Refactor variable names for consistency and readability across multiple files

This commit is contained in:
2025-09-30 15:11:27 +01:00
parent 352850a698
commit dda0ee89e8
25 changed files with 1271 additions and 1252 deletions

View File

@@ -41,9 +41,9 @@ int aaruf_close(void *context)
{
TRACE("Entering aaruf_close(%p)", context);
int i = 0;
mediaTagEntry *mediaTag = NULL;
mediaTagEntry *tmpMediaTag = NULL;
int i = 0;
mediaTagEntry *media_tag = NULL;
mediaTagEntry *tmp_media_tag = NULL;
if(context == NULL)
{
@@ -90,95 +90,97 @@ int aaruf_close(void *context)
// Write cached secondary table to file end and update primary table entry with its position
// Check if we have a cached table that needs to be written (either it has an offset or exists in memory)
bool hasCachedSecondaryDdt = (ctx->userDataDdtHeader.tableShift > 0) &&
((ctx->cachedDdtOffset != 0) ||
(ctx->cachedSecondaryDdtSmall != NULL || ctx->cachedSecondaryDdtBig != NULL));
bool has_cached_secondary_ddt = (ctx->userDataDdtHeader.tableShift > 0) &&
((ctx->cachedDdtOffset != 0) ||
(ctx->cachedSecondaryDdtSmall != NULL || ctx->cachedSecondaryDdtBig != NULL));
if(hasCachedSecondaryDdt)
if(has_cached_secondary_ddt)
{
TRACE("Writing cached secondary DDT table to file");
fseek(ctx->imageStream, 0, SEEK_END);
long endOfFile = ftell(ctx->imageStream);
long end_of_file = ftell(ctx->imageStream);
// Align the position according to block alignment shift
uint64_t alignmentMask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(endOfFile & alignmentMask)
uint64_t alignment_mask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(end_of_file & alignment_mask)
{
// Calculate the next aligned position
uint64_t alignedPosition = (endOfFile + alignmentMask) & ~alignmentMask;
uint64_t aligned_position = (end_of_file + alignment_mask) & ~alignment_mask;
// Seek to the aligned position and pad with zeros if necessary
fseek(ctx->imageStream, alignedPosition, SEEK_SET);
endOfFile = alignedPosition;
fseek(ctx->imageStream, aligned_position, SEEK_SET);
end_of_file = aligned_position;
TRACE("Aligned DDT write position from %ld to %" PRIu64 " (alignment shift: %d)",
ftell(ctx->imageStream) - (alignedPosition - endOfFile), alignedPosition,
ftell(ctx->imageStream) - (aligned_position - end_of_file), aligned_position,
ctx->userDataDdtHeader.blockAlignmentShift);
}
// Prepare DDT header for the cached table
DdtHeader2 ddtHeader = {0};
ddtHeader.identifier = DeDuplicationTable2;
ddtHeader.type = UserData;
ddtHeader.compression = None;
ddtHeader.levels = ctx->userDataDdtHeader.levels;
ddtHeader.tableLevel = ctx->userDataDdtHeader.tableLevel + 1;
ddtHeader.previousLevelOffset = ctx->primaryDdtOffset;
ddtHeader.negative = ctx->userDataDdtHeader.negative;
ddtHeader.overflow = ctx->userDataDdtHeader.overflow;
ddtHeader.blockAlignmentShift = ctx->userDataDdtHeader.blockAlignmentShift;
ddtHeader.dataShift = ctx->userDataDdtHeader.dataShift;
ddtHeader.tableShift = 0; // Secondary tables are single level
ddtHeader.sizeType = ctx->userDataDdtHeader.sizeType;
DdtHeader2 ddt_header;
memset(&ddt_header, 0, sizeof(DdtHeader2));
ddt_header.identifier = DeDuplicationTable2;
ddt_header.type = UserData;
ddt_header.compression = None;
ddt_header.levels = ctx->userDataDdtHeader.levels;
ddt_header.tableLevel = ctx->userDataDdtHeader.tableLevel + 1;
ddt_header.previousLevelOffset = ctx->primaryDdtOffset;
ddt_header.negative = ctx->userDataDdtHeader.negative;
ddt_header.overflow = ctx->userDataDdtHeader.overflow;
ddt_header.blockAlignmentShift = ctx->userDataDdtHeader.blockAlignmentShift;
ddt_header.dataShift = ctx->userDataDdtHeader.dataShift;
ddt_header.tableShift = 0; // Secondary tables are single level
ddt_header.sizeType = ctx->userDataDdtHeader.sizeType;
uint64_t itemsPerDdtEntry = 1 << ctx->userDataDdtHeader.tableShift;
ddtHeader.blocks = itemsPerDdtEntry;
ddtHeader.entries = itemsPerDdtEntry;
ddtHeader.start = ctx->cachedDdtPosition * itemsPerDdtEntry;
uint64_t items_per_ddt_entry = 1 << ctx->userDataDdtHeader.tableShift;
ddt_header.blocks = items_per_ddt_entry;
ddt_header.entries = items_per_ddt_entry;
ddt_header.start = ctx->cachedDdtPosition * items_per_ddt_entry;
// Calculate data size
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
ddtHeader.length = itemsPerDdtEntry * sizeof(uint16_t);
ddt_header.length = items_per_ddt_entry * sizeof(uint16_t);
else
ddtHeader.length = itemsPerDdtEntry * sizeof(uint32_t);
ddt_header.length = items_per_ddt_entry * sizeof(uint32_t);
ddtHeader.cmpLength = ddtHeader.length;
ddt_header.cmpLength = ddt_header.length;
// Calculate CRC64 of the data
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtSmall, ddtHeader.length);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtSmall, ddt_header.length);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtBig, ddtHeader.length);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtBig, ddt_header.length);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
ddtHeader.crc64 = crc64;
ddtHeader.cmpCrc64 = crc64;
ddt_header.crc64 = crc64;
ddt_header.cmpCrc64 = crc64;
}
// Write header
if(fwrite(&ddtHeader, sizeof(DdtHeader2), 1, ctx->imageStream) == 1)
if(fwrite(&ddt_header, sizeof(DdtHeader2), 1, ctx->imageStream) == 1)
{
// Write data
size_t writtenBytes = 0;
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
writtenBytes = fwrite(ctx->cachedSecondaryDdtSmall, ddtHeader.length, 1, ctx->imageStream);
written_bytes = fwrite(ctx->cachedSecondaryDdtSmall, ddt_header.length, 1, ctx->imageStream);
else
writtenBytes = fwrite(ctx->cachedSecondaryDdtBig, ddtHeader.length, 1, ctx->imageStream);
written_bytes = fwrite(ctx->cachedSecondaryDdtBig, ddt_header.length, 1, ctx->imageStream);
if(writtenBytes == 1)
if(written_bytes == 1)
{
// Update primary table entry to point to new location
uint64_t newSecondaryTableBlockOffset = endOfFile >> ctx->userDataDdtHeader.blockAlignmentShift;
uint64_t new_secondary_table_block_offset =
end_of_file >> ctx->userDataDdtHeader.blockAlignmentShift;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
ctx->userDataDdtMini[ctx->cachedDdtPosition] = (uint16_t)newSecondaryTableBlockOffset;
ctx->userDataDdtMini[ctx->cachedDdtPosition] = (uint16_t)new_secondary_table_block_offset;
else
ctx->userDataDdtBig[ctx->cachedDdtPosition] = (uint32_t)newSecondaryTableBlockOffset;
ctx->userDataDdtBig[ctx->cachedDdtPosition] = (uint32_t)new_secondary_table_block_offset;
// Update index: remove old entry for cached DDT and add new one
TRACE("Updating index for cached secondary DDT");
@@ -204,35 +206,35 @@ int aaruf_close(void *context)
}
// Add new index entry for the newly written secondary DDT
IndexEntry newDdtEntry;
newDdtEntry.blockType = DeDuplicationTable2;
newDdtEntry.dataType = UserData;
newDdtEntry.offset = endOfFile;
IndexEntry new_ddt_entry;
new_ddt_entry.blockType = DeDuplicationTable2;
new_ddt_entry.dataType = UserData;
new_ddt_entry.offset = end_of_file;
utarray_push_back(ctx->indexEntries, &newDdtEntry);
TRACE("Added new DDT index entry at offset %" PRIu64, endOfFile);
utarray_push_back(ctx->indexEntries, &new_ddt_entry);
TRACE("Added new DDT index entry at offset %" PRIu64, end_of_file);
// Write the updated primary table back to its original position in the file
long savedPos = ftell(ctx->imageStream);
long saved_pos = ftell(ctx->imageStream);
fseek(ctx->imageStream, ctx->primaryDdtOffset + sizeof(DdtHeader2), SEEK_SET);
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primaryWrittenBytes = 0;
size_t primary_written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
primaryWrittenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream);
primary_written_bytes = fwrite(ctx->userDataDdtMini, primary_table_size, 1, ctx->imageStream);
else
primaryWrittenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream);
primary_written_bytes = fwrite(ctx->userDataDdtBig, primary_table_size, 1, ctx->imageStream);
if(primaryWrittenBytes != 1)
if(primary_written_bytes != 1)
{
TRACE("Could not flush primary DDT table to file.");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
fseek(ctx->imageStream, savedPos, SEEK_SET);
fseek(ctx->imageStream, saved_pos, SEEK_SET);
}
else
TRACE("Failed to write cached secondary DDT data");
@@ -266,14 +268,14 @@ int aaruf_close(void *context)
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primaryTableSize);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primary_table_size);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primaryTableSize);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primary_table_size);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
@@ -286,8 +288,8 @@ int aaruf_close(void *context)
// dataShift, tableShift, sizeType, entries, blocks, start are already set during creation
ctx->userDataDdtHeader.crc64 = crc64;
ctx->userDataDdtHeader.cmpCrc64 = crc64;
ctx->userDataDdtHeader.length = primaryTableSize;
ctx->userDataDdtHeader.cmpLength = primaryTableSize;
ctx->userDataDdtHeader.length = primary_table_size;
ctx->userDataDdtHeader.cmpLength = primary_table_size;
TRACE("Calculated CRC64 for primary DDT: 0x%16lX", crc64);
}
@@ -303,30 +305,30 @@ int aaruf_close(void *context)
}
// Then write the table data (position is already after the header)
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
// Write the primary table data
size_t writtenBytes = 0;
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
writtenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream);
written_bytes = fwrite(ctx->userDataDdtMini, primary_table_size, 1, ctx->imageStream);
else
writtenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream);
written_bytes = fwrite(ctx->userDataDdtBig, primary_table_size, 1, ctx->imageStream);
if(writtenBytes == 1)
if(written_bytes == 1)
{
TRACE("Successfully wrote primary DDT header and table to file (%" PRIu64 " entries, %zu bytes)",
ctx->userDataDdtHeader.entries, primaryTableSize);
ctx->userDataDdtHeader.entries, primary_table_size);
// Add primary DDT to index
TRACE("Adding primary DDT to index");
IndexEntry primaryDdtEntry;
primaryDdtEntry.blockType = DeDuplicationTable2;
primaryDdtEntry.dataType = UserData;
primaryDdtEntry.offset = ctx->primaryDdtOffset;
IndexEntry primary_ddt_entry;
primary_ddt_entry.blockType = DeDuplicationTable2;
primary_ddt_entry.dataType = UserData;
primary_ddt_entry.offset = ctx->primaryDdtOffset;
utarray_push_back(ctx->indexEntries, &primaryDdtEntry);
utarray_push_back(ctx->indexEntries, &primary_ddt_entry);
TRACE("Added primary DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset);
}
else
@@ -342,14 +344,14 @@ int aaruf_close(void *context)
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primaryTableSize);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primary_table_size);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primaryTableSize);
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primary_table_size);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
@@ -365,8 +367,8 @@ int aaruf_close(void *context)
// blockAlignmentShift, dataShift, tableShift, sizeType, entries, blocks, start are already set
ctx->userDataDdtHeader.crc64 = crc64;
ctx->userDataDdtHeader.cmpCrc64 = crc64;
ctx->userDataDdtHeader.length = primaryTableSize;
ctx->userDataDdtHeader.cmpLength = primaryTableSize;
ctx->userDataDdtHeader.length = primary_table_size;
ctx->userDataDdtHeader.cmpLength = primary_table_size;
TRACE("Calculated CRC64 for single-level DDT: 0x%16lX", crc64);
}
@@ -382,30 +384,30 @@ int aaruf_close(void *context)
}
// Then write the table data (position is already after the header)
size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
// Write the primary table data
size_t writtenBytes = 0;
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
writtenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream);
written_bytes = fwrite(ctx->userDataDdtMini, primary_table_size, 1, ctx->imageStream);
else
writtenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream);
written_bytes = fwrite(ctx->userDataDdtBig, primary_table_size, 1, ctx->imageStream);
if(writtenBytes == 1)
if(written_bytes == 1)
{
TRACE("Successfully wrote single-level DDT header and table to file (%" PRIu64 " entries, %zu bytes)",
ctx->userDataDdtHeader.entries, primaryTableSize);
ctx->userDataDdtHeader.entries, primary_table_size);
// Add single-level DDT to index
TRACE("Adding single-level DDT to index");
IndexEntry singleDdtEntry;
singleDdtEntry.blockType = DeDuplicationTable2;
singleDdtEntry.dataType = UserData;
singleDdtEntry.offset = ctx->primaryDdtOffset;
IndexEntry single_ddt_entry;
single_ddt_entry.blockType = DeDuplicationTable2;
single_ddt_entry.dataType = UserData;
single_ddt_entry.offset = ctx->primaryDdtOffset;
utarray_push_back(ctx->indexEntries, &singleDdtEntry);
utarray_push_back(ctx->indexEntries, &single_ddt_entry);
TRACE("Added single-level DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset);
}
else
@@ -415,70 +417,70 @@ int aaruf_close(void *context)
// Write the complete index at the end of the file
TRACE("Writing index at the end of the file");
fseek(ctx->imageStream, 0, SEEK_END);
long indexPosition = ftell(ctx->imageStream);
long index_position = ftell(ctx->imageStream);
// Align index position to block boundary if needed
uint64_t alignmentMask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(indexPosition & alignmentMask)
uint64_t alignment_mask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(index_position & alignment_mask)
{
uint64_t alignedPosition = (indexPosition + alignmentMask) & ~alignmentMask;
fseek(ctx->imageStream, alignedPosition, SEEK_SET);
indexPosition = alignedPosition;
TRACE("Aligned index position to %" PRIu64, alignedPosition);
uint64_t aligned_position = (index_position + alignment_mask) & ~alignment_mask;
fseek(ctx->imageStream, aligned_position, SEEK_SET);
index_position = aligned_position;
TRACE("Aligned index position to %" PRIu64, aligned_position);
}
// Prepare index header
IndexHeader3 indexHeader;
indexHeader.identifier = IndexBlock3;
indexHeader.entries = utarray_len(ctx->indexEntries);
indexHeader.previous = 0; // No previous index for now
IndexHeader3 index_header;
index_header.identifier = IndexBlock3;
index_header.entries = utarray_len(ctx->indexEntries);
index_header.previous = 0; // No previous index for now
TRACE("Writing index with %" PRIu64 " entries at position %ld", indexHeader.entries, indexPosition);
TRACE("Writing index with %" PRIu64 " entries at position %ld", index_header.entries, index_position);
// Calculate CRC64 of index entries
crc64_ctx *indexCrc64Context = aaruf_crc64_init();
if(indexCrc64Context != NULL && indexHeader.entries > 0)
crc64_ctx *index_crc64_context = aaruf_crc64_init();
if(index_crc64_context != NULL && index_header.entries > 0)
{
size_t indexDataSize = indexHeader.entries * sizeof(IndexEntry);
aaruf_crc64_update(indexCrc64Context, (uint8_t *)utarray_front(ctx->indexEntries), indexDataSize);
aaruf_crc64_final(indexCrc64Context, &indexHeader.crc64);
TRACE("Calculated index CRC64: 0x%16lX", indexHeader.crc64);
size_t index_data_size = index_header.entries * sizeof(IndexEntry);
aaruf_crc64_update(index_crc64_context, (uint8_t *)utarray_front(ctx->indexEntries), index_data_size);
aaruf_crc64_final(index_crc64_context, &index_header.crc64);
TRACE("Calculated index CRC64: 0x%16lX", index_header.crc64);
}
else { indexHeader.crc64 = 0; }
else { index_header.crc64 = 0; }
// Write index header
if(fwrite(&indexHeader, sizeof(IndexHeader3), 1, ctx->imageStream) == 1)
if(fwrite(&index_header, sizeof(IndexHeader3), 1, ctx->imageStream) == 1)
{
TRACE("Successfully wrote index header");
// Write index entries
if(indexHeader.entries > 0)
if(index_header.entries > 0)
{
size_t entriesWritten = 0;
IndexEntry *entry = NULL;
size_t entries_written = 0;
IndexEntry *entry = NULL;
for(entry = (IndexEntry *)utarray_front(ctx->indexEntries); entry != NULL;
entry = (IndexEntry *)utarray_next(ctx->indexEntries, entry))
{
if(fwrite(entry, sizeof(IndexEntry), 1, ctx->imageStream) == 1)
{
entriesWritten++;
entries_written++;
TRACE("Wrote index entry: blockType=0x%08X dataType=%u offset=%" PRIu64, entry->blockType,
entry->dataType, entry->offset);
}
else
{
TRACE("Failed to write index entry %zu", entriesWritten);
TRACE("Failed to write index entry %zu", entries_written);
break;
}
}
if(entriesWritten == indexHeader.entries)
if(entries_written == index_header.entries)
{
TRACE("Successfully wrote all %zu index entries", entriesWritten);
TRACE("Successfully wrote all %zu index entries", entries_written);
// Update header with index offset and rewrite it
ctx->header.indexOffset = indexPosition;
ctx->header.indexOffset = index_position;
TRACE("Updating header with index offset: %" PRIu64, ctx->header.indexOffset);
// Seek back to beginning and rewrite header
@@ -495,8 +497,8 @@ int aaruf_close(void *context)
}
else
{
TRACE("Failed to write all index entries (wrote %zu of %" PRIu64 ")", entriesWritten,
indexHeader.entries);
TRACE("Failed to write all index entries (wrote %zu of %" PRIu64 ")", entries_written,
index_header.entries);
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
}
@@ -537,11 +539,11 @@ int aaruf_close(void *context)
ctx->mode2Subheaders = NULL;
TRACE("Freeing media tags");
if(ctx->mediaTags != NULL) HASH_ITER(hh, ctx->mediaTags, mediaTag, tmpMediaTag)
if(ctx->mediaTags != NULL) HASH_ITER(hh, ctx->mediaTags, media_tag, tmp_media_tag)
{
HASH_DEL(ctx->mediaTags, mediaTag);
free(mediaTag->data);
free(mediaTag);
HASH_DEL(ctx->mediaTags, media_tag);
free(media_tag->data);
free(media_tag);
}
#ifdef __linux__ // TODO: Implement