size_t index_data_size = index_header.entries * sizeof(IndexEntry);
aaruf_crc64_update(index_crc64_context, (uint8_t *)utarray_front(ctx->indexEntries), index_data_size);
aaruf_crc64_final(index_crc64_context, &index_header.crc64);
TRACE("Calculated index CRC64: 0x%16lX", index_header.crc64);
}
else { indexHeader.crc64 = 0; }
else { index_header.crc64 = 0; }
// Write index header
if(fwrite(&indexHeader, sizeof(IndexHeader3), 1, ctx->imageStream) == 1)
if(fwrite(&index_header, sizeof(IndexHeader3), 1, ctx->imageStream) == 1)
{
TRACE("Successfully wrote index header");
// Write index entries
if(indexHeader.entries > 0)
if(index_header.entries > 0)
{
size_t entriesWritten = 0;
IndexEntry *entry = NULL;
size_t entries_written = 0;
IndexEntry *entry = NULL;
for(entry = (IndexEntry *)utarray_front(ctx->indexEntries); entry != NULL;
entry = (IndexEntry *)utarray_next(ctx->indexEntries, entry))
{
if(fwrite(entry, sizeof(IndexEntry), 1, ctx->imageStream) == 1)
{
entriesWritten++;
entries_written++;
TRACE("Wrote index entry: blockType=0x%08X dataType=%u offset=%" PRIu64, entry->blockType,
entry->dataType, entry->offset);
}
else
{
TRACE("Failed to write index entry %zu", entriesWritten);
TRACE("Failed to write index entry %zu", entries_written);
break;
}
}
if(entriesWritten == indexHeader.entries)
if(entries_written == index_header.entries)
{
TRACE("Successfully wrote all %zu index entries", entriesWritten);
TRACE("Successfully wrote all %zu index entries", entries_written);
// Update header with index offset and rewrite it
ctx->header.indexOffset = indexPosition;
ctx->header.indexOffset = index_position;
TRACE("Updating header with index offset: %" PRIu64, ctx->header.indexOffset);
// Seek back to beginning and rewrite header
@@ -495,8 +497,8 @@ int aaruf_close(void *context)
}
else
{
TRACE("Failed to write all index entries (wrote %zu of %" PRIu64 ")", entriesWritten,
indexHeader.entries);
TRACE("Failed to write all index entries (wrote %zu of %" PRIu64 ")", entries_written,
index_header.entries);
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
}
@@ -537,11 +539,11 @@ int aaruf_close(void *context)
ctx->mode2Subheaders = NULL;
TRACE("Freeing media tags");
if(ctx->mediaTags != NULL) HASH_ITER(hh, ctx->mediaTags, mediaTag, tmpMediaTag)
if(ctx->mediaTags != NULL) HASH_ITER(hh, ctx->mediaTags, media_tag, tmp_media_tag)
{
HASH_DEL(ctx->mediaTags, mediaTag);
free(mediaTag->data);
free(mediaTag);
HASH_DEL(ctx->mediaTags, media_tag);
free(media_tag->data);
free(media_tag);
}
#ifdef __linux__ // TODO: Implement

View File

@@ -34,22 +34,22 @@
*/
int32_t aaruf_cst_transform(const uint8_t *interleaved, uint8_t *sequential, size_t length)
{
uint8_t *p = NULL;
uint8_t *q = NULL;
uint8_t *r = NULL;
uint8_t *s = NULL;
uint8_t *t = NULL;
uint8_t *u = NULL;
uint8_t *v = NULL;
uint8_t *w = NULL;
size_t qStart = 0;
size_t rStart = 0;
size_t sStart = 0;
size_t tStart = 0;
size_t uStart = 0;
size_t vStart = 0;
size_t wStart = 0;
size_t i = 0;
uint8_t *p = NULL;
uint8_t *q = NULL;
uint8_t *r = NULL;
uint8_t *s = NULL;
uint8_t *t = NULL;
uint8_t *u = NULL;
uint8_t *v = NULL;
uint8_t *w = NULL;
size_t q_start = 0;
size_t r_start = 0;
size_t s_start = 0;
size_t t_start = 0;
size_t u_start = 0;
size_t v_start = 0;
size_t w_start = 0;
size_t i = 0;
if(interleaved == NULL || sequential == NULL) return AARUF_ERROR_BUFFER_TOO_SMALL;
@@ -150,24 +150,24 @@ int32_t aaruf_cst_transform(const uint8_t *interleaved, uint8_t *sequential, siz
w[i / 8] += interleaved[i + 7] & 0x01;
}
qStart = (length / 8) * 1;
rStart = (length / 8) * 2;
sStart = (length / 8) * 3;
tStart = (length / 8) * 4;
uStart = (length / 8) * 5;
vStart = (length / 8) * 6;
wStart = (length / 8) * 7;
q_start = (length / 8) * 1;
r_start = (length / 8) * 2;
s_start = (length / 8) * 3;
t_start = (length / 8) * 4;
u_start = (length / 8) * 5;
v_start = (length / 8) * 6;
w_start = (length / 8) * 7;
for(i = 0; i < (length / 8); i++)
{
sequential[i] = p[i];
sequential[qStart + i] = q[i];
sequential[rStart + i] = r[i];
sequential[sStart + i] = s[i];
sequential[tStart + i] = t[i];
sequential[uStart + i] = u[i];
sequential[vStart + i] = v[i];
sequential[wStart + i] = w[i];
sequential[i] = p[i];
sequential[q_start + i] = q[i];
sequential[r_start + i] = r[i];
sequential[s_start + i] = s[i];
sequential[t_start + i] = t[i];
sequential[u_start + i] = u[i];
sequential[v_start + i] = v[i];
sequential[w_start + i] = w[i];
}
free(p);
@@ -193,13 +193,13 @@ int32_t aaruf_cst_transform(const uint8_t *interleaved, uint8_t *sequential, siz
int32_t aaruf_cst_untransform(const uint8_t *sequential, uint8_t *interleaved, size_t length)
{
uint8_t *p, *q, *r, *s, *t, *u, *v, *w;
size_t qStart;
size_t rStart;
size_t sStart;
size_t tStart;
size_t uStart;
size_t vStart;
size_t wStart;
size_t q_start;
size_t r_start;
size_t s_start;
size_t t_start;
size_t u_start;
size_t v_start;
size_t w_start;
size_t i;
if(interleaved == NULL || sequential == NULL) return AARUF_ERROR_BUFFER_TOO_SMALL;
@@ -226,24 +226,24 @@ int32_t aaruf_cst_untransform(const uint8_t *sequential, uint8_t *interleaved, s
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
qStart = (length / 8) * 1;
rStart = (length / 8) * 2;
sStart = (length / 8) * 3;
tStart = (length / 8) * 4;
uStart = (length / 8) * 5;
vStart = (length / 8) * 6;
wStart = (length / 8) * 7;
q_start = (length / 8) * 1;
r_start = (length / 8) * 2;
s_start = (length / 8) * 3;
t_start = (length / 8) * 4;
u_start = (length / 8) * 5;
v_start = (length / 8) * 6;
w_start = (length / 8) * 7;
for(i = 0; i < (length / 8); i++)
{
p[i] = sequential[i];
q[i] = sequential[qStart + i];
r[i] = sequential[rStart + i];
s[i] = sequential[sStart + i];
t[i] = sequential[tStart + i];
u[i] = sequential[uStart + i];
v[i] = sequential[vStart + i];
w[i] = sequential[wStart + i];
q[i] = sequential[q_start + i];
r[i] = sequential[r_start + i];
s[i] = sequential[s_start + i];
t[i] = sequential[t_start + i];
u[i] = sequential[u_start + i];
v[i] = sequential[v_start + i];
w[i] = sequential[w_start + i];
}
memset(interleaved, 0, length);

View File

@@ -31,15 +31,15 @@
* @param dst_buffer Pointer to the destination buffer.
* @param dst_size Pointer to the size of the destination buffer; updated with the actual size.
* @param src_buffer Pointer to the source (compressed) buffer.
* @param srcLen Pointer to the size of the source buffer; updated with the actual size read.
* @param src_len Pointer to the size of the source buffer; updated with the actual size read.
* @param props Pointer to the LZMA properties.
* @param propsSize Size of the LZMA properties.
* @param props_size Size of the LZMA properties.
* @return 0 on success, or an error code on failure.
*/
AARU_EXPORT int32_t AARU_CALL aaruf_lzma_decode_buffer(uint8_t *dst_buffer, size_t *dst_size, const uint8_t *src_buffer,
size_t *srcLen, const uint8_t *props, size_t propsSize)
size_t *src_len, const uint8_t *props, size_t props_size)
{
return LzmaUncompress(dst_buffer, dst_size, src_buffer, srcLen, props, propsSize);
return LzmaUncompress(dst_buffer, dst_size, src_buffer, src_len, props, props_size);
}
/**
@@ -50,23 +50,23 @@ AARU_EXPORT int32_t AARU_CALL aaruf_lzma_decode_buffer(uint8_t *dst_buffer, size
* @param dst_buffer Pointer to the destination buffer.
* @param dst_size Pointer to the size of the destination buffer; updated with the actual size.
* @param src_buffer Pointer to the source (uncompressed) buffer.
* @param srcLen Size of the source buffer.
* @param outProps Pointer to the output LZMA properties.
* @param outPropsSize Pointer to the size of the output LZMA properties.
* @param src_len Size of the source buffer.
* @param out_props Pointer to the output LZMA properties.
* @param out_props_size Pointer to the size of the output LZMA properties.
* @param level Compression level.
* @param dictSize Dictionary size.
* @param dict_size Dictionary size.
* @param lc LZMA literal context bits.
* @param lp LZMA literal position bits.
* @param pb LZMA position bits.
* @param fb Number of fast bytes.
* @param numThreads Number of threads to use.
* @param num_threads Number of threads to use.
* @return 0 on success, or an error code on failure.
*/
AARU_EXPORT int32_t AARU_CALL aaruf_lzma_encode_buffer(uint8_t *dst_buffer, size_t *dst_size, const uint8_t *src_buffer,
size_t srcLen, uint8_t *outProps, size_t *outPropsSize,
int32_t level, uint32_t dictSize, int32_t lc, int32_t lp,
int32_t pb, int32_t fb, int32_t numThreads)
size_t src_len, uint8_t *out_props, size_t *out_props_size,
int32_t level, uint32_t dict_size, int32_t lc, int32_t lp,
int32_t pb, int32_t fb, int32_t num_threads)
{
return LzmaCompress(dst_buffer, dst_size, src_buffer, srcLen, outProps, outPropsSize, level, dictSize, lc, lp, pb,
fb, numThreads);
return LzmaCompress(dst_buffer, dst_size, src_buffer, src_len, out_props, out_props_size, level, dict_size, lc, lp,
pb, fb, num_threads);
}

View File

@@ -68,18 +68,19 @@ static const uint8_t shuffleMasks[] = {
0x8f, 0x8e, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88, 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80,
};
CLMUL static void shiftRight128(__m128i in, size_t n, __m128i *outLeft, __m128i *outRight)
CLMUL static void shiftRight128(__m128i in, size_t n, __m128i *out_left, __m128i *out_right)
{
const __m128i maskA = _mm_loadu_si128((const __m128i *)(shuffleMasks + (16 - n)));
const __m128i maskB = _mm_xor_si128(maskA, _mm_cmpeq_epi8(_mm_setzero_si128(), _mm_setzero_si128()));
const __m128i mask_a = _mm_loadu_si128((const __m128i *)(shuffleMasks + (16 - n)));
const __m128i mask_b = _mm_xor_si128(mask_a, _mm_cmpeq_epi8(_mm_setzero_si128(), _mm_setzero_si128()));
*outLeft = _mm_shuffle_epi8(in, maskB);
*outRight = _mm_shuffle_epi8(in, maskA);
*out_left = _mm_shuffle_epi8(in, mask_b);
*out_right = _mm_shuffle_epi8(in, mask_a);
}
CLMUL static __m128i fold(__m128i in, __m128i foldConstants)
CLMUL static __m128i fold(__m128i in, __m128i fold_constants)
{
return _mm_xor_si128(_mm_clmulepi64_si128(in, foldConstants, 0x00), _mm_clmulepi64_si128(in, foldConstants, 0x11));
return _mm_xor_si128(_mm_clmulepi64_si128(in, fold_constants, 0x00),
_mm_clmulepi64_si128(in, fold_constants, 0x11));
}
/**
@@ -99,123 +100,124 @@ AARU_EXPORT CLMUL uint64_t AARU_CALL aaruf_crc64_clmul(uint64_t crc, const uint8
const uint64_t mu = 0x9c3e466c172963d5; // (bitReflect(div129by65(poly)) << 1) | 1;
const uint64_t p = 0x92d8af2baf0e1e85; // (bitReflect(poly) << 1) | 1;
const __m128i foldConstants1 = _mm_set_epi64x(k2, k1);
const __m128i foldConstants2 = _mm_set_epi64x(p, mu);
const __m128i fold_constants_1 = _mm_set_epi64x(k2, k1);
const __m128i fold_constants_2 = _mm_set_epi64x(p, mu);
const uint8_t *end = data + length;
// Align pointers
const __m128i *alignedData = (const __m128i *)((uintptr_t)data & ~(uintptr_t)15);
const __m128i *alignedEnd = (const __m128i *)(((uintptr_t)end + 15) & ~(uintptr_t)15);
const __m128i *aligned_data = (const __m128i *)((uintptr_t)data & ~(uintptr_t)15);
const __m128i *aligned_end = (const __m128i *)(((uintptr_t)end + 15) & ~(uintptr_t)15);
const size_t leadInSize = data - (const uint8_t *)alignedData;
const size_t leadOutSize = (const uint8_t *)alignedEnd - end;
const size_t lead_in_size = data - (const uint8_t *)aligned_data;
const size_t lead_out_size = (const uint8_t *)aligned_end - end;
const size_t alignedLength = alignedEnd - alignedData;
const size_t aligned_length = aligned_end - aligned_data;
const __m128i leadInMask = _mm_loadu_si128((const __m128i *)(shuffleMasks + (16 - leadInSize)));
const __m128i data0 = _mm_blendv_epi8(_mm_setzero_si128(), _mm_load_si128(alignedData), leadInMask);
const __m128i lead_in_mask = _mm_loadu_si128((const __m128i *)(shuffleMasks + (16 - lead_in_size)));
const __m128i data0 = _mm_blendv_epi8(_mm_setzero_si128(), _mm_load_si128(aligned_data), lead_in_mask);
#if defined(_WIN64)
const __m128i initialCrc = _mm_cvtsi64x_si128(~crc);
const __m128i initial_crc = _mm_cvtsi64x_si128(~crc);
#else
const __m128i initialCrc = _mm_set_epi64x(0, ~crc);
const __m128i initial_crc = _mm_set_epi64x(0, ~crc);
#endif
__m128i R;
if(alignedLength == 1)
__m128i r_reg;
if(aligned_length == 1)
{
// Single data block, initial CRC possibly bleeds into zero padding
__m128i crc0, crc1;
shiftRight128(initialCrc, 16 - length, &crc0, &crc1);
shiftRight128(initial_crc, 16 - length, &crc0, &crc1);
__m128i A, B;
shiftRight128(data0, leadOutSize, &A, &B);
__m128i a_reg, b_reg;
shiftRight128(data0, lead_out_size, &a_reg, &b_reg);
const __m128i P = _mm_xor_si128(A, crc0);
R = _mm_xor_si128(_mm_clmulepi64_si128(P, foldConstants1, 0x10),
_mm_xor_si128(_mm_srli_si128(P, 8), _mm_slli_si128(crc1, 8)));
const __m128i p_reg = _mm_xor_si128(a_reg, crc0);
r_reg = _mm_xor_si128(_mm_clmulepi64_si128(p_reg, fold_constants_1, 0x10),
_mm_xor_si128(_mm_srli_si128(p_reg, 8), _mm_slli_si128(crc1, 8)));
}
else if(alignedLength == 2)
else if(aligned_length == 2)
{
const __m128i data1 = _mm_load_si128(alignedData + 1);
const __m128i data1 = _mm_load_si128(aligned_data + 1);
if(length < 8)
{
// Initial CRC bleeds into the zero padding
__m128i crc0, crc1;
shiftRight128(initialCrc, 16 - length, &crc0, &crc1);
shiftRight128(initial_crc, 16 - length, &crc0, &crc1);
__m128i A, B, C, D;
shiftRight128(data0, leadOutSize, &A, &B);
shiftRight128(data1, leadOutSize, &C, &D);
__m128i a_reg, b_reg, c_reg, d_reg;
shiftRight128(data0, lead_out_size, &a_reg, &b_reg);
shiftRight128(data1, lead_out_size, &c_reg, &d_reg);
const __m128i P = _mm_xor_si128(_mm_xor_si128(B, C), crc0);
R = _mm_xor_si128(_mm_clmulepi64_si128(P, foldConstants1, 0x10),
_mm_xor_si128(_mm_srli_si128(P, 8), _mm_slli_si128(crc1, 8)));
const __m128i p_reg = _mm_xor_si128(_mm_xor_si128(b_reg, c_reg), crc0);
r_reg = _mm_xor_si128(_mm_clmulepi64_si128(p_reg, fold_constants_1, 0x10),
_mm_xor_si128(_mm_srli_si128(p_reg, 8), _mm_slli_si128(crc1, 8)));
}
else
{
// We can fit the initial CRC into the data without bleeding into the zero padding
__m128i crc0, crc1;
shiftRight128(initialCrc, leadInSize, &crc0, &crc1);
shiftRight128(initial_crc, lead_in_size, &crc0, &crc1);
__m128i A, B, C, D;
shiftRight128(_mm_xor_si128(data0, crc0), leadOutSize, &A, &B);
shiftRight128(_mm_xor_si128(data1, crc1), leadOutSize, &C, &D);
__m128i a_reg, b_reg, c_reg, d_reg;
shiftRight128(_mm_xor_si128(data0, crc0), lead_out_size, &a_reg, &b_reg);
shiftRight128(_mm_xor_si128(data1, crc1), lead_out_size, &c_reg, &d_reg);
const __m128i P = _mm_xor_si128(fold(A, foldConstants1), _mm_xor_si128(B, C));
R = _mm_xor_si128(_mm_clmulepi64_si128(P, foldConstants1, 0x10), _mm_srli_si128(P, 8));
const __m128i p_reg = _mm_xor_si128(fold(a_reg, fold_constants_1), _mm_xor_si128(b_reg, c_reg));
r_reg = _mm_xor_si128(_mm_clmulepi64_si128(p_reg, fold_constants_1, 0x10), _mm_srli_si128(p_reg, 8));
}
}
else
{
alignedData++;
length -= 16 - leadInSize;
aligned_data++;
length -= 16 - lead_in_size;
// Initial CRC can simply be added to data
__m128i crc0, crc1;
shiftRight128(initialCrc, leadInSize, &crc0, &crc1);
shiftRight128(initial_crc, lead_in_size, &crc0, &crc1);
__m128i accumulator = _mm_xor_si128(fold(_mm_xor_si128(crc0, data0), foldConstants1), crc1);
__m128i accumulator = _mm_xor_si128(fold(_mm_xor_si128(crc0, data0), fold_constants_1), crc1);
while(length >= 32)
{
accumulator = fold(_mm_xor_si128(_mm_load_si128(alignedData), accumulator), foldConstants1);
accumulator = fold(_mm_xor_si128(_mm_load_si128(aligned_data), accumulator), fold_constants_1);
length -= 16;
alignedData++;
aligned_data++;
}
__m128i P;
if(length == 16) { P = _mm_xor_si128(accumulator, _mm_load_si128(alignedData)); }
__m128i p_reg;
if(length == 16) { p_reg = _mm_xor_si128(accumulator, _mm_load_si128(aligned_data)); }
else
{
const __m128i end0 = _mm_xor_si128(accumulator, _mm_load_si128(alignedData));
const __m128i end1 = _mm_load_si128(alignedData + 1);
const __m128i end0 = _mm_xor_si128(accumulator, _mm_load_si128(aligned_data));
const __m128i end1 = _mm_load_si128(aligned_data + 1);
__m128i A, B, C, D;
shiftRight128(end0, leadOutSize, &A, &B);
shiftRight128(end1, leadOutSize, &C, &D);
__m128i a_reg, b_reg, c_reg, d_reg;
shiftRight128(end0, lead_out_size, &a_reg, &b_reg);
shiftRight128(end1, lead_out_size, &c_reg, &d_reg);
P = _mm_xor_si128(fold(A, foldConstants1), _mm_or_si128(B, C));
p_reg = _mm_xor_si128(fold(a_reg, fold_constants_1), _mm_or_si128(b_reg, c_reg));
}
R = _mm_xor_si128(_mm_clmulepi64_si128(P, foldConstants1, 0x10), _mm_srli_si128(P, 8));
r_reg = _mm_xor_si128(_mm_clmulepi64_si128(p_reg, fold_constants_1, 0x10), _mm_srli_si128(p_reg, 8));
}
// Final Barrett reduction
const __m128i T1 = _mm_clmulepi64_si128(R, foldConstants2, 0x00);
const __m128i T2 =
_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(T1, foldConstants2, 0x10), _mm_slli_si128(T1, 8)), R);
const __m128i t1_reg = _mm_clmulepi64_si128(r_reg, fold_constants_2, 0x00);
const __m128i t2_reg = _mm_xor_si128(
_mm_xor_si128(_mm_clmulepi64_si128(t1_reg, fold_constants_2, 0x10), _mm_slli_si128(t1_reg, 8)), r_reg);
TRACE("Exiting aaruf_crc64_clmul()");
#if defined(_WIN64)
return ~_mm_extract_epi64(T2, 1);
return ~_mm_extract_epi64(t2_reg, 1);
#else
return ~(((uint64_t)(uint32_t)_mm_extract_epi32(T2, 3) << 32) | (uint64_t)(uint32_t)_mm_extract_epi32(T2, 2));
return ~(((uint64_t)(uint32_t)_mm_extract_epi32(t2_reg, 3) << 32) |
(uint64_t)(uint32_t)_mm_extract_epi32(t2_reg, 2));
#endif
}
#endif
#endif

View File

@@ -32,31 +32,31 @@
* Allocates and initializes a new aaruformat context and image file with the specified parameters.
*
* @param filepath Path to the image file to create.
* @param mediaType Media type identifier.
* @param sectorSize Size of each sector in bytes.
* @param userSectors Number of user data sectors.
* @param negativeSectors Number of negative sectors.
* @param overflowSectors Number of overflow sectors.
* @param media_type Media type identifier.
* @param sector_size Size of each sector in bytes.
* @param user_sectors Number of user data sectors.
* @param negative_sectors Number of negative sectors.
* @param overflow_sectors Number of overflow sectors.
* @param options String with creation options.
* @param applicationName Pointer to the application name string.
* @param applicationNameLength Length of the application name string.
* @param applicationMajorVersion Major version of the application.
* @param applicationMinorVersion Minor version of the application.
* @param application_name Pointer to the application name string.
* @param application_name_length Length of the application name string.
* @param application_major_version Major version of the application.
* @param application_minor_version Minor version of the application.
* @return Pointer to the created aaruformat context, or NULL on failure.
*/
void *aaruf_create(const char *filepath, uint32_t mediaType, uint32_t sectorSize, uint64_t userSectors,
uint64_t negativeSectors, uint64_t overflowSectors, const char *options,
const uint8_t *applicationName, uint8_t applicationNameLength, uint8_t applicationMajorVersion,
uint8_t applicationMinorVersion)
void *aaruf_create(const char *filepath, uint32_t media_type, uint32_t sector_size, uint64_t user_sectors,
uint64_t negative_sectors, uint64_t overflow_sectors, const char *options,
const uint8_t *application_name, uint8_t application_name_length, uint8_t application_major_version,
uint8_t application_minor_version)
{
TRACE("Entering aaruf_create(%s, %u, %u, %llu, %llu, %llu, %s, %s, %u, %u, %u)", filepath, mediaType, sectorSize,
userSectors, negativeSectors, overflowSectors, options,
applicationName ? (const char *)applicationName : "NULL", applicationNameLength, applicationMajorVersion,
applicationMinorVersion);
TRACE("Entering aaruf_create(%s, %u, %u, %llu, %llu, %llu, %s, %s, %u, %u, %u)", filepath, media_type, sector_size,
user_sectors, negative_sectors, overflow_sectors, options,
application_name ? (const char *)application_name : "NULL", application_name_length,
application_major_version, application_minor_version);
// Parse the options
TRACE("Parsing options");
aaru_options parsedOptions = parse_options(options);
aaru_options parsed_options = parse_options(options);
// Allocate context
TRACE("Allocating memory for context");
@@ -86,9 +86,9 @@ void *aaruf_create(const char *filepath, uint32_t mediaType, uint32_t sectorSize
return NULL;
}
if(applicationNameLength > AARU_HEADER_APP_NAME_LEN)
if(application_name_length > AARU_HEADER_APP_NAME_LEN)
{
FATAL("Application name too long (%u bytes, maximum %u bytes)", applicationNameLength,
FATAL("Application name too long (%u bytes, maximum %u bytes)", application_name_length,
AARU_HEADER_APP_NAME_LEN);
free(ctx);
errno = AARUF_ERROR_INVALID_APP_NAME_LENGTH;
@@ -100,12 +100,12 @@ void *aaruf_create(const char *filepath, uint32_t mediaType, uint32_t sectorSize
// Initialize header
TRACE("Initializing header");
ctx->header.identifier = AARU_MAGIC;
memcpy(ctx->header.application, applicationName, applicationNameLength);
memcpy(ctx->header.application, application_name, application_name_length);
ctx->header.imageMajorVersion = AARUF_VERSION_V2;
ctx->header.imageMinorVersion = 0;
ctx->header.applicationMajorVersion = applicationMajorVersion;
ctx->header.applicationMinorVersion = applicationMinorVersion;
ctx->header.mediaType = mediaType;
ctx->header.applicationMajorVersion = application_major_version;
ctx->header.applicationMinorVersion = application_minor_version;
ctx->header.mediaType = media_type;
ctx->header.indexOffset = 0;
ctx->header.creationTime = get_filetime_uint64();
ctx->header.lastWrittenTime = get_filetime_uint64();
@@ -143,7 +143,7 @@ void *aaruf_create(const char *filepath, uint32_t mediaType, uint32_t sectorSize
ctx->imageInfo.CreationTime = ctx->header.creationTime;
ctx->imageInfo.LastModificationTime = ctx->header.lastWrittenTime;
ctx->imageInfo.XmlMediaType = aaruf_get_xml_mediatype(ctx->header.mediaType);
ctx->imageInfo.SectorSize = sectorSize;
ctx->imageInfo.SectorSize = sector_size;
// Initialize caches
TRACE("Initializing caches");
@@ -171,13 +171,13 @@ void *aaruf_create(const char *filepath, uint32_t mediaType, uint32_t sectorSize
ctx->userDataDdtHeader.levels = 2;
ctx->userDataDdtHeader.tableLevel = 0;
ctx->userDataDdtHeader.previousLevelOffset = 0;
ctx->userDataDdtHeader.negative = negativeSectors;
ctx->userDataDdtHeader.blocks = userSectors + overflowSectors + negativeSectors;
ctx->userDataDdtHeader.overflow = overflowSectors;
ctx->userDataDdtHeader.negative = negative_sectors;
ctx->userDataDdtHeader.blocks = user_sectors + overflow_sectors + negative_sectors;
ctx->userDataDdtHeader.overflow = overflow_sectors;
ctx->userDataDdtHeader.start = 0;
ctx->userDataDdtHeader.blockAlignmentShift = parsedOptions.block_alignment;
ctx->userDataDdtHeader.dataShift = parsedOptions.data_shift;
ctx->userDataDdtHeader.tableShift = parsedOptions.table_shift;
ctx->userDataDdtHeader.blockAlignmentShift = parsed_options.block_alignment;
ctx->userDataDdtHeader.dataShift = parsed_options.data_shift;
ctx->userDataDdtHeader.tableShift = parsed_options.table_shift;
ctx->userDataDdtHeader.sizeType = 1;
ctx->userDataDdtHeader.entries = ctx->userDataDdtHeader.blocks / (1 << ctx->userDataDdtHeader.tableShift);

View File

@@ -38,18 +38,18 @@
* @param foundUserDataDdt Pointer to a boolean that will be set to true if a user data DDT was found and loaded.
* @return AARUF_STATUS_OK on success, or an error code on failure.
*/
int32_t process_ddt_v1(aaruformatContext *ctx, IndexEntry *entry, bool *foundUserDataDdt)
int32_t process_ddt_v1(aaruformatContext *ctx, IndexEntry *entry, bool *found_user_data_ddt)
{
TRACE("Entering process_ddt_v1(%p, %p, %d)", ctx, entry, *foundUserDataDdt);
TRACE("Entering process_ddt_v1(%p, %p, %d)", ctx, entry, *found_user_data_ddt);
int pos = 0;
size_t readBytes = 0;
DdtHeader ddtHeader;
uint8_t *cmpData = NULL;
uint32_t *cdDdt = NULL;
uint8_t lzmaProperties[LZMA_PROPERTIES_LENGTH];
size_t lzmaSize = 0;
int errorNo = 0;
int pos = 0;
size_t read_bytes = 0;
DdtHeader ddt_header;
uint8_t *cmp_data = NULL;
uint32_t *cd_ddt = NULL;
uint8_t lzma_properties[LZMA_PROPERTIES_LENGTH];
size_t lzma_size = 0;
int error_no = 0;
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
@@ -73,9 +73,9 @@ int32_t process_ddt_v1(aaruformatContext *ctx, IndexEntry *entry, bool *foundUse
// Even if those two checks shall have been done before
TRACE("Reading DDT block header at position %" PRIu64, entry->offset);
readBytes = fread(&ddtHeader, 1, sizeof(DdtHeader), ctx->imageStream);
read_bytes = fread(&ddt_header, 1, sizeof(DdtHeader), ctx->imageStream);
if(readBytes != sizeof(DdtHeader))
if(read_bytes != sizeof(DdtHeader))
{
FATAL("Could not read block header at %" PRIu64 "", entry->offset);
@@ -83,96 +83,96 @@ int32_t process_ddt_v1(aaruformatContext *ctx, IndexEntry *entry, bool *foundUse
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
*foundUserDataDdt = true;
*found_user_data_ddt = true;
ctx->imageInfo.ImageSize += ddtHeader.cmpLength;
ctx->imageInfo.ImageSize += ddt_header.cmpLength;
if(entry->dataType == UserData)
{
ctx->imageInfo.Sectors = ddtHeader.entries;
ctx->shift = ddtHeader.shift;
ctx->imageInfo.Sectors = ddt_header.entries;
ctx->shift = ddt_header.shift;
ctx->ddtVersion = 1;
// Check for DDT compression
switch(ddtHeader.compression)
switch(ddt_header.compression)
{
// TODO: Check CRC
case Lzma:
lzmaSize = ddtHeader.cmpLength - LZMA_PROPERTIES_LENGTH;
lzma_size = ddt_header.cmpLength - LZMA_PROPERTIES_LENGTH;
cmpData = (uint8_t *)malloc(lzmaSize);
if(cmpData == NULL)
cmp_data = (uint8_t *)malloc(lzma_size);
if(cmp_data == NULL)
{
TRACE("Cannot allocate memory for DDT, continuing...");
break;
}
ctx->userDataDdt = (uint64_t *)malloc(ddtHeader.length);
ctx->userDataDdt = (uint64_t *)malloc(ddt_header.length);
if(ctx->userDataDdt == NULL)
{
TRACE("Cannot allocate memory for DDT, continuing...");
free(cmpData);
free(cmp_data);
break;
}
readBytes = fread(lzmaProperties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(readBytes != LZMA_PROPERTIES_LENGTH)
read_bytes = fread(lzma_properties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(read_bytes != LZMA_PROPERTIES_LENGTH)
{
TRACE("Could not read LZMA properties, continuing...");
free(cmpData);
free(cmp_data);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
break;
}
readBytes = fread(cmpData, 1, lzmaSize, ctx->imageStream);
if(readBytes != lzmaSize)
read_bytes = fread(cmp_data, 1, lzma_size, ctx->imageStream);
if(read_bytes != lzma_size)
{
TRACE("Could not read compressed block, continuing...");
free(cmpData);
free(cmp_data);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
break;
}
readBytes = ddtHeader.length;
TRACE("Decompressing block of size %zu bytes", ddtHeader.length);
errorNo = aaruf_lzma_decode_buffer((uint8_t *)ctx->userDataDdt, &readBytes, cmpData, &lzmaSize,
lzmaProperties, LZMA_PROPERTIES_LENGTH);
read_bytes = ddt_header.length;
TRACE("Decompressing block of size %zu bytes", ddt_header.length);
error_no = aaruf_lzma_decode_buffer((uint8_t *)ctx->userDataDdt, &read_bytes, cmp_data, &lzma_size,
lzma_properties, LZMA_PROPERTIES_LENGTH);
if(errorNo != 0)
if(error_no != 0)
{
FATAL("Got error %d from LZMA, stopping...", errorNo);
free(cmpData);
FATAL("Got error %d from LZMA, stopping...", error_no);
free(cmp_data);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(readBytes != ddtHeader.length)
if(read_bytes != ddt_header.length)
{
FATAL("Error decompressing block, should be {0} bytes but got {1} bytes., stopping...");
free(cmpData);
free(cmp_data);
free(ctx->userDataDdt);
ctx->userDataDdt = NULL;
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
ctx->inMemoryDdt = true;
*foundUserDataDdt = true;
ctx->inMemoryDdt = true;
*found_user_data_ddt = true;
break;
// TODO: Check CRC
case None:
#ifdef __linux__
TRACE("Memory mapping deduplication table at position %" PRIu64, entry->offset + sizeof(ddtHeader));
ctx->mappedMemoryDdtSize = sizeof(uint64_t) * ddtHeader.entries;
TRACE("Memory mapping deduplication table at position %" PRIu64, entry->offset + sizeof(ddt_header));
ctx->mappedMemoryDdtSize = sizeof(uint64_t) * ddt_header.entries;
ctx->userDataDdt = mmap(NULL, ctx->mappedMemoryDdtSize, PROT_READ, MAP_SHARED, fileno(ctx->imageStream),
entry->offset + sizeof(ddtHeader));
entry->offset + sizeof(ddt_header));
if(ctx->userDataDdt == MAP_FAILED)
{
*foundUserDataDdt = false;
*found_user_data_ddt = false;
FATAL("Could not read map deduplication table.");
break;
}
@@ -181,115 +181,115 @@ int32_t process_ddt_v1(aaruformatContext *ctx, IndexEntry *entry, bool *foundUse
break;
#else // TODO: Implement
TRACE("Uncompressed DDT not yet implemented...");
*foundUserDataDdt = false;
*found_user_data_ddt = false;
break;
#endif
default:
TRACE("Found unknown compression type %d, continuing...", ddtHeader.compression);
*foundUserDataDdt = false;
TRACE("Found unknown compression type %d, continuing...", ddt_header.compression);
*found_user_data_ddt = false;
break;
}
}
else if(entry->dataType == CdSectorPrefixCorrected || entry->dataType == CdSectorSuffixCorrected)
{
switch(ddtHeader.compression)
switch(ddt_header.compression)
{
// TODO: Check CRC
case Lzma:
lzmaSize = ddtHeader.cmpLength - LZMA_PROPERTIES_LENGTH;
lzma_size = ddt_header.cmpLength - LZMA_PROPERTIES_LENGTH;
cmpData = (uint8_t *)malloc(lzmaSize);
if(cmpData == NULL)
cmp_data = (uint8_t *)malloc(lzma_size);
if(cmp_data == NULL)
{
TRACE("Cannot allocate memory for DDT, continuing...");
break;
}
cdDdt = (uint32_t *)malloc(ddtHeader.length);
if(cdDdt == NULL)
cd_ddt = (uint32_t *)malloc(ddt_header.length);
if(cd_ddt == NULL)
{
TRACE("Cannot allocate memory for DDT, continuing...");
free(cmpData);
free(cmp_data);
break;
}
readBytes = fread(lzmaProperties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(readBytes != LZMA_PROPERTIES_LENGTH)
read_bytes = fread(lzma_properties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(read_bytes != LZMA_PROPERTIES_LENGTH)
{
TRACE("Could not read LZMA properties, continuing...");
free(cmpData);
free(cdDdt);
free(cmp_data);
free(cd_ddt);
break;
}
readBytes = fread(cmpData, 1, lzmaSize, ctx->imageStream);
if(readBytes != lzmaSize)
read_bytes = fread(cmp_data, 1, lzma_size, ctx->imageStream);
if(read_bytes != lzma_size)
{
TRACE("Could not read compressed block, continuing...");
free(cmpData);
free(cdDdt);
free(cmp_data);
free(cd_ddt);
break;
}
readBytes = ddtHeader.length;
TRACE("Decompressing block of size %zu bytes", ddtHeader.length);
errorNo = aaruf_lzma_decode_buffer((uint8_t *)cdDdt, &readBytes, cmpData, &lzmaSize, lzmaProperties,
LZMA_PROPERTIES_LENGTH);
read_bytes = ddt_header.length;
TRACE("Decompressing block of size %zu bytes", ddt_header.length);
error_no = aaruf_lzma_decode_buffer((uint8_t *)cd_ddt, &read_bytes, cmp_data, &lzma_size,
lzma_properties, LZMA_PROPERTIES_LENGTH);
if(errorNo != 0)
if(error_no != 0)
{
FATAL("Got error %d from LZMA, stopping...", errorNo);
free(cmpData);
free(cdDdt);
FATAL("Got error %d from LZMA, stopping...", error_no);
free(cmp_data);
free(cd_ddt);
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(readBytes != ddtHeader.length)
if(read_bytes != ddt_header.length)
{
FATAL("Error decompressing block, should be {0} bytes but got {1} bytes., stopping...");
free(cmpData);
free(cdDdt);
free(cmp_data);
free(cd_ddt);
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(entry->dataType == CdSectorPrefixCorrected)
ctx->sectorPrefixDdt = cdDdt;
ctx->sectorPrefixDdt = cd_ddt;
else if(entry->dataType == CdSectorSuffixCorrected)
ctx->sectorSuffixDdt = cdDdt;
ctx->sectorSuffixDdt = cd_ddt;
else
free(cdDdt);
free(cd_ddt);
break;
// TODO: Check CRC
case None:
cdDdt = (uint32_t *)malloc(ddtHeader.entries * sizeof(uint32_t));
cd_ddt = (uint32_t *)malloc(ddt_header.entries * sizeof(uint32_t));
if(cdDdt == NULL)
if(cd_ddt == NULL)
{
TRACE("Cannot allocate memory for deduplication table.");
break;
}
readBytes = fread(cdDdt, 1, ddtHeader.entries * sizeof(uint32_t), ctx->imageStream);
read_bytes = fread(cd_ddt, 1, ddt_header.entries * sizeof(uint32_t), ctx->imageStream);
if(readBytes != ddtHeader.entries * sizeof(uint32_t))
if(read_bytes != ddt_header.entries * sizeof(uint32_t))
{
free(cdDdt);
free(cd_ddt);
TRACE("Could not read deduplication table, continuing...");
break;
}
if(entry->dataType == CdSectorPrefixCorrected)
ctx->sectorPrefixDdt = cdDdt;
ctx->sectorPrefixDdt = cd_ddt;
else if(entry->dataType == CdSectorSuffixCorrected)
ctx->sectorSuffixDdt = cdDdt;
ctx->sectorSuffixDdt = cd_ddt;
else
free(cdDdt);
free(cd_ddt);
break;
default:
TRACE("Found unknown compression type %d, continuing...", ddtHeader.compression);
TRACE("Found unknown compression type %d, continuing...", ddt_header.compression);
break;
}
}
@@ -304,38 +304,38 @@ int32_t process_ddt_v1(aaruformatContext *ctx, IndexEntry *entry, bool *foundUse
* Determines the offset and block offset for a sector using the DDT v1 table.
*
* @param ctx Pointer to the aaruformat context.
* @param sectorAddress Logical sector address to decode.
* @param sector_address Logical sector address to decode.
* @param offset Pointer to store the resulting offset.
* @param blockOffset Pointer to store the resulting block offset.
* @param sectorStatus Pointer to store the sector status.
* @param block_offset Pointer to store the resulting block offset.
* @param sector_status Pointer to store the sector status.
* @return AARUF_STATUS_OK on success, or an error code on failure.
*/
int32_t decode_ddt_entry_v1(aaruformatContext *ctx, uint64_t sectorAddress, uint64_t *offset, uint64_t *blockOffset,
uint8_t *sectorStatus)
int32_t decode_ddt_entry_v1(aaruformatContext *ctx, uint64_t sector_address, uint64_t *offset, uint64_t *block_offset,
uint8_t *sector_status)
{
TRACE("Entering decode_ddt_entry_v1(%p, %" PRIu64 ", %llu, %llu, %d)", ctx, sectorAddress, *offset, *blockOffset,
*sectorStatus);
TRACE("Entering decode_ddt_entry_v1(%p, %" PRIu64 ", %p, %p, %p)", ctx, sector_address, offset, block_offset,
sector_status);
// Check if the context and image stream are valid
if(ctx == NULL || ctx->imageStream == NULL)
{
FATAL("Invalid context or image stream.");
TRACE("Exiting decode_ddt_entry_v1() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
const uint64_t ddtEntry = ctx->userDataDdt[sectorAddress];
const uint32_t offsetMask = (uint32_t)((1 << ctx->shift) - 1);
*offset = ddtEntry & offsetMask;
*blockOffset = ddtEntry >> ctx->shift;
const uint64_t ddt_entry = ctx->userDataDdt[sector_address];
const uint32_t offset_mask = (uint32_t)((1 << ctx->shift) - 1);
*offset = ddt_entry & offset_mask;
*block_offset = ddt_entry >> ctx->shift;
// Partially written image... as we can't know the real sector size just assume it's common :/
if(ddtEntry == 0)
*sectorStatus = SectorStatusNotDumped;
if(ddt_entry == 0)
*sector_status = SectorStatusNotDumped;
else
*sectorStatus = SectorStatusDumped;
TRACE("Exiting decode_ddt_entry_v1(%p, %" PRIu64 ", %llu, %llu, %d) = AARUF_STATUS_OK", ctx, sectorAddress, *offset,
*blockOffset, *sectorStatus);
*sector_status = SectorStatusDumped;
TRACE("Exiting decode_ddt_entry_v1(%p, %" PRIu64 ", %llu, %llu, %d) = AARUF_STATUS_OK", ctx, sector_address,
*offset, *block_offset, *sector_status);
return AARUF_STATUS_OK;
}

File diff suppressed because it is too large Load Diff

View File

@@ -49,16 +49,16 @@ int aaruf_identify(const char *filename)
*
* Determines if the provided stream is an AaruFormat image.
*
* @param imageStream Stream of the file to identify.
* @param image_stream Stream of the file to identify.
* @return If positive, confidence value (100 = maximum confidence, 0 = not recognized). If negative, error value.
*/
int aaruf_identify_stream(FILE *imageStream)
int aaruf_identify_stream(FILE *image_stream)
{
fseek(imageStream, 0, SEEK_SET);
fseek(image_stream, 0, SEEK_SET);
AaruHeader header;
size_t ret = fread(&header, sizeof(AaruHeader), 1, imageStream);
size_t ret = fread(&header, sizeof(AaruHeader), 1, image_stream);
if(ret != 1) return 0;

View File

@@ -67,12 +67,12 @@ void add_to_cache(struct CacheHeader *cache, const char *key, void *value)
}
}
FORCE_INLINE char *int64_to_string(uint64_t number)
FORCE_INLINE char *uint64_to_string(uint64_t number)
{
char *charKey = malloc(17); // 16 hex digits + null terminator
if(!charKey) return NULL;
snprintf(charKey, 17, "%016" PRIX64, number);
return charKey;
char *char_key = malloc(17); // 16 hex digits + null terminator
if(!char_key) return NULL;
snprintf(char_key, 17, "%016" PRIX64, number);
return char_key;
}
/**
@@ -86,7 +86,7 @@ FORCE_INLINE char *int64_to_string(uint64_t number)
*/
void *find_in_cache_uint64(struct CacheHeader *cache, uint64_t key)
{
return find_in_cache(cache, int64_to_string(key));
return find_in_cache(cache, uint64_to_string(key));
}
/**
@@ -100,5 +100,5 @@ void *find_in_cache_uint64(struct CacheHeader *cache, uint64_t key)
*/
void add_to_cache_uint64(struct CacheHeader *cache, uint64_t key, void *value)
{
return add_to_cache(cache, int64_to_string(key), value);
return add_to_cache(cache, uint64_to_string(key), value);
}

View File

@@ -39,8 +39,8 @@
void *aaruf_open(const char *filepath)
{
aaruformatContext *ctx = NULL;
int errorNo = 0;
size_t readBytes = 0;
int error_no = 0;
size_t read_bytes = 0;
long pos = 0;
int i = 0;
uint32_t signature = 0;
@@ -75,9 +75,9 @@ void *aaruf_open(const char *filepath)
if(ctx->imageStream == NULL)
{
FATAL("Error %d opening file %s for reading", errno, filepath);
errorNo = errno;
error_no = errno;
free(ctx);
errno = errorNo;
errno = error_no;
TRACE("Exiting aaruf_open() = NULL");
return NULL;
@@ -85,9 +85,9 @@ void *aaruf_open(const char *filepath)
TRACE("Reading header at position 0");
fseek(ctx->imageStream, 0, SEEK_SET);
readBytes = fread(&ctx->header, 1, sizeof(AaruHeader), ctx->imageStream);
read_bytes = fread(&ctx->header, 1, sizeof(AaruHeader), ctx->imageStream);
if(readBytes != sizeof(AaruHeader))
if(read_bytes != sizeof(AaruHeader))
{
FATAL("Could not read header");
free(ctx);
@@ -112,9 +112,9 @@ void *aaruf_open(const char *filepath)
{
TRACE("Reading new header version at position 0");
fseek(ctx->imageStream, 0, SEEK_SET);
readBytes = fread(&ctx->header, 1, sizeof(AaruHeaderV2), ctx->imageStream);
read_bytes = fread(&ctx->header, 1, sizeof(AaruHeaderV2), ctx->imageStream);
if(readBytes != sizeof(AaruHeaderV2))
if(read_bytes != sizeof(AaruHeaderV2))
{
free(ctx);
errno = AARUF_ERROR_FILE_TOO_SMALL;
@@ -188,9 +188,9 @@ void *aaruf_open(const char *filepath)
return NULL;
}
readBytes = fread(&signature, 1, sizeof(uint32_t), ctx->imageStream);
read_bytes = fread(&signature, 1, sizeof(uint32_t), ctx->imageStream);
if(readBytes != sizeof(uint32_t) ||
if(read_bytes != sizeof(uint32_t) ||
(signature != IndexBlock && signature != IndexBlock2 && signature != IndexBlock3))
{
FATAL("Could not read index header or incorrect identifier %4.4s", (char *)&signature);
@@ -228,7 +228,7 @@ void *aaruf_open(const char *filepath)
entry->dataType, entry->offset);
}
bool foundUserDataDdt = false;
bool found_user_data_ddt = false;
ctx->imageInfo.ImageSize = 0;
for(i = 0; i < utarray_len(index_entries); i++)
{
@@ -247,13 +247,13 @@ void *aaruf_open(const char *filepath)
switch(entry->blockType)
{
case DataBlock:
errorNo = process_data_block(ctx, entry);
error_no = process_data_block(ctx, entry);
if(errorNo != AARUF_STATUS_OK)
if(error_no != AARUF_STATUS_OK)
{
utarray_free(index_entries);
free(ctx);
errno = errorNo;
errno = error_no;
return NULL;
}
@@ -261,26 +261,26 @@ void *aaruf_open(const char *filepath)
break;
case DeDuplicationTable:
errorNo = process_ddt_v1(ctx, entry, &foundUserDataDdt);
error_no = process_ddt_v1(ctx, entry, &found_user_data_ddt);
if(errorNo != AARUF_STATUS_OK)
if(error_no != AARUF_STATUS_OK)
{
utarray_free(index_entries);
free(ctx);
errno = errorNo;
errno = error_no;
return NULL;
}
break;
case DeDuplicationTable2:
errorNo = process_ddt_v2(ctx, entry, &foundUserDataDdt);
error_no = process_ddt_v2(ctx, entry, &found_user_data_ddt);
if(errorNo != AARUF_STATUS_OK)
if(error_no != AARUF_STATUS_OK)
{
utarray_free(index_entries);
free(ctx);
errno = errorNo;
errno = error_no;
return NULL;
}
@@ -320,7 +320,7 @@ void *aaruf_open(const char *filepath)
utarray_free(index_entries);
if(!foundUserDataDdt)
if(!found_user_data_ddt)
{
FATAL("Could not find user data deduplication table, aborting...");
aaruf_close(ctx);

View File

@@ -88,21 +88,21 @@ int32_t aaruf_read_media_tag(void *context, uint8_t *data, int32_t tag, uint32_t
return AARUF_STATUS_OK;
}
int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data, uint32_t *length)
int32_t aaruf_read_sector(void *context, uint64_t sector_address, uint8_t *data, uint32_t *length)
{
TRACE("Entering aaruf_read_sector(%p, %" PRIu64 ", %p, %u)", context, sectorAddress, data, *length);
TRACE("Entering aaruf_read_sector(%p, %" PRIu64 ", %p, %u)", context, sector_address, data, *length);
aaruformatContext *ctx = NULL;
uint64_t offset = 0;
uint64_t blockOffset = 0;
BlockHeader *blockHeader = NULL;
uint8_t *block = NULL;
size_t readBytes = 0;
uint8_t lzmaProperties[LZMA_PROPERTIES_LENGTH];
size_t lzmaSize = 0;
uint8_t *cmpData = NULL;
int errorNo = 0;
uint8_t sectorStatus = 0;
aaruformatContext *ctx = NULL;
uint64_t offset = 0;
uint64_t block_offset = 0;
BlockHeader *block_header = NULL;
uint8_t *block = NULL;
size_t read_bytes = 0;
uint8_t lzma_properties[LZMA_PROPERTIES_LENGTH];
size_t lzma_size = 0;
uint8_t *cmp_data = NULL;
int error_no = 0;
uint8_t sector_status = 0;
if(context == NULL)
{
@@ -123,7 +123,7 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
return AARUF_ERROR_NOT_AARUFORMAT;
}
if(sectorAddress > ctx->imageInfo.Sectors - 1)
if(sector_address > ctx->imageInfo.Sectors - 1)
{
FATAL("Sector address out of bounds");
@@ -132,20 +132,20 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
}
if(ctx->ddtVersion == 1)
errorNo = decode_ddt_entry_v1(ctx, sectorAddress, &offset, &blockOffset, &sectorStatus);
error_no = decode_ddt_entry_v1(ctx, sector_address, &offset, &block_offset, &sector_status);
else if(ctx->ddtVersion == 2)
errorNo = decode_ddt_entry_v2(ctx, sectorAddress, &offset, &blockOffset, &sectorStatus);
error_no = decode_ddt_entry_v2(ctx, sector_address, &offset, &block_offset, &sector_status);
if(errorNo != AARUF_STATUS_OK)
if(error_no != AARUF_STATUS_OK)
{
FATAL("Error %d decoding DDT entry", errorNo);
FATAL("Error %d decoding DDT entry", error_no);
TRACE("Exiting aaruf_read_sector() = %d", errorNo);
return errorNo;
TRACE("Exiting aaruf_read_sector() = %d", error_no);
return error_no;
}
// Partially written image... as we can't know the real sector size just assume it's common :/
if(sectorStatus == SectorStatusNotDumped)
if(sector_status == SectorStatusNotDumped)
{
*length = ctx->imageInfo.SectorSize;
@@ -155,14 +155,14 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
// Check if block header is cached
TRACE("Checking if block header is cached");
blockHeader = find_in_cache_uint64(&ctx->blockHeaderCache, blockOffset);
block_header = find_in_cache_uint64(&ctx->blockHeaderCache, block_offset);
// Read block header
if(blockHeader == NULL)
if(block_header == NULL)
{
TRACE("Allocating memory for block header");
blockHeader = malloc(sizeof(BlockHeader));
if(blockHeader == NULL)
block_header = malloc(sizeof(BlockHeader));
if(block_header == NULL)
{
FATAL("Not enough memory for block header");
@@ -171,10 +171,10 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
}
TRACE("Reading block header");
fseek(ctx->imageStream, blockOffset, SEEK_SET);
readBytes = fread(blockHeader, 1, sizeof(BlockHeader), ctx->imageStream);
fseek(ctx->imageStream, block_offset, SEEK_SET);
read_bytes = fread(block_header, 1, sizeof(BlockHeader), ctx->imageStream);
if(readBytes != sizeof(BlockHeader))
if(read_bytes != sizeof(BlockHeader))
{
FATAL("Error reading block header");
@@ -183,15 +183,15 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
}
TRACE("Adding block header to cache");
add_to_cache_uint64(&ctx->blockHeaderCache, blockOffset, blockHeader);
add_to_cache_uint64(&ctx->blockHeaderCache, block_offset, block_header);
}
else
fseek(ctx->imageStream, blockOffset + sizeof(BlockHeader), SEEK_SET); // Advance as if reading the header
fseek(ctx->imageStream, block_offset + sizeof(BlockHeader), SEEK_SET); // Advance as if reading the header
if(data == NULL || *length < blockHeader->sectorSize)
if(data == NULL || *length < block_header->sectorSize)
{
TRACE("Buffer too small for sector, required %u bytes", blockHeader->sectorSize);
*length = blockHeader->sectorSize;
TRACE("Buffer too small for sector, required %u bytes", block_header->sectorSize);
*length = block_header->sectorSize;
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_BUFFER_TOO_SMALL");
return AARUF_ERROR_BUFFER_TOO_SMALL;
@@ -199,24 +199,24 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
// Check if block is cached
TRACE("Checking if block is cached");
block = find_in_cache_uint64(&ctx->blockCache, blockOffset);
block = find_in_cache_uint64(&ctx->blockCache, block_offset);
if(block != NULL)
{
TRACE("Getting data from cache");
memcpy(data, block + offset * blockHeader->sectorSize, blockHeader->sectorSize);
*length = blockHeader->sectorSize;
memcpy(data, block + offset * block_header->sectorSize, block_header->sectorSize);
*length = block_header->sectorSize;
TRACE("Exiting aaruf_read_sector() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
// Decompress block
switch(blockHeader->compression)
switch(block_header->compression)
{
case None:
TRACE("Allocating memory for block");
block = (uint8_t *)malloc(blockHeader->length);
block = (uint8_t *)malloc(block_header->length);
if(block == NULL)
{
FATAL("Not enough memory for block");
@@ -226,9 +226,9 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
}
TRACE("Reading block into memory");
readBytes = fread(block, 1, blockHeader->length, ctx->imageStream);
read_bytes = fread(block, 1, block_header->length, ctx->imageStream);
if(readBytes != blockHeader->length)
if(read_bytes != block_header->length)
{
FATAL("Could not read block");
free(block);
@@ -239,11 +239,11 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
break;
case Lzma:
lzmaSize = blockHeader->cmpLength - LZMA_PROPERTIES_LENGTH;
TRACE("Allocating memory for compressed data of size %zu bytes", lzmaSize);
cmpData = malloc(lzmaSize);
lzma_size = block_header->cmpLength - LZMA_PROPERTIES_LENGTH;
TRACE("Allocating memory for compressed data of size %zu bytes", lzma_size);
cmp_data = malloc(lzma_size);
if(cmpData == NULL)
if(cmp_data == NULL)
{
FATAL("Cannot allocate memory for block...");
@@ -251,73 +251,73 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
TRACE("Allocating memory for block of size %zu bytes", blockHeader->length);
block = malloc(blockHeader->length);
TRACE("Allocating memory for block of size %zu bytes", block_header->length);
block = malloc(block_header->length);
if(block == NULL)
{
FATAL("Cannot allocate memory for block...");
free(cmpData);
free(cmp_data);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
readBytes = fread(lzmaProperties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
read_bytes = fread(lzma_properties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(readBytes != LZMA_PROPERTIES_LENGTH)
if(read_bytes != LZMA_PROPERTIES_LENGTH)
{
FATAL("Could not read LZMA properties...");
free(block);
free(cmpData);
free(cmp_data);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
readBytes = fread(cmpData, 1, lzmaSize, ctx->imageStream);
if(readBytes != lzmaSize)
read_bytes = fread(cmp_data, 1, lzma_size, ctx->imageStream);
if(read_bytes != lzma_size)
{
FATAL("Could not read compressed block...");
free(cmpData);
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
TRACE("Decompressing block of size %zu bytes", blockHeader->length);
readBytes = blockHeader->length;
errorNo =
aaruf_lzma_decode_buffer(block, &readBytes, cmpData, &lzmaSize, lzmaProperties, LZMA_PROPERTIES_LENGTH);
TRACE("Decompressing block of size %zu bytes", block_header->length);
read_bytes = block_header->length;
error_no = aaruf_lzma_decode_buffer(block, &read_bytes, cmp_data, &lzma_size, lzma_properties,
LZMA_PROPERTIES_LENGTH);
if(errorNo != 0)
if(error_no != 0)
{
FATAL("Got error %d from LZMA...", errorNo);
free(cmpData);
FATAL("Got error %d from LZMA...", error_no);
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(readBytes != blockHeader->length)
if(read_bytes != block_header->length)
{
FATAL("Error decompressing block, should be {0} bytes but got {1} bytes...");
free(cmpData);
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
free(cmpData);
free(cmp_data);
break;
case Flac:
TRACE("Allocating memory for compressed data of size %zu bytes", blockHeader->cmpLength);
cmpData = malloc(blockHeader->cmpLength);
TRACE("Allocating memory for compressed data of size %zu bytes", block_header->cmpLength);
cmp_data = malloc(block_header->cmpLength);
if(cmpData == NULL)
if(cmp_data == NULL)
{
FATAL("Cannot allocate memory for block...");
@@ -325,57 +325,58 @@ int32_t aaruf_read_sector(void *context, uint64_t sectorAddress, uint8_t *data,
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
TRACE("Allocating memory for block of size %zu bytes", blockHeader->length);
block = malloc(blockHeader->length);
TRACE("Allocating memory for block of size %zu bytes", block_header->length);
block = malloc(block_header->length);
if(block == NULL)
{
FATAL("Cannot allocate memory for block...");
free(cmpData);
free(cmp_data);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
TRACE("Reading compressed data into memory");
readBytes = fread(cmpData, 1, blockHeader->cmpLength, ctx->imageStream);
if(readBytes != blockHeader->cmpLength)
read_bytes = fread(cmp_data, 1, block_header->cmpLength, ctx->imageStream);
if(read_bytes != block_header->cmpLength)
{
FATAL("Could not read compressed block...");
free(cmpData);
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
TRACE("Decompressing block of size %zu bytes", blockHeader->length);
readBytes = aaruf_flac_decode_redbook_buffer(block, blockHeader->length, cmpData, blockHeader->cmpLength);
TRACE("Decompressing block of size %zu bytes", block_header->length);
read_bytes =
aaruf_flac_decode_redbook_buffer(block, block_header->length, cmp_data, block_header->cmpLength);
if(readBytes != blockHeader->length)
if(read_bytes != block_header->length)
{
FATAL("Error decompressing block, should be {0} bytes but got {1} bytes...");
free(cmpData);
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
free(cmpData);
free(cmp_data);
break;
default:
FATAL("Unsupported compression %d", blockHeader->compression);
FATAL("Unsupported compression %d", block_header->compression);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_UNSUPPORTED_COMPRESSION");
return AARUF_ERROR_UNSUPPORTED_COMPRESSION;
}
// Add block to cache
TRACE("Adding block to cache");
add_to_cache_uint64(&ctx->blockCache, blockOffset, block);
add_to_cache_uint64(&ctx->blockCache, block_offset, block);
memcpy(data, block + (offset * blockHeader->sectorSize), blockHeader->sectorSize);
*length = blockHeader->sectorSize;
memcpy(data, block + (offset * block_header->sectorSize), block_header->sectorSize);
*length = block_header->sectorSize;
TRACE("Exiting aaruf_read_sector() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;

View File

@@ -37,7 +37,8 @@ uint64_t get_filetime_uint64()
/**
* @brief Gets the current time as a 64-bit FILETIME value.
*
* Returns the current system time as a 64-bit value compatible with Windows FILETIME (number of 100-nanosecond intervals since January 1, 1601 UTC).
* Returns the current system time as a 64-bit value compatible with Windows FILETIME (number of 100-nanosecond
* intervals since January 1, 1601 UTC).
*
* @return The current time as a 64-bit FILETIME value.
*/
@@ -46,9 +47,8 @@ uint64_t get_filetime_uint64()
struct timeval tv;
gettimeofday(&tv, NULL); // seconds + microseconds since 1970
const uint64_t EPOCH_DIFF = 11644473600ULL; // seconds between 1601 and 1970
uint64_t ft = (tv.tv_sec + EPOCH_DIFF) * 10000000ULL + tv.tv_usec * 10;
const uint64_t epoch_diff = 11644473600ULL; // seconds between 1601 and 1970
uint64_t ft = (tv.tv_sec + epoch_diff) * 10000000ULL + tv.tv_usec * 10;
return ft;
}
#endif

View File

@@ -32,16 +32,16 @@
* Writes the given data to the specified sector address in the image, with the given status and length.
*
* @param context Pointer to the aaruformat context.
* @param sectorAddress Logical sector address to write.
* @param sector_address Logical sector address to write.
* @param data Pointer to the data buffer to write.
* @param sectorStatus Status of the sector to write.
* @param sector_status Status of the sector to write.
* @param length Length of the data buffer.
* @return AARUF_STATUS_OK on success, or an error code on failure.
*/
int32_t aaruf_write_sector(void *context, uint64_t sectorAddress, const uint8_t *data, uint8_t sectorStatus,
int32_t aaruf_write_sector(void *context, uint64_t sector_address, const uint8_t *data, uint8_t sector_status,
uint32_t length)
{
TRACE("Entering aaruf_write_sector(%p, %" PRIu64 ", %p, %u, %u)", context, sectorAddress, data, sectorStatus,
TRACE("Entering aaruf_write_sector(%p, %" PRIu64 ", %p, %u, %u)", context, sector_address, data, sector_status,
length);
// Check context is correct AaruFormat context
@@ -98,7 +98,7 @@ int32_t aaruf_write_sector(void *context, uint64_t sectorAddress, const uint8_t
}
}
set_ddt_entry_v2(ctx, sectorAddress, ctx->currentBlockOffset, ctx->nextBlockPosition, sectorStatus);
set_ddt_entry_v2(ctx, sector_address, ctx->currentBlockOffset, ctx->nextBlockPosition, sector_status);
// No block set
if(ctx->writingBufferPosition == 0)
@@ -110,11 +110,11 @@ int32_t aaruf_write_sector(void *context, uint64_t sectorAddress, const uint8_t
ctx->currentBlockHeader.sectorSize = length;
// TODO: Optical discs
uint32_t maxBufferSize = (1 << ctx->userDataDdtHeader.dataShift) * ctx->currentBlockHeader.sectorSize;
TRACE("Setting max buffer size to %u bytes", maxBufferSize);
uint32_t max_buffer_size = (1 << ctx->userDataDdtHeader.dataShift) * ctx->currentBlockHeader.sectorSize;
TRACE("Setting max buffer size to %u bytes", max_buffer_size);
TRACE("Allocating memory for writing buffer");
ctx->writingBuffer = (uint8_t *)calloc(1, maxBufferSize);
ctx->writingBuffer = (uint8_t *)calloc(1, max_buffer_size);
if(ctx->writingBuffer == NULL)
{
FATAL("Could not allocate memory");
@@ -160,13 +160,13 @@ int32_t aaruf_close_current_block(aaruformatContext *ctx)
// Add to index
TRACE("Adding block to index");
IndexEntry indexEntry;
indexEntry.blockType = DataBlock;
indexEntry.dataType = UserData;
indexEntry.offset = ctx->nextBlockPosition;
IndexEntry index_entry;
index_entry.blockType = DataBlock;
index_entry.dataType = UserData;
index_entry.offset = ctx->nextBlockPosition;
utarray_push_back(ctx->indexEntries, &indexEntry);
TRACE("Block added to index at offset %" PRIu64, indexEntry.offset);
utarray_push_back(ctx->indexEntries, &index_entry);
TRACE("Block added to index at offset %" PRIu64, index_entry.offset);
// Write block header to file
@@ -182,9 +182,9 @@ int32_t aaruf_close_current_block(aaruformatContext *ctx)
return AARUF_ERROR_CANNOT_WRITE_BLOCK_DATA;
// Update nextBlockPosition to point to the next available aligned position
uint64_t blockTotalSize = sizeof(BlockHeader) + ctx->currentBlockHeader.cmpLength;
uint64_t alignmentMask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
ctx->nextBlockPosition = (ctx->nextBlockPosition + blockTotalSize + alignmentMask) & ~alignmentMask;
uint64_t block_total_size = sizeof(BlockHeader) + ctx->currentBlockHeader.cmpLength;
uint64_t alignment_mask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
ctx->nextBlockPosition = (ctx->nextBlockPosition + block_total_size + alignment_mask) & ~alignment_mask;
TRACE("Updated nextBlockPosition to %" PRIu64, ctx->nextBlockPosition);
// Clear values

View File

@@ -83,7 +83,7 @@ bool check_cd_sector_channel(CdEccContext *context, uint8_t *sector, bool *unkno
edc = 0;
size = 0x810;
pos = 0;
for(; size > 0; size--) edc = (edc >> 8) ^ context->edcTable[(edc ^ sector[pos++]) & 0xFF];
for(; size > 0; size--) edc = (edc >> 8) ^ context->edc_table[(edc ^ sector[pos++]) & 0xFF];
calculatedEdc = edc;
*edc_correct = calculatedEdc == storedEdc;
@@ -128,7 +128,7 @@ bool check_cd_sector_channel(CdEccContext *context, uint8_t *sector, bool *unkno
edc = 0;
size = 0x808;
pos = 0x10;
for(; size > 0; size--) edc = (edc >> 8) ^ context->edcTable[(edc ^ sector[pos++]) & 0xFF];
for(; size > 0; size--) edc = (edc >> 8) ^ context->edc_table[(edc ^ sector[pos++]) & 0xFF];
calculatedEdc = edc;
*edc_correct = calculatedEdc == storedEdc;
@@ -151,7 +151,7 @@ bool check_cd_sector_channel(CdEccContext *context, uint8_t *sector, bool *unkno
edc = 0;
size = 0x808;
pos = 0x10;
for(; size > 0; size--) edc = (edc >> 8) ^ context->edcTable[(edc ^ sector[pos++]) & 0xFF];
for(; size > 0; size--) edc = (edc >> 8) ^ context->edc_table[(edc ^ sector[pos++]) & 0xFF];
calculatedEdc = edc;
*edc_correct = calculatedEdc == storedEdc;