Merge pull request #5030 from jriwanek-forks/ssi2001

Update resid-fp to 2.12.0 from libsidplayfp
This commit is contained in:
Miran Grča
2024-12-10 01:29:02 +01:00
committed by GitHub
46 changed files with 1634 additions and 1424 deletions

View File

@@ -13,6 +13,8 @@
# Copyright 2020-2021 David Hrdlička.
#
set(CMAKE_CXX_STANDARD 17)
add_library(resid-fp STATIC Dac.cpp EnvelopeGenerator.cpp ExternalFilter.cpp
Filter.cpp Filter6581.cpp Filter8580.cpp FilterModelConfig.cpp
FilterModelConfig6581.cpp FilterModelConfig8580.cpp

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2016 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004,2010 Dag Lem <resid@nimrod.no>
*
@@ -22,9 +22,14 @@
#include "Dac.h"
#include "sidcxx11.h"
namespace reSIDfp
{
constexpr double MOSFET_LEAKAGE_6581 = 0.0075;
constexpr double MOSFET_LEAKAGE_8580 = 0.0035;
Dac::Dac(unsigned int bits) :
dac(new double[bits]),
dacLength(bits)
@@ -41,10 +46,8 @@ double Dac::getOutput(unsigned int input) const
for (unsigned int i = 0; i < dacLength; i++)
{
if ((input & (1 << i)) != 0)
{
dacValue += dac[i];
}
const bool transistor_on = (input & (1 << i)) != 0;
dacValue += transistor_on ? dac[i] : dac[i] * leakage;
}
return dacValue;
@@ -52,7 +55,7 @@ double Dac::getOutput(unsigned int input) const
void Dac::kinkedDac(ChipModel chipModel)
{
const double R_INFINITY = 1e6;
constexpr double R_INFINITY = 1e6;
// Non-linearity parameter, 8580 DACs are perfectly linear
const double _2R_div_R = chipModel == MOS6581 ? 2.20 : 2.00;
@@ -60,6 +63,10 @@ void Dac::kinkedDac(ChipModel chipModel)
// 6581 DACs are not terminated by a 2R resistor
const bool term = chipModel == MOS8580;
leakage = chipModel == MOS6581 ? MOSFET_LEAKAGE_6581 : MOSFET_LEAKAGE_8580;
double Vsum = 0.;
// Calculate voltage contribution by each individual bit in the R-2R ladder.
for (unsigned int set_bit = 0; set_bit < dacLength; set_bit++)
{
@@ -102,18 +109,10 @@ void Dac::kinkedDac(ChipModel chipModel)
}
dac[set_bit] = Vn;
Vsum += Vn;
}
// Normalize to integerish behavior
double Vsum = 0.;
for (unsigned int i = 0; i < dacLength; i++)
{
Vsum += dac[i];
}
Vsum /= 1 << dacLength;
for (unsigned int i = 0; i < dacLength; i++)
{
dac[i] /= Vsum;

View File

@@ -75,6 +75,15 @@ namespace reSIDfp
class Dac
{
private:
/**
* DAC leakage
*
* "Even in standard transistors a small amount of current leaks even when they are technically switched off."
*
* https://en.wikipedia.org/wiki/Subthreshold_conduction
*/
double leakage;
/// analog values
double * const dac;

View File

@@ -79,7 +79,7 @@ void EnvelopeGenerator::reset()
exponential_counter_period = 1;
new_exponential_counter_period = 0;
state = RELEASE;
state = State::RELEASE;
counter_enabled = true;
rate = adsrtable[release];
}
@@ -98,7 +98,7 @@ void EnvelopeGenerator::writeCONTROL_REG(unsigned char control)
if (gate_next)
{
// Gate bit on: Start attack, decay, sustain.
next_state = ATTACK;
next_state = State::ATTACK;
state_pipeline = 2;
if (resetLfsr || (exponential_pipeline == 2))
@@ -113,7 +113,7 @@ void EnvelopeGenerator::writeCONTROL_REG(unsigned char control)
else
{
// Gate bit off: Start release.
next_state = RELEASE;
next_state = State::RELEASE;
state_pipeline = envelope_pipeline > 0 ? 3 : 2;
}
}
@@ -124,11 +124,11 @@ void EnvelopeGenerator::writeATTACK_DECAY(unsigned char attack_decay)
attack = (attack_decay >> 4) & 0x0f;
decay = attack_decay & 0x0f;
if (state == ATTACK)
if (state == State::ATTACK)
{
rate = adsrtable[attack];
}
else if (state == DECAY_SUSTAIN)
else if (state == State::DECAY_SUSTAIN)
{
rate = adsrtable[decay];
}
@@ -146,7 +146,7 @@ void EnvelopeGenerator::writeSUSTAIN_RELEASE(unsigned char sustain_release)
release = sustain_release & 0x0f;
if (state == RELEASE)
if (state == State::RELEASE)
{
rate = adsrtable[release];
}

View File

@@ -47,68 +47,68 @@ private:
* The envelope state machine's distinct states. In addition to this,
* envelope has a hold mode, which freezes envelope counter to zero.
*/
enum State
enum class State
{
ATTACK, DECAY_SUSTAIN, RELEASE
};
private:
/// XOR shift register for ADSR prescaling.
unsigned int lfsr;
unsigned int lfsr = 0x7fff;
/// Comparison value (period) of the rate counter before next event.
unsigned int rate;
unsigned int rate = 0;
/**
* During release mode, the SID approximates envelope decay via piecewise
* linear decay rate.
*/
unsigned int exponential_counter;
unsigned int exponential_counter = 0;
/**
* Comparison value (period) of the exponential decay counter before next
* decrement.
*/
unsigned int exponential_counter_period;
unsigned int new_exponential_counter_period;
unsigned int exponential_counter_period = 1;
unsigned int new_exponential_counter_period = 0;
unsigned int state_pipeline;
unsigned int state_pipeline = 0;
///
unsigned int envelope_pipeline;
unsigned int envelope_pipeline = 0;
unsigned int exponential_pipeline;
unsigned int exponential_pipeline = 0;
/// Current envelope state
State state;
State next_state;
State state = State::RELEASE;
State next_state = State::RELEASE;
/// Whether counter is enabled. Only switching to ATTACK can release envelope.
bool counter_enabled;
bool counter_enabled = true;
/// Gate bit
bool gate;
bool gate = false;
///
bool resetLfsr;
bool resetLfsr = false;
/// The current digital value of envelope output.
unsigned char envelope_counter;
unsigned char envelope_counter = 0xaa;
/// Attack register
unsigned char attack;
unsigned char attack = 0;
/// Decay register
unsigned char decay;
unsigned char decay = 0;
/// Sustain register
unsigned char sustain;
unsigned char sustain = 0;
/// Release register
unsigned char release;
unsigned char release = 0;
/// The ENV3 value, sampled at the first phase of the clock
unsigned char env3;
unsigned char env3 = 0;
private:
static const unsigned int adsrtable[16];
@@ -129,31 +129,6 @@ public:
*/
unsigned int output() const { return envelope_counter; }
/**
* Constructor.
*/
EnvelopeGenerator() :
lfsr(0x7fff),
rate(0),
exponential_counter(0),
exponential_counter_period(1),
new_exponential_counter_period(0),
state_pipeline(0),
envelope_pipeline(0),
exponential_pipeline(0),
state(RELEASE),
next_state(RELEASE),
counter_enabled(true),
gate(false),
resetLfsr(false),
envelope_counter(0xaa),
attack(0),
decay(0),
sustain(0),
release(0),
env3(0)
{}
/**
* SID reset.
*/
@@ -218,15 +193,15 @@ void EnvelopeGenerator::clock()
{
if (likely(counter_enabled))
{
if (state == ATTACK)
if (state == State::ATTACK)
{
if (++envelope_counter==0xff)
{
next_state = DECAY_SUSTAIN;
next_state = State::DECAY_SUSTAIN;
state_pipeline = 3;
}
}
else if ((state == DECAY_SUSTAIN) || (state == RELEASE))
else if ((state == State::DECAY_SUSTAIN) || (state == State::RELEASE))
{
if (--envelope_counter==0x00)
{
@@ -241,8 +216,8 @@ void EnvelopeGenerator::clock()
{
exponential_counter = 0;
if (((state == DECAY_SUSTAIN) && (envelope_counter != sustain))
|| (state == RELEASE))
if (((state == State::DECAY_SUSTAIN) && (envelope_counter != sustain))
|| (state == State::RELEASE))
{
// The envelope counter can flip from 0x00 to 0xff by changing state to
// attack, then to release. The envelope counter will then continue
@@ -257,7 +232,7 @@ void EnvelopeGenerator::clock()
lfsr = 0x7fff;
resetLfsr = false;
if (state == ATTACK)
if (state == State::ATTACK)
{
// The first envelope step in the attack state also resets the exponential
// counter. This has been verified by sampling ENV3.
@@ -344,7 +319,7 @@ void EnvelopeGenerator::state_change()
switch (next_state)
{
case ATTACK:
case State::ATTACK:
if (state_pipeline == 1)
{
// The decay rate is "accidentally" enabled during first cycle of attack phase
@@ -352,24 +327,24 @@ void EnvelopeGenerator::state_change()
}
else if (state_pipeline == 0)
{
state = ATTACK;
state = State::ATTACK;
// The attack rate is correctly enabled during second cycle of attack phase
rate = adsrtable[attack];
counter_enabled = true;
}
break;
case DECAY_SUSTAIN:
case State::DECAY_SUSTAIN:
if (state_pipeline == 0)
{
state = DECAY_SUSTAIN;
state = State::DECAY_SUSTAIN;
rate = adsrtable[decay];
}
break;
case RELEASE:
if (((state == ATTACK) && (state_pipeline == 0))
|| ((state == DECAY_SUSTAIN) && (state_pipeline == 1)))
case State::RELEASE:
if (((state == State::ATTACK) && (state_pipeline == 0))
|| ((state == State::DECAY_SUSTAIN) && (state_pipeline == 1)))
{
state = RELEASE;
state = State::RELEASE;
rate = adsrtable[release];
}
break;

View File

@@ -38,9 +38,7 @@ inline double getRC(double res, double cap)
return res * cap;
}
ExternalFilter::ExternalFilter() :
w0lp_1_s7(0),
w0hp_1_s17(0)
ExternalFilter::ExternalFilter()
{
reset();
}

View File

@@ -34,8 +34,6 @@ namespace reSIDfp
* acts as a high-pass filter with a cutoff dependent on the attached audio
* equipment impedance. Here we suppose an impedance of 10kOhm resulting
* in a 3 dB attenuation at 1.6Hz.
* To operate properly the 6581 audio output needs a pull-down resistor
*(1KOhm recommended, not needed on 8580)
*
* ~~~
* 9/12V
@@ -47,15 +45,18 @@ namespace reSIDfp
* | | pF +-C----o-----C-----+ 10k
* 470 | |
* GND GND pF R 1K | amp
* * * | +-----
* * ** | +-----
*
* GND
* ~~~
*
* The STC networks are connected with a [BJT] based [common collector]
* used as a voltage follower (featuring a 2SC1815 NPN transistor).
* * The C64c board additionally includes a [bootstrap] condenser to increase
* the input impedance of the common collector.
*
* * To operate properly the 6581 audio output needs a pull-down resistor
* (1KOhm recommended, not needed on 8580)
* ** The C64c board additionally includes a [bootstrap] condenser to increase
* the input impedance of the common collector.
*
* [BJT]: https://en.wikipedia.org/wiki/Bipolar_junction_transistor
* [common collector]: https://en.wikipedia.org/wiki/Common_collector
@@ -70,9 +71,9 @@ private:
/// Highpass filter voltage
int Vhp;
int w0lp_1_s7;
int w0lp_1_s7 = 0;
int w0hp_1_s17;
int w0hp_1_s17 = 0;
public:
/**
@@ -80,7 +81,7 @@ public:
*
* @param input
*/
int clock(unsigned short input);
int clock(int input);
/**
* Constructor.
@@ -108,9 +109,9 @@ namespace reSIDfp
{
RESID_INLINE
int ExternalFilter::clock(unsigned short input)
int ExternalFilter::clock(int input)
{
const int Vi = (static_cast<unsigned int>(input)<<11) - (1 << (11+15));
const int Vi = (input<<11) - (1 << (11+15));
const int dVlp = (w0lp_1_s7 * (Vi - Vlp) >> 7);
const int dVhp = (w0hp_1_s17 * (Vlp - Vhp) >> 17);
Vlp += dVlp;

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2013 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004 Dag Lem <resid@nimrod.no>
*
@@ -20,11 +20,87 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#define FILTER_CPP
#include "Filter.h"
namespace reSIDfp
{
void Filter::updateMixing()
{
currentVolume = volume[vol];
unsigned int Nsum = 0;
unsigned int Nmix = 0;
(filt1 ? Nsum : Nmix)++;
(filt2 ? Nsum : Nmix)++;
if (filt3) Nsum++;
else if (!voice3off) Nmix++;
(filtE ? Nsum : Nmix)++;
currentSummer = summer[Nsum];
if (lp) Nmix++;
if (bp) Nmix++;
if (hp) Nmix++;
currentMixer = mixer[Nmix];
}
void Filter::writeFC_LO(unsigned char fc_lo)
{
fc = (fc & 0x7f8) | (fc_lo & 0x007);
updateCenterFrequency();
}
void Filter::writeFC_HI(unsigned char fc_hi)
{
fc = (fc_hi << 3 & 0x7f8) | (fc & 0x007);
updateCenterFrequency();
}
void Filter::writeRES_FILT(unsigned char res_filt)
{
filt = res_filt;
updateResonance((res_filt >> 4) & 0x0f);
if (enabled)
{
filt1 = (filt & 0x01) != 0;
filt2 = (filt & 0x02) != 0;
filt3 = (filt & 0x04) != 0;
filtE = (filt & 0x08) != 0;
}
updateMixing();
}
void Filter::writeMODE_VOL(unsigned char mode_vol)
{
vol = mode_vol & 0x0f;
lp = (mode_vol & 0x10) != 0;
bp = (mode_vol & 0x20) != 0;
hp = (mode_vol & 0x40) != 0;
voice3off = (mode_vol & 0x80) != 0;
updateMixing();
}
Filter::Filter(FilterModelConfig& fmc) :
mixer(fmc.getMixer()),
summer(fmc.getSummer()),
resonance(fmc.getResonance()),
volume(fmc.getVolume()),
fmc(fmc)
{
input(0);
}
void Filter::enable(bool enable)
{
enabled = enable;
@@ -47,44 +123,4 @@ void Filter::reset()
writeRES_FILT(0);
}
void Filter::writeFC_LO(unsigned char fc_lo)
{
fc = (fc & 0x7f8) | (fc_lo & 0x007);
updatedCenterFrequency();
}
void Filter::writeFC_HI(unsigned char fc_hi)
{
fc = (fc_hi << 3 & 0x7f8) | (fc & 0x007);
updatedCenterFrequency();
}
void Filter::writeRES_FILT(unsigned char res_filt)
{
filt = res_filt;
updateResonance((res_filt >> 4) & 0x0f);
if (enabled)
{
filt1 = (filt & 0x01) != 0;
filt2 = (filt & 0x02) != 0;
filt3 = (filt & 0x04) != 0;
filtE = (filt & 0x08) != 0;
}
updatedMixing();
}
void Filter::writeMODE_VOL(unsigned char mode_vol)
{
vol = mode_vol & 0x0f;
lp = (mode_vol & 0x10) != 0;
bp = (mode_vol & 0x20) != 0;
hp = (mode_vol & 0x40) != 0;
voice3off = (mode_vol & 0x80) != 0;
updatedMixing();
}
} // namespace reSIDfp

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2017 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004 Dag Lem <resid@nimrod.no>
*
@@ -23,6 +23,10 @@
#ifndef FILTER_H
#define FILTER_H
#include "FilterModelConfig.h"
#include "siddefs-fp.h"
namespace reSIDfp
{
@@ -31,93 +35,97 @@ namespace reSIDfp
*/
class Filter
{
private:
unsigned short** mixer;
unsigned short** summer;
unsigned short** resonance;
unsigned short** volume;
protected:
/// Current volume amplifier setting.
unsigned short* currentGain;
FilterModelConfig& fmc;
/// Current filter/voice mixer setting.
unsigned short* currentMixer;
unsigned short* currentMixer = nullptr;
/// Filter input summer setting.
unsigned short* currentSummer;
unsigned short* currentSummer = nullptr;
/// Filter resonance value.
unsigned short* currentResonance;
unsigned short* currentResonance = nullptr;
/// Current volume amplifier setting.
unsigned short* currentVolume = nullptr;
/// Filter highpass state.
int Vhp;
int Vhp = 0;
/// Filter bandpass state.
int Vbp;
int Vbp = 0;
/// Filter lowpass state.
int Vlp;
int Vlp = 0;
/// Filter external input.
int ve;
int Ve = 0;
/// Filter cutoff frequency.
unsigned int fc;
unsigned int fc = 0;
/// Routing to filter or outside filter
bool filt1, filt2, filt3, filtE;
//@{
bool filt1 = false;
bool filt2 = false;
bool filt3 = false;
bool filtE = false;
//@}
/// Switch voice 3 off.
bool voice3off;
bool voice3off = false;
/// Highpass, bandpass, and lowpass filter modes.
bool hp, bp, lp;
/// Current volume.
unsigned char vol;
//@{
bool hp = false;
bool bp = false;
bool lp = false;
//@}
private:
/// Current volume.
unsigned char vol = 0;
/// Filter enabled.
bool enabled;
bool enabled = true;
/// Selects which inputs to route through filter.
unsigned char filt;
unsigned char filt = 0;
protected:
/**
* Set filter cutoff frequency.
* Update filter cutoff frequency.
*/
virtual void updatedCenterFrequency() = 0;
virtual void updateCenterFrequency() = 0;
/**
* Set filter resonance.
* Update filter resonance.
*
* @param res the new resonance value
*/
virtual void updateResonance(unsigned char res) = 0;
void updateResonance(unsigned char res) { currentResonance = resonance[res]; }
/**
* Mixing configuration modified (offsets change)
*/
virtual void updatedMixing() = 0;
void updateMixing();
/**
* Get the filter cutoff register value
*/
unsigned int getFC() const { return fc; }
public:
Filter() :
currentGain(nullptr),
currentMixer(nullptr),
currentSummer(nullptr),
currentResonance(nullptr),
Vhp(0),
Vbp(0),
Vlp(0),
ve(0),
fc(0),
filt1(false),
filt2(false),
filt3(false),
filtE(false),
voice3off(false),
hp(false),
bp(false),
lp(false),
vol(0),
enabled(true),
filt(0) {}
Filter(FilterModelConfig& fmc);
virtual ~Filter() {}
virtual ~Filter() = default;
/**
* SID clocking - 1 cycle
@@ -169,7 +177,14 @@ public:
*/
void writeMODE_VOL(unsigned char mode_vol);
virtual void input(int input) = 0;
/**
* Apply a signal to EXT-IN
*
* @param input a signed 16 bit sample
*/
void input(short input) { Ve = fmc.getNormalizedVoice(input/32768.f, 0); }
inline int getNormalizedVoice(float value, unsigned int env) const { return fmc.getNormalizedVoice(value, env); }
};
} // namespace reSIDfp

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2015 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004,2010 Dag Lem <resid@nimrod.no>
*
@@ -20,8 +20,6 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#define FILTER6581_CPP
#include "Filter6581.h"
#include "Integrator6581.h"
@@ -29,47 +27,60 @@
namespace reSIDfp
{
unsigned short Filter6581::clock(int voice1, int voice2, int voice3)
{
const int V1 = voice1;
const int V2 = voice2;
// Voice 3 is silenced by voice3off if it is not routed through the filter.
const int V3 = (filt3 || !voice3off) ? voice3 : 0;
int Vsum = 0;
int Vmix = 0;
(filt1 ? Vsum : Vmix) += V1;
(filt2 ? Vsum : Vmix) += V2;
(filt3 ? Vsum : Vmix) += V3;
(filtE ? Vsum : Vmix) += Ve;
Vhp = currentSummer[currentResonance[Vbp] + Vlp + Vsum];
Vbp = hpIntegrator.solve(Vhp);
Vlp = bpIntegrator.solve(Vbp);
int Vfilt = 0;
if (lp) Vfilt += Vlp;
if (bp) Vfilt += Vbp;
if (hp) Vfilt += Vhp;
// The filter input resistors are slightly bigger than the voice ones
// Scale the values accordingly
constexpr int filterGain = static_cast<int>(0.93 * (1 << 12));
Vfilt = (Vfilt * filterGain) >> 12;
return currentVolume[currentMixer[Vmix + Vfilt]];
}
Filter6581::~Filter6581()
{
delete [] f0_dac;
}
void Filter6581::updatedCenterFrequency()
void Filter6581::updateCenterFrequency()
{
const unsigned short Vw = f0_dac[fc];
hpIntegrator->setVw(Vw);
bpIntegrator->setVw(Vw);
}
void Filter6581::updatedMixing()
{
currentGain = gain_vol[vol];
unsigned int ni = 0;
unsigned int no = 0;
(filt1 ? ni : no)++;
(filt2 ? ni : no)++;
if (filt3) ni++;
else if (!voice3off) no++;
(filtE ? ni : no)++;
currentSummer = summer[ni];
if (lp) no++;
if (bp) no++;
if (hp) no++;
currentMixer = mixer[no];
const unsigned short Vw = f0_dac[getFC()];
hpIntegrator.setVw(Vw);
bpIntegrator.setVw(Vw);
}
void Filter6581::setFilterCurve(double curvePosition)
{
delete [] f0_dac;
f0_dac = FilterModelConfig6581::getInstance()->getDAC(curvePosition);
updatedCenterFrequency();
updateCenterFrequency();
}
void Filter6581::setFilterRange(double adjustment)
{
FilterModelConfig6581::getInstance()->setFilterRange(adjustment);
}
} // namespace reSIDfp

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2022 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004,2010 Dag Lem <resid@nimrod.no>
*
@@ -23,12 +23,9 @@
#ifndef FILTER6581_H
#define FILTER6581_H
#include "siddefs-fp.h"
#include <memory>
#include "Filter.h"
#include "FilterModelConfig6581.h"
#include "Integrator6581.h"
#include "sidcxx11.h"
@@ -108,7 +105,7 @@ class Integrator6581;
* | | | v1 | | | |
* D0 | | | \ ---R8--+ | | +---------------------------+
* | | | | | | |
* R6 R6 R6 R6 R6 R6 R6
* R6 R6 R6 R6 R6* R6* R6*
* | | | | $18 | | | $18
* | \ | | D7: 1=open \ \ \ D6 - D4: 0=open
* | | | | | | |
@@ -143,6 +140,7 @@ class Integrator6581;
*
* R2 ~ 2.0*R1
* R6 ~ 6.0*R1
* R6* ~ 1.07*R6
* R8 ~ 8.0*R1
* R24 ~ 24.0*R1
*
@@ -322,104 +320,49 @@ class Integrator6581;
class Filter6581 final : public Filter
{
private:
const unsigned short* f0_dac;
unsigned short** mixer;
unsigned short** summer;
unsigned short** gain_res;
unsigned short** gain_vol;
const int voiceScaleS11;
const int voiceDC;
/// VCR + associated capacitor connected to highpass output.
std::unique_ptr<Integrator6581> const hpIntegrator;
Integrator6581 hpIntegrator;
/// VCR + associated capacitor connected to bandpass output.
std::unique_ptr<Integrator6581> const bpIntegrator;
Integrator6581 bpIntegrator;
const unsigned short* f0_dac;
protected:
/**
* Set filter cutoff frequency.
*/
void updatedCenterFrequency() override;
/**
* Set filter resonance.
*
* In the MOS 6581, 1/Q is controlled linearly by res.
*/
void updateResonance(unsigned char res) override { currentResonance = gain_res[res]; }
void updatedMixing() override;
void updateCenterFrequency() override;
public:
Filter6581() :
f0_dac(FilterModelConfig6581::getInstance()->getDAC(0.5)),
mixer(FilterModelConfig6581::getInstance()->getMixer()),
summer(FilterModelConfig6581::getInstance()->getSummer()),
gain_res(FilterModelConfig6581::getInstance()->getGainRes()),
gain_vol(FilterModelConfig6581::getInstance()->getGainVol()),
voiceScaleS11(FilterModelConfig6581::getInstance()->getVoiceScaleS11()),
voiceDC(FilterModelConfig6581::getInstance()->getNormalizedVoiceDC()),
hpIntegrator(FilterModelConfig6581::getInstance()->buildIntegrator()),
bpIntegrator(FilterModelConfig6581::getInstance()->buildIntegrator())
{
input(0);
}
Filter(*FilterModelConfig6581::getInstance()),
hpIntegrator(*FilterModelConfig6581::getInstance()),
bpIntegrator(*FilterModelConfig6581::getInstance()),
f0_dac(FilterModelConfig6581::getInstance()->getDAC(0.5))
{}
~Filter6581();
~Filter6581() override;
unsigned short clock(int voice1, int voice2, int voice3) override;
void input(int sample) override { ve = (sample * voiceScaleS11 * 3 >> 11) + mixer[0][0]; }
unsigned short clock(int v1, int v2, int v3) override;
/**
* Set filter curve type based on single parameter.
*
* @param curvePosition 0 .. 1, where 0 sets center frequency high ("light") and 1 sets it low ("dark"), default is 0.5
* @param curvePosition 0 .. 1, where 0 sets center frequency high ("bright") and 1 sets it low ("dark").
* Default is 0.5
*/
void setFilterCurve(double curvePosition);
/**
* Set filter offset and range based on single parameter.
*
* @param adjustment 0 .. 1, where 0 sets center frequency low ("dark"), 1 sets it high ("bright").
* This also affects the range. Default is 0.5
*/
void setFilterRange(double adjustment);
};
} // namespace reSIDfp
#if RESID_INLINING || defined(FILTER6581_CPP)
#include "Integrator6581.h"
namespace reSIDfp
{
RESID_INLINE
unsigned short Filter6581::clock(int voice1, int voice2, int voice3)
{
voice1 = (voice1 * voiceScaleS11 >> 15) + voiceDC;
voice2 = (voice2 * voiceScaleS11 >> 15) + voiceDC;
// Voice 3 is silenced by voice3off if it is not routed through the filter.
voice3 = (filt3 || !voice3off) ? (voice3 * voiceScaleS11 >> 15) + voiceDC : 0;
int Vi = 0;
int Vo = 0;
(filt1 ? Vi : Vo) += voice1;
(filt2 ? Vi : Vo) += voice2;
(filt3 ? Vi : Vo) += voice3;
(filtE ? Vi : Vo) += ve;
Vhp = currentSummer[currentResonance[Vbp] + Vlp + Vi];
Vbp = hpIntegrator->solve(Vhp);
Vlp = bpIntegrator->solve(Vbp);
if (lp) Vo += Vlp;
if (bp) Vo += Vbp;
if (hp) Vo += Vhp;
return currentGain[currentMixer[Vo]];
}
} // namespace reSIDfp
#endif
#endif

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2019 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004,2010 Dag Lem <resid@nimrod.no>
*
@@ -20,8 +20,6 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#define FILTER8580_CPP
#include "Filter8580.h"
#include "Integrator8580.h"
@@ -29,6 +27,32 @@
namespace reSIDfp
{
unsigned short Filter8580::clock(int voice1, int voice2, int voice3)
{
const int V1 = voice1;
const int V2 = voice2;
// Voice 3 is silenced by voice3off if it is not routed through the filter.
const int V3 = (filt3 || !voice3off) ? voice3 : 0;
int Vsum = 0;
int Vmix = 0;
(filt1 ? Vsum : Vmix) += V1;
(filt2 ? Vsum : Vmix) += V2;
(filt3 ? Vsum : Vmix) += V3;
(filtE ? Vsum : Vmix) += Ve;
Vhp = currentSummer[currentResonance[Vbp] + Vlp + Vsum];
Vbp = hpIntegrator.solve(Vhp);
Vlp = bpIntegrator.solve(Vbp);
if (lp) Vmix += Vlp;
if (bp) Vmix += Vbp;
if (hp) Vmix += Vhp;
return currentVolume[currentMixer[Vmix]];
}
/**
* W/L ratio of frequency DAC bit 0,
* other bit are proportional.
@@ -37,18 +61,18 @@ namespace reSIDfp
*/
const double DAC_WL0 = 0.00615;
Filter8580::~Filter8580() {}
Filter8580::~Filter8580() = default;
void Filter8580::updatedCenterFrequency()
void Filter8580::updateCenterFrequency()
{
double wl;
double dacWL = DAC_WL0;
if (fc)
if (getFC())
{
wl = 0.;
for (unsigned int i = 0; i < 11; i++)
{
if (fc & (1 << i))
if (getFC() & (1 << i))
{
wl += dacWL;
}
@@ -60,32 +84,8 @@ void Filter8580::updatedCenterFrequency()
wl = dacWL/2.;
}
hpIntegrator->setFc(wl);
bpIntegrator->setFc(wl);
}
void Filter8580::updatedMixing()
{
currentGain = gain_vol[vol];
unsigned int ni = 0;
unsigned int no = 0;
(filt1 ? ni : no)++;
(filt2 ? ni : no)++;
if (filt3) ni++;
else if (!voice3off) no++;
(filtE ? ni : no)++;
currentSummer = summer[ni];
if (lp) no++;
if (bp) no++;
if (hp) no++;
currentMixer = mixer[no];
hpIntegrator.setFc(wl);
bpIntegrator.setFc(wl);
}
void Filter8580::setFilterCurve(double curvePosition)
@@ -94,8 +94,8 @@ void Filter8580::setFilterCurve(double curvePosition)
// 1.2 <= cp <= 1.8
cp = 1.8 - curvePosition * 3./5.;
hpIntegrator->setV(cp);
bpIntegrator->setV(cp);
hpIntegrator.setV(cp);
bpIntegrator.setV(cp);
}
} // namespace reSIDfp

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2022 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004,2010 Dag Lem <resid@nimrod.no>
*
@@ -23,10 +23,6 @@
#ifndef FILTER8580_H
#define FILTER8580_H
#include "siddefs-fp.h"
#include <memory>
#include "Filter.h"
#include "FilterModelConfig8580.h"
#include "Integrator8580.h"
@@ -281,58 +277,32 @@ class Integrator8580;
class Filter8580 final : public Filter
{
private:
unsigned short** mixer;
unsigned short** summer;
unsigned short** gain_res;
unsigned short** gain_vol;
const int voiceScaleS11;
const int voiceDC;
double cp;
/// VCR + associated capacitor connected to highpass output.
std::unique_ptr<Integrator8580> const hpIntegrator;
Integrator8580 hpIntegrator;
/// VCR + associated capacitor connected to bandpass output.
std::unique_ptr<Integrator8580> const bpIntegrator;
Integrator8580 bpIntegrator;
double cp;
protected:
/**
* Set filter cutoff frequency.
*/
void updatedCenterFrequency() override;
/**
* Set filter resonance.
*
* @param res the new resonance value
*/
void updateResonance(unsigned char res) override { currentResonance = gain_res[res]; }
void updatedMixing() override;
void updateCenterFrequency() override;
public:
Filter8580() :
mixer(FilterModelConfig8580::getInstance()->getMixer()),
summer(FilterModelConfig8580::getInstance()->getSummer()),
gain_res(FilterModelConfig8580::getInstance()->getGainRes()),
gain_vol(FilterModelConfig8580::getInstance()->getGainVol()),
voiceScaleS11(FilterModelConfig8580::getInstance()->getVoiceScaleS11()),
voiceDC(FilterModelConfig8580::getInstance()->getNormalizedVoiceDC()),
cp(0.5),
hpIntegrator(FilterModelConfig8580::getInstance()->buildIntegrator()),
bpIntegrator(FilterModelConfig8580::getInstance()->buildIntegrator())
Filter(*FilterModelConfig8580::getInstance()),
hpIntegrator(*FilterModelConfig8580::getInstance()),
bpIntegrator(*FilterModelConfig8580::getInstance())
{
setFilterCurve(cp);
input(0);
setFilterCurve(0.5);
}
~Filter8580();
~Filter8580() override;
unsigned short clock(int voice1, int voice2, int voice3) override;
void input(int sample) override { ve = (sample * voiceScaleS11 * 3 >> 11) + mixer[0][0]; }
unsigned short clock(int v1, int v2, int v3) override;
/**
* Set filter curve type based on single parameter.
@@ -344,40 +314,4 @@ public:
} // namespace reSIDfp
#if RESID_INLINING || defined(FILTER8580_CPP)
namespace reSIDfp
{
RESID_INLINE
unsigned short Filter8580::clock(int voice1, int voice2, int voice3)
{
voice1 = (voice1 * voiceScaleS11 >> 15) + voiceDC;
voice2 = (voice2 * voiceScaleS11 >> 15) + voiceDC;
// Voice 3 is silenced by voice3off if it is not routed through the filter.
voice3 = (filt3 || !voice3off) ? (voice3 * voiceScaleS11 >> 15) + voiceDC : 0;
int Vi = 0;
int Vo = 0;
(filt1 ? Vi : Vo) += voice1;
(filt2 ? Vi : Vo) += voice2;
(filt3 ? Vi : Vo) += voice3;
(filtE ? Vi : Vo) += ve;
Vhp = currentSummer[currentResonance[Vbp] + Vlp + Vi];
Vbp = hpIntegrator->solve(Vhp);
Vlp = bpIntegrator->solve(Vbp);
if (lp) Vo += Vlp;
if (bp) Vo += Vbp;
if (hp) Vo += Vhp;
return currentGain[currentMixer[Vo]];
}
} // namespace reSIDfp
#endif
#endif

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2022 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004,2010 Dag Lem
*
@@ -29,7 +29,6 @@ namespace reSIDfp
FilterModelConfig::FilterModelConfig(
double vvr,
double vdv,
double c,
double vdd,
double vth,
@@ -37,21 +36,19 @@ FilterModelConfig::FilterModelConfig(
const Spline::Point *opamp_voltage,
int opamp_size
) :
voice_voltage_range(vvr),
voice_DC_voltage(vdv),
C(c),
Vdd(vdd),
Vth(vth),
Ut(26.0e-3),
uCox(ucox),
Vddt(Vdd - Vth),
vmin(opamp_voltage[0].x),
vmax(std::max(Vddt, opamp_voltage[0].y)),
denorm(vmax - vmin),
norm(1.0 / denorm),
N16(norm * ((1 << 16) - 1)),
currFactorCoeff(denorm * (uCox / 2. * 1.0e-6 / C))
voice_voltage_range(vvr)
{
setUCox(ucox);
// Convert op-amp voltage transfer to 16 bit values.
std::vector<Spline::Point> scaled_voltage(opamp_size);
@@ -79,4 +76,29 @@ FilterModelConfig::FilterModelConfig(
}
}
FilterModelConfig::~FilterModelConfig()
{
for (int i = 0; i < 8; i++)
{
delete [] mixer[i];
}
for (int i = 0; i < 5; i++)
{
delete [] summer[i];
}
for (int i = 0; i < 16; i++)
{
delete [] volume[i];
delete [] resonance[i];
}
}
void FilterModelConfig::setUCox(double new_uCox)
{
uCox = new_uCox;
currFactorCoeff = denorm * (uCox / 2. * 1.0e-6 / C);
}
} // namespace reSIDfp

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2023 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004,2010 Dag Lem
*
@@ -24,8 +24,10 @@
#define FILTERMODELCONFIG_H
#include <algorithm>
#include <random>
#include <cassert>
#include "OpAmp.h"
#include "Spline.h"
#include "sidcxx11.h"
@@ -35,20 +37,46 @@ namespace reSIDfp
class FilterModelConfig
{
protected:
const double voice_voltage_range;
const double voice_DC_voltage;
private:
/*
* Hack to add quick dither when converting values from float to int
* and avoid quantization noise.
* Hopefully this can be removed the day we move all the analog part
* processing to floats.
*
* Not sure about the effect of using such small buffer of numbers
* since the random sequence repeats every 1024 values but for
* now it seems to do the job.
*/
class Randomnoise
{
private:
double buffer[1024];
mutable int index = 0;
public:
Randomnoise()
{
std::uniform_real_distribution<double> unif(0., 1.);
std::default_random_engine re;
for (int i=0; i<1024; i++)
buffer[i] = unif(re);
}
double getNoise() const { index = (index + 1) & 0x3ff; return buffer[index]; }
};
protected:
/// Capacitor value.
const double C;
/// Transistor parameters.
//@{
const double Vdd;
/// Thermal voltage: Ut = kT/q = 8.61734315e-5*T ~ 26mV
static constexpr double Ut = 26.0e-3;
const double Vdd; ///< Positive supply voltage
const double Vth; ///< Threshold voltage
const double Ut; ///< Thermal voltage: Ut = kT/q = 8.61734315e-5*T ~ 26mV
const double uCox; ///< Transconductance coefficient: u*Cox
const double Vddt; ///< Vdd - Vth
double uCox; ///< Transconductance coefficient: u*Cox
//@}
// Derived stuff
@@ -58,38 +86,46 @@ protected:
/// Fixed point scaling for 16 bit op-amp output.
const double N16;
const double voice_voltage_range;
/// Current factor coefficient for op-amp integrators.
const double currFactorCoeff;
double currFactorCoeff;
/// Lookup tables for gain and summer op-amps in output stage / filter.
//@{
unsigned short* mixer[8]; //-V730_NOINIT this is initialized in the derived class constructor
unsigned short* summer[5]; //-V730_NOINIT this is initialized in the derived class constructor
unsigned short* gain_vol[16]; //-V730_NOINIT this is initialized in the derived class constructor
unsigned short* gain_res[16]; //-V730_NOINIT this is initialized in the derived class constructor
unsigned short* volume[16]; //-V730_NOINIT this is initialized in the derived class constructor
unsigned short* resonance[16]; //-V730_NOINIT this is initialized in the derived class constructor
//@}
/// Reverse op-amp transfer function.
unsigned short opamp_rev[1 << 16]; //-V730_NOINIT this is initialized in the derived class constructor
private:
FilterModelConfig (const FilterModelConfig&) DELETE;
FilterModelConfig& operator= (const FilterModelConfig&) DELETE;
Randomnoise rnd;
private:
FilterModelConfig(const FilterModelConfig&) = delete;
FilterModelConfig& operator= (const FilterModelConfig&) = delete;
inline double getVoiceVoltage(float value, unsigned int env) const
{
return value * voice_voltage_range + getVoiceDC(env);
}
protected:
/**
* @param vvr voice voltage range
* @param vdv voice DC voltage
* @param c capacitor value
* @param vdd Vdd
* @param vdd Vdd supply voltage
* @param vth threshold voltage
* @param ucox u*Cox
* @param ominv opamp min voltage
* @param omaxv opamp max voltage
* @param opamp_voltage opamp voltage array
* @param opamp_size opamp voltage array size
*/
FilterModelConfig(
double vvr,
double vdv,
double c,
double vdd,
double vth,
@@ -98,52 +134,139 @@ protected:
int opamp_size
);
~FilterModelConfig()
~FilterModelConfig();
void setUCox(double new_uCox);
virtual double getVoiceDC(unsigned int env) const = 0;
/**
* The filter summer operates at n ~ 1, and has 5 fundamentally different
* input configurations (2 - 6 input "resistors").
*
* Note that all "on" transistors are modeled as one. This is not
* entirely accurate, since the input for each transistor is different,
* and transistors are not linear components. However modeling all
* transistors separately would be extremely costly.
*/
inline void buildSummerTable(const OpAmp& opampModel)
{
for (int i = 0; i < 8; i++)
{
delete [] mixer[i];
}
const double r_N16 = 1. / N16;
for (int i = 0; i < 5; i++)
{
delete [] summer[i];
}
const int idiv = 2 + i; // 2 - 6 input "resistors".
const int size = idiv << 16;
const double n = idiv;
const double r_idiv = 1. / idiv;
opampModel.reset();
summer[i] = new unsigned short[size];
for (int i = 0; i < 16; i++)
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi * r_N16 * r_idiv; /* vmin .. vmax */
summer[i][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
/**
* The audio mixer operates at n ~ 8/6 (6581) or 8/5 (8580),
* and has 8 fundamentally different input configurations
* (0 - 7 input "resistors").
*
* All "on", transistors are modeled as one - see comments above for
* the filter summer.
*/
inline void buildMixerTable(const OpAmp& opampModel, double nRatio)
{
const double r_N16 = 1. / N16;
for (int i = 0; i < 8; i++)
{
delete [] gain_vol[i];
delete [] gain_res[i];
const int idiv = (i == 0) ? 1 : i;
const int size = (i == 0) ? 1 : i << 16;
const double n = i * nRatio;
const double r_idiv = 1. / idiv;
opampModel.reset();
mixer[i] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi * r_N16 * r_idiv; /* vmin .. vmax */
mixer[i][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
/**
* 4 bit "resistor" ladders in the audio output gain
* necessitate 16 gain tables.
* From die photographs of the volume "resistor" ladders
* it follows that gain ~ vol/12 (6581) or vol/16 (8580)
* (assuming ideal op-amps and ideal "resistors").
*/
inline void buildVolumeTable(const OpAmp& opampModel, double nDivisor)
{
const double r_N16 = 1. / N16;
for (int n8 = 0; n8 < 16; n8++)
{
const int size = 1 << 16;
const double n = n8 / nDivisor;
opampModel.reset();
volume[n8] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi * r_N16; /* vmin .. vmax */
volume[n8][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
/**
* 4 bit "resistor" ladders in the bandpass resonance gain
* necessitate 16 gain tables.
* From die photographs of the bandpass "resistor" ladders
* it follows that 1/Q ~ ~res/8 (6581) or 2^((4 - res)/8) (8580)
* (assuming ideal op-amps and ideal "resistors").
*/
inline void buildResonanceTable(const OpAmp& opampModel, const double resonance_n[16])
{
const double r_N16 = 1. / N16;
for (int n8 = 0; n8 < 16; n8++)
{
const int size = 1 << 16;
opampModel.reset();
resonance[n8] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi * r_N16; /* vmin .. vmax */
resonance[n8][vi] = getNormalizedValue(opampModel.solve(resonance_n[n8], vin));
}
}
}
public:
unsigned short** getGainVol() { return gain_vol; }
unsigned short** getGainRes() { return gain_res; }
unsigned short** getVolume() { return volume; }
unsigned short** getResonance() { return resonance; }
unsigned short** getSummer() { return summer; }
unsigned short** getMixer() { return mixer; }
/**
* The digital range of one voice is 20 bits; create a scaling term
* for multiplication which fits in 11 bits.
*/
int getVoiceScaleS11() const { return static_cast<int>((norm * ((1 << 11) - 1)) * voice_voltage_range); }
/**
* The "zero" output level of the voices.
*/
int getNormalizedVoiceDC() const { return static_cast<int>(N16 * (voice_DC_voltage - vmin)); }
inline unsigned short getOpampRev(int i) const { return opamp_rev[i]; }
inline double getVddt() const { return Vddt; }
inline double getVth() const { return Vth; }
// helper functions
inline unsigned short getNormalizedValue(double value) const
{
const double tmp = N16 * (value - vmin);
assert(tmp > -0.5 && tmp < 65535.5);
return static_cast<unsigned short>(tmp + 0.5);
assert(tmp >= 0. && tmp <= 65535.);
return static_cast<unsigned short>(tmp + rnd.getNoise());
}
inline unsigned short getNormalizedCurrentFactor(double wl) const
@@ -153,11 +276,17 @@ public:
return static_cast<unsigned short>(tmp + 0.5);
}
inline unsigned short getNVmin() const {
inline unsigned short getNVmin() const
{
const double tmp = N16 * vmin;
assert(tmp > -0.5 && tmp < 65535.5);
return static_cast<unsigned short>(tmp + 0.5);
}
inline int getNormalizedVoice(float value, unsigned int env) const
{
return static_cast<int>(getNormalizedValue(getVoiceVoltage(value, env)));
}
};
} // namespace reSIDfp

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2023 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2010 Dag Lem
*
@@ -22,28 +22,20 @@
#include "FilterModelConfig6581.h"
#include <cmath>
#include "Integrator6581.h"
#include "OpAmp.h"
#include "sidcxx11.h"
#include <algorithm>
#include <mutex>
#include <thread>
#include <cmath>
namespace reSIDfp
{
#ifndef HAVE_CXX11
/**
* Compute log(1+x) without losing precision for small values of x
*
* @note when compiling with -ffastm-math the compiler will
* optimize the expression away leaving a plain log(1. + x)
*/
inline double log1p(double x)
{
return log(1. + x) - (((1. + x) - 1.) - x) / (1. + x);
}
#endif
const unsigned int OPAMP_SIZE = 33;
constexpr unsigned int OPAMP_SIZE = 33;
/**
* This is the SID 6581 op-amp voltage transfer function, measured on
@@ -51,7 +43,7 @@ const unsigned int OPAMP_SIZE = 33;
* All measured chips have op-amps with output voltages (and thus input
* voltages) within the range of 0.81V - 10.31V.
*/
const Spline::Point opamp_voltage[OPAMP_SIZE] =
constexpr Spline::Point opamp_voltage[OPAMP_SIZE] =
{
{ 0.81, 10.31 }, // Approximate start of actual range
{ 2.40, 10.31 },
@@ -90,8 +82,12 @@ const Spline::Point opamp_voltage[OPAMP_SIZE] =
std::unique_ptr<FilterModelConfig6581> FilterModelConfig6581::instance(nullptr);
std::mutex Instance6581_Lock;
FilterModelConfig6581* FilterModelConfig6581::getInstance()
{
std::lock_guard<std::mutex> lock(Instance6581_Lock);
if (!instance.get())
{
instance.reset(new FilterModelConfig6581());
@@ -100,14 +96,32 @@ FilterModelConfig6581* FilterModelConfig6581::getInstance()
return instance.get();
}
void FilterModelConfig6581::setFilterRange(double adjustment)
{
// clamp into allowed range
#ifdef HAVE_CXX17
adjustment = std::clamp(adjustment, 0.0, 1.0);
#else
adjustment = std::max(std::min(adjustment, 1.0), 0.);
#endif
// Get the new uCox value, in the range [1,40]
const double new_uCox = (1. + 39. * adjustment) * 1e-6;
// Ignore small changes
if (std::abs(uCox - new_uCox) < 1e-12)
return;
setUCox(new_uCox);
}
FilterModelConfig6581::FilterModelConfig6581() :
FilterModelConfig(
1.5, // voice voltage range
5.075, // voice DC voltage
470e-12, // capacitor value
12.18, // Vdd
1.31, // Vth
20e-6, // uCox
1.5, // voice voltage range FIXME should theoretically be ~3,571V
470e-12, // capacitor value
12. * VOLTAGE_SKEW, // Vdd
1.31, // Vth
20e-6, // uCox
opamp_voltage,
OPAMP_SIZE
),
@@ -119,190 +133,144 @@ FilterModelConfig6581::FilterModelConfig6581() :
{
dac.kinkedDac(MOS6581);
// Create lookup tables for gains / summers.
#ifndef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
#endif
// #pragma omp parallel sections
{
// #pragma omp section
Dac envDac(8);
envDac.kinkedDac(MOS6581);
for(int i=0; i<256; i++)
{
#ifdef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
#endif
// The filter summer operates at n ~ 1, and has 5 fundamentally different
// input configurations (2 - 6 input "resistors").
//
// Note that all "on" transistors are modeled as one. This is not
// entirely accurate, since the input for each transistor is different,
// and transistors are not linear components. However modeling all
// transistors separately would be extremely costly.
for (int i = 0; i < 5; i++)
{
const int idiv = 2 + i; // 2 - 6 input "resistors".
const int size = idiv << 16;
const double n = idiv;
opampModel.reset();
summer[i] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi / N16 / idiv; /* vmin .. vmax */
summer[i][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
// #pragma omp section
{
#ifdef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
#endif
// The audio mixer operates at n ~ 8/6, and has 8 fundamentally different
// input configurations (0 - 7 input "resistors").
//
// All "on", transistors are modeled as one - see comments above for
// the filter summer.
for (int i = 0; i < 8; i++)
{
const int idiv = (i == 0) ? 1 : i;
const int size = (i == 0) ? 1 : i << 16;
const double n = i * 8.0 / 6.0;
opampModel.reset();
mixer[i] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi / N16 / idiv; /* vmin .. vmax */
mixer[i][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
// #pragma omp section
{
#ifdef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
#endif
// 4 bit "resistor" ladders in the audio output gain
// necessitate 16 gain tables.
// From die photographs of the volume "resistor" ladders
// it follows that gain ~ vol/12 (assuming ideal
// op-amps and ideal "resistors").
for (int n8 = 0; n8 < 16; n8++)
{
const int size = 1 << 16;
const double n = n8 / 12.0;
opampModel.reset();
gain_vol[n8] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi / N16; /* vmin .. vmax */
gain_vol[n8][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
// #pragma omp section
{
#ifdef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
#endif
// 4 bit "resistor" ladders in the bandpass resonance gain
// necessitate 16 gain tables.
// From die photographs of the bandpass "resistor" ladders
// it follows that 1/Q ~ ~res/8 (assuming ideal
// op-amps and ideal "resistors").
for (int n8 = 0; n8 < 16; n8++)
{
const int size = 1 << 16;
const double n = (~n8 & 0xf) / 8.0;
opampModel.reset();
gain_res[n8] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi / N16; /* vmin .. vmax */
gain_res[n8][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
// #pragma omp section
{
const double nVddt = N16 * (Vddt - vmin);
for (unsigned int i = 0; i < (1 << 16); i++)
{
// The table index is right-shifted 16 times in order to fit in
// 16 bits; the argument to sqrt is thus multiplied by (1 << 16).
const double tmp = nVddt - sqrt(static_cast<double>(i << 16));
assert(tmp > -0.5 && tmp < 65535.5);
vcr_nVg[i] = static_cast<unsigned short>(tmp + 0.5);
}
}
// #pragma omp section
{
// EKV model:
//
// Ids = Is * (if - ir)
// Is = (2 * u*Cox * Ut^2)/k * W/L
// if = ln^2(1 + e^((k*(Vg - Vt) - Vs)/(2*Ut))
// ir = ln^2(1 + e^((k*(Vg - Vt) - Vd)/(2*Ut))
// moderate inversion characteristic current
const double Is = (2. * uCox * Ut * Ut) * WL_vcr;
// Normalized current factor for 1 cycle at 1MHz.
const double N15 = norm * ((1 << 15) - 1);
const double n_Is = N15 * 1.0e-6 / C * Is;
// kVgt_Vx = k*(Vg - Vt) - Vx
// I.e. if k != 1.0, Vg must be scaled accordingly.
for (int kVgt_Vx = 0; kVgt_Vx < (1 << 16); kVgt_Vx++)
{
const double log_term = log1p(exp((kVgt_Vx / N16) / (2. * Ut)));
// Scaled by m*2^15
const double tmp = n_Is * log_term * log_term;
assert(tmp > -0.5 && tmp < 65535.5);
vcr_n_Ids_term[kVgt_Vx] = static_cast<unsigned short>(tmp + 0.5);
}
const double envI = envDac.getOutput(i);
voiceDC[i] = 5. * VOLTAGE_SKEW + (0.2143 * envI);
}
}
// Create lookup tables for gains / summers.
//
// We spawn six threads to calculate these tables in parallel
//
auto filterSummer = [this]
{
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
buildSummerTable(opampModel);
};
auto filterMixer = [this]
{
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
buildMixerTable(opampModel, 8.0 / 6.0);
};
auto filterGain = [this]
{
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
buildVolumeTable(opampModel, 12.0);
};
auto filterResonance = [this]
{
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
// build temp n table
double resonance_n[16];
for (int n8 = 0; n8 < 16; n8++)
{
resonance_n[n8] = (~n8 & 0xf) / 8.0;
}
buildResonanceTable(opampModel, resonance_n);
};
auto filterVcrVg = [this]
{
const double nVddt = N16 * (Vddt - vmin);
for (unsigned int i = 0; i < (1 << 16); i++)
{
// The table index is right-shifted 16 times in order to fit in
// 16 bits; the argument to sqrt is thus multiplied by (1 << 16).
const double tmp = nVddt - std::sqrt(static_cast<double>(i << 16));
assert(tmp > -0.5 && tmp < 65535.5);
vcr_nVg[i] = static_cast<unsigned short>(tmp + 0.5);
}
};
auto filterVcrIds = [this]
{
// EKV model:
//
// Ids = Is * (if - ir)
// Is = (2 * u*Cox * Ut^2)/k * W/L
// if = ln^2(1 + e^((k*(Vg - Vt) - Vs)/(2*Ut))
// ir = ln^2(1 + e^((k*(Vg - Vt) - Vd)/(2*Ut))
// moderate inversion characteristic current
// will be multiplied by uCox later
const double Is = (2. * Ut * Ut) * WL_vcr;
// Normalized current factor for 1 cycle at 1MHz.
const double N15 = norm * ((1 << 15) - 1);
const double n_Is = N15 * 1.0e-6 / C * Is;
// kVgt_Vx = k*(Vg - Vt) - Vx
// I.e. if k != 1.0, Vg must be scaled accordingly.
const double r_N16_2Ut = 1.0 / (N16 * 2.0 * Ut);
for (int i = 0; i < (1 << 16); i++)
{
const int kVgt_Vx = i - (1 << 15);
const double log_term = std::log1p(std::exp(kVgt_Vx * r_N16_2Ut));
// Scaled by m*2^15
vcr_n_Ids_term[i] = n_Is * log_term * log_term;
}
};
#if defined(HAVE_CXX20) && defined(__cpp_lib_jthread)
using sidThread = std::jthread;
#else
using sidThread = std::thread;
#endif
sidThread thdSummer(filterSummer);
sidThread thdMixer(filterMixer);
sidThread thdGain(filterGain);
sidThread thdResonance(filterResonance);
sidThread thdVcrVg(filterVcrVg);
sidThread thdVcrIds(filterVcrIds);
#if !defined(HAVE_CXX20) || !defined(__cpp_lib_jthread)
thdSummer.join();
thdMixer.join();
thdGain.join();
thdResonance.join();
thdVcrVg.join();
thdVcrIds.join();
#endif
}
unsigned short* FilterModelConfig6581::getDAC(double adjustment) const
@@ -314,15 +282,10 @@ unsigned short* FilterModelConfig6581::getDAC(double adjustment) const
for (unsigned int i = 0; i < (1 << DAC_BITS); i++)
{
const double fcd = dac.getOutput(i);
f0_dac[i] = getNormalizedValue(dac_zero + fcd * dac_scale / (1 << DAC_BITS));
f0_dac[i] = getNormalizedValue(dac_zero + fcd * dac_scale);
}
return f0_dac;
}
std::unique_ptr<Integrator6581> FilterModelConfig6581::buildIntegrator()
{
return MAKE_UNIQUE(Integrator6581, this, WL_snake);
}
} // namespace reSIDfp

View File

@@ -41,17 +41,18 @@ class Integrator6581;
*/
class FilterModelConfig6581 final : public FilterModelConfig
{
private:
static const unsigned int DAC_BITS = 11;
private:
static std::unique_ptr<FilterModelConfig6581> instance;
// This allows access to the private constructor
#ifdef HAVE_CXX11
friend std::unique_ptr<FilterModelConfig6581>::deleter_type;
#else
friend class std::auto_ptr<FilterModelConfig6581>;
#endif
private:
static constexpr unsigned int DAC_BITS = 11;
/**
* Power bricks generate voltages slightly out of spec
*/
static constexpr double VOLTAGE_SKEW = 1.015;
/// Transistor parameters.
//@{
@@ -68,21 +69,36 @@ private:
/// DAC lookup table
Dac dac;
/// VCR - 6581 only.
/// Voltage Controlled Resistors
//@{
unsigned short vcr_nVg[1 << 16];
unsigned short vcr_n_Ids_term[1 << 16];
double vcr_n_Ids_term[1 << 16];
//@}
// Voice DC offset LUT
double voiceDC[256];
private:
double getDacZero(double adjustment) const { return dac_zero + (1. - adjustment); }
FilterModelConfig6581();
~FilterModelConfig6581() DEFAULT;
~FilterModelConfig6581() = default;
protected:
/**
* On 6581 the DC offset varies between ~5.0V and ~5.214V depending on
* the envelope value.
*/
inline double getVoiceDC(unsigned int env) const override
{
return voiceDC[env];
}
public:
static FilterModelConfig6581* getInstance();
void setFilterRange(double adjustment);
/**
* Construct an 11 bit cutoff frequency DAC output voltage table.
* Ownership is transferred to the requester which becomes responsible
@@ -93,17 +109,17 @@ public:
*/
unsigned short* getDAC(double adjustment) const;
/**
* Construct an integrator solver.
*
* @return the integrator
*/
std::unique_ptr<Integrator6581> buildIntegrator();
inline double getWL_snake() const { return WL_snake; }
inline unsigned short getVcr_nVg(int i) const { return vcr_nVg[i]; }
inline unsigned short getVcr_n_Ids_term(int i) const { return vcr_n_Ids_term[i]; }
inline unsigned short getVcr_n_Ids_term(int i) const
{
const double tmp = vcr_n_Ids_term[i] * uCox;
assert(tmp > -0.5 && tmp < 65535.5);
return static_cast<unsigned short>(tmp + 0.5);
}
// only used if SLOPE_FACTOR is defined
inline double getUt() const { return Ut; }
inline constexpr double getUt() const { return Ut; }
inline double getN16() const { return N16; }
};

View File

@@ -25,6 +25,10 @@
#include "Integrator8580.h"
#include "OpAmp.h"
#include "sidcxx11.h"
#include <mutex>
#include <thread>
namespace reSIDfp
{
@@ -57,7 +61,7 @@ namespace reSIDfp
* E Rf|R2 RC
* F Rf|R3 RC
*/
const double resGain[16] =
constexpr double resGain[16] =
{
1.4/1.0, // Rf/Ri 1.4
((1.4*15.3)/(1.4+15.3))/1.0, // (Rf|R1)/Ri 1.28263
@@ -77,13 +81,13 @@ const double resGain[16] =
((1.4*4.7)/(1.4+4.7))/2.8, // (Rf|R3)/RC 0.385246
};
const unsigned int OPAMP_SIZE = 21;
constexpr unsigned int OPAMP_SIZE = 21;
/**
* This is the SID 8580 op-amp voltage transfer function, measured on
* CAP1B/CAP1A on a chip marked CSG 8580R5 1690 25.
*/
const Spline::Point opamp_voltage[OPAMP_SIZE] =
constexpr Spline::Point opamp_voltage[OPAMP_SIZE] =
{
{ 1.30, 8.91 }, // Approximate start of actual range
{ 4.76, 8.91 },
@@ -110,8 +114,12 @@ const Spline::Point opamp_voltage[OPAMP_SIZE] =
std::unique_ptr<FilterModelConfig8580> FilterModelConfig8580::instance(nullptr);
std::mutex Instance8580_Lock;
FilterModelConfig8580* FilterModelConfig8580::getInstance()
{
std::lock_guard<std::mutex> lock(Instance8580_Lock);
if (!instance.get())
{
instance.reset(new FilterModelConfig8580());
@@ -122,161 +130,89 @@ FilterModelConfig8580* FilterModelConfig8580::getInstance()
FilterModelConfig8580::FilterModelConfig8580() :
FilterModelConfig(
0.30, // voice voltage range FIXME measure
4.84, // voice DC voltage FIXME measure
22e-9, // capacitor value
9.09, // Vdd
0.80, // Vth
100e-6, // uCox
0.24, // voice voltage range FIXME should theoretically be ~0,474V
22e-9, // capacitor value
9. * VOLTAGE_SKEW, // Vdd
0.80, // Vth
100e-6, // uCox
opamp_voltage,
OPAMP_SIZE
)
{
// Create lookup tables for gains / summers.
#ifndef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
#endif
// #pragma omp parallel sections
//
// We spawn four threads to calculate these tables in parallel
//
auto filterSummer = [this]
{
// #pragma omp section
{
#ifdef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
buildSummerTable(opampModel);
};
auto filterMixer = [this]
{
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
buildMixerTable(opampModel, 8.0 / 5.0);
};
auto filterGain = [this]
{
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
buildVolumeTable(opampModel, 16.0);
};
auto filterResonance = [this]
{
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
buildResonanceTable(opampModel, resGain);
};
#if defined(HAVE_CXX20) && defined(__cpp_lib_jthread)
using sidThread = std::jthread;
#else
using sidThread = std::thread;
#endif
// The filter summer operates at n ~ 1, and has 5 fundamentally different
// input configurations (2 - 6 input "resistors").
//
// Note that all "on" transistors are modeled as one. This is not
// entirely accurate, since the input for each transistor is different,
// and transistors are not linear components. However modeling all
// transistors separately would be extremely costly.
for (int i = 0; i < 5; i++)
{
const int idiv = 2 + i; // 2 - 6 input "resistors".
const int size = idiv << 16;
const double n = idiv;
opampModel.reset();
summer[i] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi / N16 / idiv; /* vmin .. vmax */
summer[i][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
sidThread thdSummer(filterSummer);
sidThread thdMixer(filterMixer);
sidThread thdGain(filterGain);
sidThread thdResonance(filterResonance);
// #pragma omp section
{
#ifdef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
#if !defined(HAVE_CXX20) || !defined(__cpp_lib_jthread)
thdSummer.join();
thdMixer.join();
thdGain.join();
thdResonance.join();
#endif
// The audio mixer operates at n ~ 8/5, and has 8 fundamentally different
// input configurations (0 - 7 input "resistors").
//
// All "on", transistors are modeled as one - see comments above for
// the filter summer.
for (int i = 0; i < 8; i++)
{
const int idiv = (i == 0) ? 1 : i;
const int size = (i == 0) ? 1 : i << 16;
const double n = i * 8.0 / 5.0;
opampModel.reset();
mixer[i] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi / N16 / idiv; /* vmin .. vmax */
mixer[i][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
// #pragma omp section
{
#ifdef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
#endif
// 4 bit "resistor" ladders in the audio output gain
// necessitate 16 gain tables.
// From die photographs of the volume "resistor" ladders
// it follows that gain ~ vol/16 (assuming ideal
// op-amps and ideal "resistors").
for (int n8 = 0; n8 < 16; n8++)
{
const int size = 1 << 16;
const double n = n8 / 16.0;
opampModel.reset();
gain_vol[n8] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi / N16; /* vmin .. vmax */
gain_vol[n8][vi] = getNormalizedValue(opampModel.solve(n, vin));
}
}
}
// #pragma omp section
{
#ifdef _OPENMP
OpAmp opampModel(
std::vector<Spline::Point>(
std::begin(opamp_voltage),
std::end(opamp_voltage)),
Vddt,
vmin,
vmax);
#endif
// 4 bit "resistor" ladders in the bandpass resonance gain
// necessitate 16 gain tables.
// From die photographs of the bandpass "resistor" ladders
// it follows that 1/Q ~ 2^((4 - res)/8) (assuming ideal
// op-amps and ideal "resistors").
for (int n8 = 0; n8 < 16; n8++)
{
const int size = 1 << 16;
opampModel.reset();
gain_res[n8] = new unsigned short[size];
for (int vi = 0; vi < size; vi++)
{
const double vin = vmin + vi / N16; /* vmin .. vmax */
gain_res[n8][vi] = getNormalizedValue(opampModel.solve(resGain[n8], vin));
}
}
}
}
}
std::unique_ptr<Integrator8580> FilterModelConfig8580::buildIntegrator()
{
return MAKE_UNIQUE(Integrator8580, this);
}
} // namespace reSIDfp

View File

@@ -42,25 +42,30 @@ class FilterModelConfig8580 final : public FilterModelConfig
private:
static std::unique_ptr<FilterModelConfig8580> instance;
// This allows access to the private constructor
#ifdef HAVE_CXX11
friend std::unique_ptr<FilterModelConfig8580>::deleter_type;
#else
friend class std::auto_ptr<FilterModelConfig8580>;
#endif
private:
/**
* Reference voltage generated from Vcc by a voltage divider
*/
static constexpr double Vref = 4.75;
/**
* Power bricks generate voltages slightly out of spec
*/
static constexpr double VOLTAGE_SKEW = 1.01;
private:
FilterModelConfig8580();
~FilterModelConfig8580() DEFAULT;
~FilterModelConfig8580() = default;
protected:
inline double getVoiceDC(unsigned int) const override { return getVref(); }
public:
static FilterModelConfig8580* getInstance();
/**
* Construct an integrator solver.
*
* @return the integrator
*/
std::unique_ptr<Integrator8580> buildIntegrator();
inline constexpr double getVref() const { return Vref * VOLTAGE_SKEW; }
};
} // namespace reSIDfp

View File

@@ -0,0 +1,47 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004, 2010 Dag Lem <resid@nimrod.no>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef INTEGRATOR_H
#define INTEGRATOR_H
namespace reSIDfp
{
class Integrator
{
protected:
mutable int vx;
mutable int vc;
Integrator() :
vx(0),
vc(0) {}
public:
virtual int solve(int vi) const = 0;
virtual ~Integrator() = default;
};
} // namespace reSIDfp
#endif

View File

@@ -18,8 +18,80 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#define INTEGRATOR_CPP
#include "Integrator6581.h"
// This is needed when compiling with --disable-inline
#ifdef SLOPE_FACTOR
# include <cmath>
# include "sidcxx11.h"
#endif
namespace reSIDfp
{
int Integrator6581::solve(int vi) const
{
// Make sure Vgst>0 so we're not in subthreshold mode
assert(vx < nVddt);
// Check that transistor is actually in triode mode
// Vds < Vgs - Vth
assert(vi < nVddt);
// "Snake" voltages for triode mode calculation.
const unsigned int Vgst = nVddt - vx;
const unsigned int Vgdt = nVddt - vi;
const unsigned int Vgst_2 = Vgst * Vgst;
const unsigned int Vgdt_2 = Vgdt * Vgdt;
// "Snake" current, scaled by (1/m)*2^13*m*2^16*m*2^16*2^-15 = m*2^30
const int n_I_snake = fmc.getNormalizedCurrentFactor(wlSnake) * (static_cast<int>(Vgst_2 - Vgdt_2) >> 15);
// VCR gate voltage. // Scaled by m*2^16
// Vg = Vddt - sqrt(((Vddt - Vw)^2 + Vgdt^2)/2)
const int nVg = static_cast<int>(fmc.getVcr_nVg((nVddt_Vw_2 + (Vgdt_2 >> 1)) >> 16));
#ifdef SLOPE_FACTOR
const double nVp = static_cast<double>(nVg - nVt) / n; // Pinch-off voltage
const int kVgt = static_cast<int>(nVp + 0.5) - nVmin;
#else
const int kVgt = (nVg - nVt) - nVmin;
#endif
// VCR voltages for EKV model table lookup.
const int kVgt_Vs = (kVgt - vx) + (1 << 15);
assert((kVgt_Vs >= 0) && (kVgt_Vs < (1 << 16)));
const int kVgt_Vd = (kVgt - vi) + (1 << 15);
assert((kVgt_Vd >= 0) && (kVgt_Vd < (1 << 16)));
// VCR current, scaled by m*2^15*2^15 = m*2^30
const unsigned int If = static_cast<unsigned int>(fmc.getVcr_n_Ids_term(kVgt_Vs)) << 15;
const unsigned int Ir = static_cast<unsigned int>(fmc.getVcr_n_Ids_term(kVgt_Vd)) << 15;
#ifdef SLOPE_FACTOR
const double iVcr = static_cast<double>(If - Ir);
const int n_I_vcr = static_cast<int>(iVcr * n);
#else
const int n_I_vcr = If - Ir;
#endif
#ifdef SLOPE_FACTOR
// estimate new slope factor based on gate voltage
constexpr double gamma = 1.0; // body effect factor
constexpr double phi = 0.8; // bulk Fermi potential
const double Vp = nVp / fmc.getN16();
n = 1. + (gamma / (2. * std::sqrt(Vp + phi + 4. * fmc.getUt())));
assert((n > 1.2) && (n < 1.8));
#endif
// Change in capacitor charge.
vc += n_I_snake + n_I_vcr;
// vx = g(vc)
const int tmp = (vc >> 15) + (1 << 15);
assert(tmp < (1 << 16));
vx = fmc.getOpampRev(tmp);
// Return vo.
return vx - (vc >> 14);
}
} // namespace reSIDfp

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2022 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2023 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004, 2010 Dag Lem <resid@nimrod.no>
*
@@ -23,6 +23,7 @@
#ifndef INTEGRATOR6581_H
#define INTEGRATOR6581_H
#include "Integrator.h"
#include "FilterModelConfig6581.h"
#include <stdint.h>
@@ -33,10 +34,6 @@
// actually produces worse results, needs investigation
//#define SLOPE_FACTOR
#ifdef SLOPE_FACTOR
# include <cmath>
#endif
#include "siddefs-fp.h"
namespace reSIDfp
@@ -164,12 +161,10 @@ namespace reSIDfp
*
* Vg = nVddt - sqrt(((nVddt - vi)^2 + (nVddt - Vw)^2)/2)
*/
class Integrator6581
class Integrator6581 : public Integrator
{
private:
unsigned int nVddt_Vw_2;
mutable int vx;
mutable int vc;
const double wlSnake;
#ifdef SLOPE_FACTOR
// Slope factor n = 1/k
@@ -177,109 +172,32 @@ private:
// k = Cox/(Cox+Cdep) ~ 0.7 (depends on gate voltage)
mutable double n;
#endif
unsigned int nVddt_Vw_2;
const unsigned short nVddt;
const unsigned short nVt;
const unsigned short nVmin;
const unsigned short nSnake;
const FilterModelConfig6581* fmc;
FilterModelConfig6581& fmc;
public:
Integrator6581(const FilterModelConfig6581* fmc,
double WL_snake) :
nVddt_Vw_2(0),
vx(0),
vc(0),
Integrator6581(FilterModelConfig6581& fmc) :
wlSnake(fmc.getWL_snake()),
#ifdef SLOPE_FACTOR
n(1.4),
#endif
nVddt(fmc->getNormalizedValue(fmc->getVddt())),
nVt(fmc->getNormalizedValue(fmc->getVth())),
nVmin(fmc->getNVmin()),
nSnake(fmc->getNormalizedCurrentFactor(WL_snake)),
nVddt_Vw_2(0),
nVddt(fmc.getNormalizedValue(fmc.getVddt())),
nVt(fmc.getNormalizedValue(fmc.getVth())),
nVmin(fmc.getNVmin()),
fmc(fmc) {}
void setVw(unsigned short Vw) { nVddt_Vw_2 = ((nVddt - Vw) * (nVddt - Vw)) >> 1; }
int solve(int vi) const;
int solve(int vi) const override;
};
} // namespace reSIDfp
#if RESID_INLINING || defined(INTEGRATOR_CPP)
namespace reSIDfp
{
RESID_INLINE
int Integrator6581::solve(int vi) const
{
// Make sure Vgst>0 so we're not in subthreshold mode
assert(vx < nVddt);
// Check that transistor is actually in triode mode
// Vds < Vgs - Vth
assert(vi < nVddt);
// "Snake" voltages for triode mode calculation.
const unsigned int Vgst = nVddt - vx;
const unsigned int Vgdt = nVddt - vi;
const unsigned int Vgst_2 = Vgst * Vgst;
const unsigned int Vgdt_2 = Vgdt * Vgdt;
// "Snake" current, scaled by (1/m)*2^13*m*2^16*m*2^16*2^-15 = m*2^30
const int n_I_snake = nSnake * (static_cast<int>(Vgst_2 - Vgdt_2) >> 15);
// VCR gate voltage. // Scaled by m*2^16
// Vg = Vddt - sqrt(((Vddt - Vw)^2 + Vgdt^2)/2)
const int nVg = static_cast<int>(fmc->getVcr_nVg((nVddt_Vw_2 + (Vgdt_2 >> 1)) >> 16));
#ifdef SLOPE_FACTOR
const double nVp = static_cast<double>(nVg - nVt) / n; // Pinch-off voltage
const int kVgt = static_cast<int>(nVp + 0.5) - nVmin;
#else
const int kVgt = (nVg - nVt) - nVmin;
#endif
// VCR voltages for EKV model table lookup.
const int kVgt_Vs = (vx < kVgt) ? kVgt - vx : 0;
assert(kVgt_Vs < (1 << 16));
const int kVgt_Vd = (vi < kVgt) ? kVgt - vi : 0;
assert(kVgt_Vd < (1 << 16));
// VCR current, scaled by m*2^15*2^15 = m*2^30
const unsigned int If = static_cast<unsigned int>(fmc->getVcr_n_Ids_term(kVgt_Vs)) << 15;
const unsigned int Ir = static_cast<unsigned int>(fmc->getVcr_n_Ids_term(kVgt_Vd)) << 15;
#ifdef SLOPE_FACTOR
const double iVcr = static_cast<double>(If - Ir);
const int n_I_vcr = static_cast<int>(iVcr * n);
#else
const int n_I_vcr = If - Ir;
#endif
#ifdef SLOPE_FACTOR
// estimate new slope factor based on gate voltage
const double gamma = 1.0; // body effect factor
const double phi = 0.8; // bulk Fermi potential
const double Vp = nVp / fmc->getN16();
n = 1. + (gamma / (2. * sqrt(Vp + phi + 4. * fmc->getUt())));
assert((n > 1.2) && (n < 1.8));
#endif
// Change in capacitor charge.
vc += n_I_snake + n_I_vcr;
// vx = g(vc)
const int tmp = (vc >> 15) + (1 << 15);
assert(tmp < (1 << 16));
vx = fmc->getOpampRev(tmp);
// Return vo.
return vx - (vc >> 14);
}
} // namespace reSIDfp
#endif
#endif

View File

@@ -18,8 +18,36 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#define INTEGRATOR8580_CPP
#include "Integrator8580.h"
// This is needed when compiling with --disable-inline
namespace reSIDfp
{
int Integrator8580::solve(int vi) const
{
// Make sure we're not in subthreshold mode
assert(vx < nVgt);
// DAC voltages
const unsigned int Vgst = nVgt - vx;
const unsigned int Vgdt = (vi < nVgt) ? nVgt - vi : 0; // triode/saturation mode
const unsigned int Vgst_2 = Vgst * Vgst;
const unsigned int Vgdt_2 = Vgdt * Vgdt;
// DAC current, scaled by (1/m)*2^13*m*2^16*m*2^16*2^-15 = m*2^30
const int n_I_dac = n_dac * (static_cast<int>(Vgst_2 - Vgdt_2) >> 15);
// Change in capacitor charge.
vc += n_I_dac;
// vx = g(vc)
const int tmp = (vc >> 15) + (1 << 15);
assert(tmp < (1 << 16));
vx = fmc.getOpampRev(tmp);
// Return vo.
return vx - (vc >> 14);
}
} // namespace reSIDfp

View File

@@ -23,6 +23,7 @@
#ifndef INTEGRATOR8580_H
#define INTEGRATOR8580_H
#include "Integrator.h"
#include "FilterModelConfig8580.h"
#include <stdint.h>
@@ -51,21 +52,16 @@ namespace reSIDfp
*
* Rfc gate voltage is generated by an OP Amp and depends on chip temperature.
*/
class Integrator8580
class Integrator8580 : public Integrator
{
private:
mutable int vx;
mutable int vc;
unsigned short nVgt;
unsigned short n_dac;
const FilterModelConfig8580* fmc;
FilterModelConfig8580& fmc;
public:
Integrator8580(const FilterModelConfig8580* fmc) :
vx(0),
vc(0),
Integrator8580(FilterModelConfig8580& fmc) :
fmc(fmc)
{
setV(1.5);
@@ -78,7 +74,7 @@ public:
{
// Normalized current factor, 1 cycle at 1MHz.
// Fit in 5 bits.
n_dac = fmc->getNormalizedCurrentFactor(wl);
n_dac = fmc.getNormalizedCurrentFactor(wl);
}
/**
@@ -87,56 +83,19 @@ public:
void setV(double v)
{
// Gate voltage is controlled by the switched capacitor voltage divider
// Ua = Ue * v = 4.76v 1<v<2
// Ua = Ue * v = 4.75v 1<v<2
assert(v > 1.0 && v < 2.0);
const double Vg = 4.76 * v;
const double Vgt = Vg - fmc->getVth();
const double Vg = fmc.getVref() * v;
const double Vgt = Vg - fmc.getVth();
// Vg - Vth, normalized so that translated values can be subtracted:
// Vgt - x = (Vgt - t) - (x - t)
nVgt = fmc->getNormalizedValue(Vgt);
nVgt = fmc.getNormalizedValue(Vgt);
}
int solve(int vi) const;
int solve(int vi) const override;
};
} // namespace reSIDfp
#if RESID_INLINING || defined(INTEGRATOR8580_CPP)
namespace reSIDfp
{
RESID_INLINE
int Integrator8580::solve(int vi) const
{
// Make sure we're not in subthreshold mode
assert(vx < nVgt);
// DAC voltages
const unsigned int Vgst = nVgt - vx;
const unsigned int Vgdt = (vi < nVgt) ? nVgt - vi : 0; // triode/saturation mode
const unsigned int Vgst_2 = Vgst * Vgst;
const unsigned int Vgdt_2 = Vgdt * Vgdt;
// DAC current, scaled by (1/m)*2^13*m*2^16*m*2^16*2^-15 = m*2^30
const int n_I_dac = n_dac * (static_cast<int>(Vgst_2 - Vgdt_2) >> 15);
// Change in capacitor charge.
vc += n_I_dac;
// vx = g(vc)
const int tmp = (vc >> 15) + (1 << 15);
assert(tmp < (1 << 16));
vx = fmc->getOpampRev(tmp);
// Return vo.
return vx - (vc >> 14);
}
} // namespace reSIDfp
#endif
#endif

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2015 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
*
* This program is free software; you can redistribute it and/or modify
@@ -28,7 +28,7 @@
namespace reSIDfp
{
const double EPSILON = 1e-8;
constexpr double EPSILON = 1e-8;
double OpAmp::solve(double n, double vi) const
{
@@ -48,7 +48,7 @@ double OpAmp::solve(double n, double vi) const
// Calculate f and df.
Spline::Point out = opamp->evaluate(x);
Spline::Point out = opamp.evaluate(x);
const double vo = out.x;
const double dvo = out.y;
@@ -64,9 +64,9 @@ double OpAmp::solve(double n, double vi) const
// Newton-Raphson step: xk1 = xk - f(xk)/f'(xk)
x -= f / df;
if (unlikely(fabs(x - xk) < EPSILON))
if (unlikely(std::fabs(x - xk) < EPSILON))
{
out = opamp->evaluate(x);
out = opamp.evaluate(x);
return out.x;
}

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2023 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004,2010 Dag Lem
*
@@ -23,7 +23,6 @@
#ifndef OPAMP_H
#define OPAMP_H
#include <memory>
#include <vector>
#include "Spline.h"
@@ -72,13 +71,13 @@ class OpAmp
{
private:
/// Current root position (cached as guess to speed up next iteration)
mutable double x;
mutable double x = 0.;
const double Vddt;
const double vmin;
const double vmax;
std::unique_ptr<Spline> const opamp;
Spline opamp;
public:
/**
@@ -89,14 +88,13 @@ public:
* @param vmin
* @param vmax
*/
OpAmp(const std::vector<Spline::Point> &opamp, double Vddt,
OpAmp(const std::vector<Spline::Point> &opamp_voltages, double Vddt,
double vmin, double vmax
) :
x(0.),
Vddt(Vddt),
vmin(vmin),
vmax(vmax),
opamp(new Spline(opamp)) {}
opamp(opamp_voltages) {}
/**
* Reset root position

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2016 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004 Dag Lem <resid@nimrod.no>
*
@@ -26,11 +26,12 @@
#include <limits>
#include "sidcxx11.h"
#include "array.h"
#include "Dac.h"
#include "Filter6581.h"
#include "Filter8580.h"
#include "Potentiometer.h"
#include "WaveformCalculator.h"
#include "resample/TwoPassSincResampler.h"
#include "resample/ZeroOrderResampler.h"
@@ -38,8 +39,8 @@
namespace reSIDfp
{
const unsigned int ENV_DAC_BITS = 8;
const unsigned int OSC_DAC_BITS = 12;
constexpr unsigned int ENV_DAC_BITS = 8;
constexpr unsigned int OSC_DAC_BITS = 12;
/**
* The waveform D/A converter introduces a DC offset in the signal
@@ -106,8 +107,8 @@ const unsigned int OSC_DAC_BITS = 12;
* On my 6581R4AR has 0x3A as the only value giving the same output level as 1.prg
*/
//@{
unsigned int constexpr OFFSET_6581 = 0x380;
unsigned int constexpr OFFSET_8580 = 0x9c0;
constexpr unsigned int OFFSET_6581 = 0x380;
constexpr unsigned int OFFSET_8580 = 0x9c0;
//@}
/**
@@ -128,31 +129,24 @@ unsigned int constexpr OFFSET_8580 = 0x9c0;
* [2]: http://noname.c64.org/csdb/forums/?roomid=11&topicid=29025&showallposts=1
*/
//@{
int constexpr BUS_TTL_6581 = 0x01d00;
int constexpr BUS_TTL_8580 = 0xa2000;
constexpr int BUS_TTL_6581 = 0x01d00;
constexpr int BUS_TTL_8580 = 0xa2000;
//@}
SID::SID() :
filter6581(new Filter6581()),
filter8580(new Filter8580()),
externalFilter(new ExternalFilter()),
resampler(nullptr),
potX(new Potentiometer()),
potY(new Potentiometer())
cws(AVERAGE)
{
voice[0].reset(new Voice());
voice[1].reset(new Voice());
voice[2].reset(new Voice());
muted[0] = muted[1] = muted[2] = false;
setChipModel(MOS6581);
reset();
setChipModel(MOS8580);
}
SID::~SID()
{
// Needed to delete auto_ptr with complete type
delete filter6581;
delete filter8580;
}
void SID::setFilter6581Curve(double filterCurve)
@@ -160,6 +154,11 @@ void SID::setFilter6581Curve(double filterCurve)
filter6581->setFilterCurve(filterCurve);
}
void SID::setFilter6581Range(double adjustment)
{
filter6581->setFilterRange(adjustment);
}
void SID::setFilter8580Curve(double filterCurve)
{
filter8580->setFilterCurve(filterCurve);
@@ -178,7 +177,7 @@ void SID::voiceSync(bool sync)
// Synchronize the 3 waveform generators.
for (int i = 0; i < 3; i++)
{
voice[i]->wave()->synchronize(voice[(i + 1) % 3]->wave(), voice[(i + 2) % 3]->wave());
voice[i].wave()->synchronize(voice[(i + 1) % 3].wave(), voice[(i + 2) % 3].wave());
}
}
@@ -187,10 +186,10 @@ void SID::voiceSync(bool sync)
for (int i = 0; i < 3; i++)
{
WaveformGenerator* const wave = voice[i]->wave();
WaveformGenerator* const wave = voice[i].wave();
const unsigned int freq = wave->readFreq();
if (wave->readTest() || freq == 0 || !voice[(i + 1) % 3]->wave()->readSync())
if (wave->readTest() || freq == 0 || !voice[(i + 1) % 3].wave()->readSync())
{
continue;
}
@@ -210,12 +209,14 @@ void SID::setChipModel(ChipModel model)
switch (model)
{
case MOS6581:
filter = filter6581.get();
filter = filter6581;
scaleFactor = 3;
modelTTL = BUS_TTL_6581;
break;
case MOS8580:
filter = filter8580.get();
filter = filter8580;
scaleFactor = 5;
modelTTL = BUS_TTL_8580;
break;
@@ -227,7 +228,7 @@ void SID::setChipModel(ChipModel model)
// calculate waveform-related tables
matrix_t* wavetables = WaveformCalculator::getInstance()->getWaveTable();
matrix_t* pulldowntables = WaveformCalculator::getInstance()->buildPulldownTable(model);
matrix_t* pulldowntables = WaveformCalculator::getInstance()->buildPulldownTable(model, cws);
// calculate envelope DAC table
{
@@ -247,7 +248,8 @@ void SID::setChipModel(ChipModel model)
Dac dacBuilder(OSC_DAC_BITS);
dacBuilder.kinkedDac(model);
const double offset = dacBuilder.getOutput(is6581 ? OFFSET_6581 : OFFSET_8580);
//const double offset = dacBuilder.getOutput(is6581 ? OFFSET_6581 : OFFSET_8580);
const double offset = dacBuilder.getOutput(0x7ff);
for (unsigned int i = 0; i < (1 << OSC_DAC_BITS); i++)
{
@@ -259,11 +261,35 @@ void SID::setChipModel(ChipModel model)
// set voice tables
for (int i = 0; i < 3; i++)
{
voice[i]->setEnvDAC(envDAC);
voice[i]->setWavDAC(oscDAC);
voice[i]->wave()->setModel(is6581);
voice[i]->wave()->setWaveformModels(wavetables);
voice[i]->wave()->setPulldownModels(pulldowntables);
voice[i].setEnvDAC(envDAC);
voice[i].setWavDAC(oscDAC);
voice[i].wave()->setModel(is6581);
voice[i].wave()->setWaveformModels(wavetables);
voice[i].wave()->setPulldownModels(pulldowntables);
}
}
void SID::setCombinedWaveforms(CombinedWaveforms cws)
{
switch (cws)
{
case AVERAGE:
case WEAK:
case STRONG:
break;
default:
throw SIDError("Unknown combined waveforms type");
}
this->cws = cws;
// rebuild waveform-related tables
matrix_t* pulldowntables = WaveformCalculator::getInstance()->buildPulldownTable(model, cws);
for (int i = 0; i < 3; i++)
{
voice[i].wave()->setPulldownModels(pulldowntables);
}
}
@@ -271,12 +297,12 @@ void SID::reset()
{
for (int i = 0; i < 3; i++)
{
voice[i]->reset();
voice[i].reset();
}
filter6581->reset();
filter8580->reset();
externalFilter->reset();
externalFilter.reset();
if (resampler.get())
{
@@ -299,22 +325,22 @@ unsigned char SID::read(int offset)
switch (offset)
{
case 0x19: // X value of paddle
busValue = potX->readPOT();
busValue = potX.readPOT();
busValueTtl = modelTTL;
break;
case 0x1a: // Y value of paddle
busValue = potY->readPOT();
busValue = potY.readPOT();
busValueTtl = modelTTL;
break;
case 0x1b: // Voice #3 waveform output
busValue = voice[2]->wave()->readOSC();
busValue = voice[2].wave()->readOSC();
busValueTtl = modelTTL;
break;
case 0x1c: // Voice #3 ADSR output
busValue = voice[2]->envelope()->readENV();
busValue = voice[2].envelope()->readENV();
busValueTtl = modelTTL;
break;
@@ -337,87 +363,87 @@ void SID::write(int offset, unsigned char value)
switch (offset)
{
case 0x00: // Voice #1 frequency (Low-byte)
voice[0]->wave()->writeFREQ_LO(value);
voice[0].wave()->writeFREQ_LO(value);
break;
case 0x01: // Voice #1 frequency (High-byte)
voice[0]->wave()->writeFREQ_HI(value);
voice[0].wave()->writeFREQ_HI(value);
break;
case 0x02: // Voice #1 pulse width (Low-byte)
voice[0]->wave()->writePW_LO(value);
voice[0].wave()->writePW_LO(value);
break;
case 0x03: // Voice #1 pulse width (bits #8-#15)
voice[0]->wave()->writePW_HI(value);
voice[0].wave()->writePW_HI(value);
break;
case 0x04: // Voice #1 control register
voice[0]->writeCONTROL_REG(muted[0] ? 0 : value);
voice[0].writeCONTROL_REG(value);
break;
case 0x05: // Voice #1 Attack and Decay length
voice[0]->envelope()->writeATTACK_DECAY(value);
voice[0].envelope()->writeATTACK_DECAY(value);
break;
case 0x06: // Voice #1 Sustain volume and Release length
voice[0]->envelope()->writeSUSTAIN_RELEASE(value);
voice[0].envelope()->writeSUSTAIN_RELEASE(value);
break;
case 0x07: // Voice #2 frequency (Low-byte)
voice[1]->wave()->writeFREQ_LO(value);
voice[1].wave()->writeFREQ_LO(value);
break;
case 0x08: // Voice #2 frequency (High-byte)
voice[1]->wave()->writeFREQ_HI(value);
voice[1].wave()->writeFREQ_HI(value);
break;
case 0x09: // Voice #2 pulse width (Low-byte)
voice[1]->wave()->writePW_LO(value);
voice[1].wave()->writePW_LO(value);
break;
case 0x0a: // Voice #2 pulse width (bits #8-#15)
voice[1]->wave()->writePW_HI(value);
voice[1].wave()->writePW_HI(value);
break;
case 0x0b: // Voice #2 control register
voice[1]->writeCONTROL_REG(muted[1] ? 0 : value);
voice[1].writeCONTROL_REG(value);
break;
case 0x0c: // Voice #2 Attack and Decay length
voice[1]->envelope()->writeATTACK_DECAY(value);
voice[1].envelope()->writeATTACK_DECAY(value);
break;
case 0x0d: // Voice #2 Sustain volume and Release length
voice[1]->envelope()->writeSUSTAIN_RELEASE(value);
voice[1].envelope()->writeSUSTAIN_RELEASE(value);
break;
case 0x0e: // Voice #3 frequency (Low-byte)
voice[2]->wave()->writeFREQ_LO(value);
voice[2].wave()->writeFREQ_LO(value);
break;
case 0x0f: // Voice #3 frequency (High-byte)
voice[2]->wave()->writeFREQ_HI(value);
voice[2].wave()->writeFREQ_HI(value);
break;
case 0x10: // Voice #3 pulse width (Low-byte)
voice[2]->wave()->writePW_LO(value);
voice[2].wave()->writePW_LO(value);
break;
case 0x11: // Voice #3 pulse width (bits #8-#15)
voice[2]->wave()->writePW_HI(value);
voice[2].wave()->writePW_HI(value);
break;
case 0x12: // Voice #3 control register
voice[2]->writeCONTROL_REG(muted[2] ? 0 : value);
voice[2].writeCONTROL_REG(value);
break;
case 0x13: // Voice #3 Attack and Decay length
voice[2]->envelope()->writeATTACK_DECAY(value);
voice[2].envelope()->writeATTACK_DECAY(value);
break;
case 0x14: // Voice #3 Sustain volume and Release length
voice[2]->envelope()->writeSUSTAIN_RELEASE(value);
voice[2].envelope()->writeSUSTAIN_RELEASE(value);
break;
case 0x15: // Filter cut off frequency (bits #0-#2)
@@ -448,9 +474,9 @@ void SID::write(int offset, unsigned char value)
voiceSync(false);
}
void SID::setSamplingParameters(double clockFrequency, SamplingMethod method, double samplingFrequency, double highestAccurateFrequency)
void SID::setSamplingParameters(double clockFrequency, SamplingMethod method, double samplingFrequency)
{
externalFilter->setClockFrequency(clockFrequency);
externalFilter.setClockFrequency(clockFrequency);
switch (method)
{
@@ -459,7 +485,7 @@ void SID::setSamplingParameters(double clockFrequency, SamplingMethod method, do
break;
case RESAMPLE:
resampler.reset(TwoPassSincResampler::create(clockFrequency, samplingFrequency, highestAccurateFrequency));
resampler.reset(TwoPassSincResampler::create(clockFrequency, samplingFrequency));
break;
default:
@@ -480,16 +506,16 @@ void SID::clockSilent(unsigned int cycles)
for (int i = 0; i < delta_t; i++)
{
// clock waveform generators (can affect OSC3)
voice[0]->wave()->clock();
voice[1]->wave()->clock();
voice[2]->wave()->clock();
voice[0].wave()->clock();
voice[1].wave()->clock();
voice[2].wave()->clock();
voice[0]->wave()->output(voice[2]->wave());
voice[1]->wave()->output(voice[0]->wave());
voice[2]->wave()->output(voice[1]->wave());
voice[0].wave()->output(voice[2].wave());
voice[1].wave()->output(voice[0].wave());
voice[2].wave()->output(voice[1].wave());
// clock ENV3 only
voice[2]->envelope()->clock();
voice[2].envelope()->clock();
}
cycles -= delta_t;

View File

@@ -92,11 +92,11 @@ Spline::Point Spline::evaluate(double x) const
{
if ((x < c->x1) || (x > c->x2))
{
for (size_t i = 0; i < params.size(); i++)
for (const auto & param : params)
{
if (x <= params[i].x2)
if (x <= param.x2)
{
c = &params[i];
c = &param;
break;
}
}

View File

@@ -38,14 +38,14 @@ namespace reSIDfp
class Spline
{
public:
typedef struct
using Point = struct
{
double x;
double y;
} Point;
};
private:
typedef struct
using Param = struct
{
double x1;
double x2;
@@ -53,9 +53,9 @@ private:
double b;
double c;
double d;
} Param;
};
typedef std::vector<Param> ParamVector;
using ParamVector = std::vector<Param>;
private:
/// Interpolation parameters

View File

@@ -23,14 +23,10 @@
#ifndef VOICE_H
#define VOICE_H
#include <memory>
#include "siddefs-fp.h"
#include "WaveformGenerator.h"
#include "EnvelopeGenerator.h"
#include "sidcxx11.h"
namespace reSIDfp
{
@@ -40,9 +36,9 @@ namespace reSIDfp
class Voice
{
private:
std::unique_ptr<WaveformGenerator> const waveformGenerator;
WaveformGenerator waveformGenerator;
std::unique_ptr<EnvelopeGenerator> const envelopeGenerator;
EnvelopeGenerator envelopeGenerator;
/// The DAC LUT for analog waveform output
float* wavDAC; //-V730_NOINIT this is initialized in the SID constructor
@@ -67,23 +63,16 @@ public:
* @return the voice analog output
*/
RESID_INLINE
int output(const WaveformGenerator* ringModulator) const
float output(const WaveformGenerator* ringModulator)
{
unsigned int const wav = waveformGenerator->output(ringModulator);
unsigned int const env = envelopeGenerator->output();
unsigned int const wav = waveformGenerator.output(ringModulator);
unsigned int const env = envelopeGenerator.output();
// DAC imperfections are emulated by using the digital output
// as an index into a DAC lookup table.
return static_cast<int>(wavDAC[wav] * envDAC[env]);
return wavDAC[wav] * envDAC[env];
}
/**
* Constructor.
*/
Voice() :
waveformGenerator(new WaveformGenerator()),
envelopeGenerator(new EnvelopeGenerator()) {}
/**
* Set the analog DAC emulation for waveform generator.
* Must be called before any operation.
@@ -100,9 +89,9 @@ public:
*/
void setEnvDAC(float* dac) { envDAC = dac; }
WaveformGenerator* wave() const { return waveformGenerator.get(); }
WaveformGenerator* wave() { return &waveformGenerator; }
EnvelopeGenerator* envelope() const { return envelopeGenerator.get(); }
EnvelopeGenerator* envelope() { return &envelopeGenerator; }
/**
* Write control register.
@@ -111,8 +100,8 @@ public:
*/
void writeCONTROL_REG(unsigned char control)
{
waveformGenerator->writeCONTROL_REG(control);
envelopeGenerator->writeCONTROL_REG(control);
waveformGenerator.writeCONTROL_REG(control);
envelopeGenerator.writeCONTROL_REG(control);
}
/**
@@ -120,8 +109,8 @@ public:
*/
void reset()
{
waveformGenerator->reset();
envelopeGenerator->reset();
waveformGenerator.reset();
envelopeGenerator.reset();
}
};

View File

@@ -21,66 +21,154 @@
#include "WaveformCalculator.h"
#include "sidcxx11.h"
#include <map>
#include <mutex>
#include <cmath>
namespace reSIDfp
{
/**
* Combined waveform model parameters.
*/
using distance_t = float (*)(float, int);
using CombinedWaveformConfig = struct
{
distance_t distFunc;
float threshold;
float topbit;
float pulsestrength;
float distance1;
float distance2;
};
using cw_cache_t = std::map<const CombinedWaveformConfig*, matrix_t>;
cw_cache_t PULLDOWN_CACHE;
std::mutex PULLDOWN_CACHE_Lock;
WaveformCalculator* WaveformCalculator::getInstance()
{
static WaveformCalculator instance;
return &instance;
}
/**
* Parameters derived with the Monte Carlo method based on
* samplings by kevtris. Code and data available in the project repository [1].
*
* The score here reported is the acoustic error
* calculated XORing the estimated and the sampled values.
* In parentheses the number of mispredicted bits.
*
* [1] https://github.com/libsidplayfp/combined-waveforms
*/
const CombinedWaveformConfig config[2][5] =
{
{ /* kevtris chip G (6581 R2) */
{0.862147212f, 0.f, 10.8962431f, 2.50848103f }, // TS error 1941 (327/28672)
{0.932746708f, 2.07508397f, 1.03668225f, 1.14876997f }, // PT error 5992 (126/32768)
{0.860927045f, 2.43506575f, 0.908603609f, 1.07907593f }, // PS error 3693 (521/28672)
{0.741343081f, 0.0452554375f, 1.1439606f, 1.05711341f }, // PTS error 338 ( 29/28672)
{0.96f, 2.5f, 1.1f, 1.2f }, // NP guessed
},
{ /* kevtris chip V (8580 R5) */
{0.715788841f, 0.f, 1.32999945f, 2.2172699f }, // TS error 928 (135/32768)
{0.93500334f, 1.05977178f, 1.08629429f, 1.43518543f }, // PT error 7991 (212/32768)
{0.920648575f, 0.943601072f, 1.13034654f, 1.41881108f }, // PS error 12566 (394/32768)
{0.90921098f, 0.979807794f, 0.942194462f, 1.40958893f }, // PTS error 2092 ( 60/32768)
{0.95f, 1.15f, 1.f, 1.45f }, // NP guessed
},
};
typedef float (*distance_t)(float, int);
// Distance functions
static float exponentialDistance(float distance, int i)
{
return pow(distance, -i);
}
#if 0
MAYBE_UNUSED static float linearDistance(float distance, int i)
{
return 1.f / (1.f + i * distance);
}
#endif
#if 0
MAYBE_UNUSED static float quadraticDistance(float distance, int i)
static float quadraticDistance(float distance, int i)
{
return 1.f / (1.f + (i*i) * distance);
}
#endif
/**
* Parameters derived with the Monte Carlo method based on
* samplings from real machines.
* Code and data available in the project repository [1].
* Sampling program made by Dag Lem [2].
*
* The score here reported is the acoustic error
* calculated XORing the estimated and the sampled values.
* In parentheses the number of mispredicted bits.
*
* [1] https://github.com/libsidplayfp/combined-waveforms
* [2] https://github.com/daglem/reDIP-SID/blob/master/research/combsample.d64
*/
const CombinedWaveformConfig configAverage[2][5] =
{
{ /* 6581 R3 0486S sampled by Trurl */
// TS error 3555 (324/32768) [RMS: 73.98]
{ exponentialDistance, 0.877322257f, 1.11349654f, 0.f, 2.14537621f, 9.08618164f },
// PT error 4590 (124/32768) [RMS: 68.90]
{ linearDistance, 0.941692829f, 1.f, 1.80072665f, 0.033124879f, 0.232303441f },
// PS error 19352 (763/32768) [RMS: 96.91]
{ linearDistance, 1.66494179f, 1.03760982f, 5.62705326f, 0.291590303f, 0.283631504f },
// PTS error 5068 ( 94/32768) [RMS: 41.69]
{ linearDistance, 1.09762526f, 0.975265801f, 1.52196741f, 0.151528224f, 0.841949463f },
// NP guessed
{ exponentialDistance, 0.96f, 1.f, 2.5f, 1.1f, 1.2f },
},
{ /* 8580 R5 1088 sampled by reFX-Mike */
// TS error 10660 (353/32768) [RMS: 58.34]
{ exponentialDistance, 0.853578329f, 1.09615636f, 0.f, 1.8819375f, 6.80794907f },
// PT error 10635 (289/32768) [RMS: 108.81]
{ exponentialDistance, 0.929835618f, 1.f, 1.12836814f, 1.10453653f, 1.48065746f },
// PS error 12255 (554/32768) [RMS: 102.27]
{ quadraticDistance, 0.911938608f, 0.996440411f, 1.2278074f, 0.000117214302f, 0.18948476f },
// PTS error 6913 (127/32768) [RMS: 55.80]
{ exponentialDistance, 0.938004673f, 1.04827631f, 1.21178246f, 0.915959001f, 1.42698038f },
// NP guessed
{ exponentialDistance, 0.95f, 1.f, 1.15f, 1.f, 1.45f },
},
};
const CombinedWaveformConfig configWeak[2][5] =
{
{ /* 6581 R2 4383 sampled by ltx128 */
// TS error 1474 (198/32768) [RMS: 62.81]
{ exponentialDistance, 0.892563999f, 1.11905622f, 0.f, 2.21876144f, 9.63837719f },
// PT error 612 (102/32768) [RMS: 43.71]
{ linearDistance, 1.01262534f, 1.f, 2.46070528f, 0.0537485816f, 0.0986242667f },
// PS error 8135 (575/32768) [RMS: 75.10]
{ linearDistance, 2.14896345f, 1.0216713f, 10.5400085f, 0.244498149f, 0.126134038f },
// PTS error 2489 (60/32768) [RMS: 24.41]
{ linearDistance, 1.22330308f, 0.933797896f, 2.83245254f, 0.0615176819f, 0.323831677f },
// NP guessed
{ exponentialDistance, 0.96f, 1.f, 2.5f, 1.1f, 1.2f },
},
{ /* 8580 R5 4887 sampled by reFX-Mike */
// TS error 741 (76/32768) [RMS: 53.74]
{ exponentialDistance, 0.812351167f, 1.1727736f, 0.f, 1.87459648f, 2.31578159f },
// PT error 7199 (192/32768) [RMS: 88.43]
{ exponentialDistance, 0.917997837f, 1.f, 1.01248944f, 1.05761552f, 1.37529826f },
// PS error 9856 (332/32768) [RMS: 86.29]
{ quadraticDistance, 0.968754232f, 1.00669801f, 1.29909098f, 0.00962483883f, 0.146850556f },
// PTS error 4809 (60/32768) [RMS: 45.37]
{ exponentialDistance, 0.941834152f, 1.06401193f, 0.991132736f, 0.995310068f, 1.41105855f },
// NP guessed
{ exponentialDistance, 0.95f, 1.f, 1.15f, 1.f, 1.45f },
},
};
const CombinedWaveformConfig configStrong[2][5] =
{
{ /* 6581 R2 0384 sampled by Trurl */
// TS error 20337 (1579/32768) [RMS: 88.57]
{ exponentialDistance, 0.000637792516f, 1.56725872f, 0.f, 0.00036806846f, 1.51800942f },
// PT error 5190 (238/32768) [RMS: 83.54]
{ linearDistance, 0.924780309f, 1.f, 1.96809769f, 0.0888123438f, 0.234606609f },
// PS error 31015 (2181/32768) [RMS: 114.99]
{ linearDistance, 1.2328074f, 0.73079139f, 3.9719491f, 0.00156516861f, 0.314677745f },
// PTS error 9874 (201/32768) [RMS: 52.30]
{ linearDistance, 1.08558261f, 0.857638359f, 1.52781796f, 0.152927235f, 1.02657032f },
// NP guessed
{ exponentialDistance, 0.96f, 1.f, 2.5f, 1.1f, 1.2f },
},
{ /* 8580 R5 1489 sampled by reFX-Mike */
// TS error 4837 (388/32768) [RMS: 76.07]
{ exponentialDistance, 0.89762634f, 56.7594185f, 0.f, 7.68995237f, 12.0754194f },
// PT error 9266 (508/32768) [RMS: 127.83]
{ exponentialDistance, 0.87147671f, 1.f, 1.44887495f, 1.05899632f, 1.43786001f },
// PS error 13168 (718/32768) [RMS: 123.35]
{ quadraticDistance, 0.89255774f, 1.2253896f, 1.75615835f, 0.0245045591f, 0.12982437f },
// PTS error 6702 (300/32768) [RMS: 71.01]
{ linearDistance, 0.91124934f, 0.963609755f, 0.909965038f, 1.07445884f, 1.82399702f },
// NP guessed
{ exponentialDistance, 0.95f, 1.f, 1.15f, 1.f, 1.45f },
},
};
/// Calculate triangle waveform
static unsigned int triXor(unsigned int val)
@@ -96,15 +184,17 @@ static unsigned int triXor(unsigned int val)
* @param threshold
* @param accumulator the high bits of the accumulator value
*/
short calculatePulldown(float distancetable[], float pulsestrength, float threshold, unsigned int accumulator)
short calculatePulldown(float distancetable[], float topbit, float pulsestrength, float threshold, unsigned int accumulator)
{
unsigned char bit[12];
float bit[12];
for (unsigned int i = 0; i < 12; i++)
{
bit[i] = (accumulator & (1u << i)) != 0 ? 1 : 0;
bit[i] = (accumulator & (1u << i)) != 0 ? 1.f : 0.f;
}
bit[11] *= topbit;
float pulldown[12];
for (int sb = 0; sb < 12; sb++)
@@ -117,7 +207,7 @@ short calculatePulldown(float distancetable[], float pulsestrength, float thresh
if (cb == sb)
continue;
const float weight = distancetable[sb - cb + 12];
avg += static_cast<float>(1 - bit[cb]) * weight;
avg += (1.f - bit[cb]) * weight;
n += weight;
}
@@ -131,7 +221,7 @@ short calculatePulldown(float distancetable[], float pulsestrength, float thresh
for (unsigned int i = 0; i < 12; i++)
{
const float bitValue = bit[i] != 0 ? 1.f - pulldown[i] : 0.f;
const float bitValue = bit[i] > 0.f ? 1.f - pulldown[i] : 0.f;
if (bitValue > threshold)
{
value |= 1u << i;
@@ -157,9 +247,26 @@ WaveformCalculator::WaveformCalculator() :
}
}
matrix_t* WaveformCalculator::buildPulldownTable(ChipModel model)
matrix_t* WaveformCalculator::buildPulldownTable(ChipModel model, CombinedWaveforms cws)
{
const CombinedWaveformConfig* cfgArray = config[model == MOS6581 ? 0 : 1];
std::lock_guard<std::mutex> lock(PULLDOWN_CACHE_Lock);
const int modelIdx = model == MOS6581 ? 0 : 1;
const CombinedWaveformConfig* cfgArray;
switch (cws)
{
default:
case AVERAGE:
cfgArray = configAverage[modelIdx];
break;
case WEAK:
cfgArray = configWeak[modelIdx];
break;
case STRONG:
cfgArray = configStrong[modelIdx];
break;
}
cw_cache_t::iterator lb = PULLDOWN_CACHE.lower_bound(cfgArray);
@@ -174,7 +281,7 @@ matrix_t* WaveformCalculator::buildPulldownTable(ChipModel model)
{
const CombinedWaveformConfig& cfg = cfgArray[wav];
const distance_t distFunc = exponentialDistance;
const distance_t distFunc = cfg.distFunc;
float distancetable[12 * 2 + 1];
distancetable[12] = 1.f;
@@ -186,14 +293,11 @@ matrix_t* WaveformCalculator::buildPulldownTable(ChipModel model)
for (unsigned int idx = 0; idx < (1u << 12); idx++)
{
pdTable[wav][idx] = calculatePulldown(distancetable, cfg.pulsestrength, cfg.threshold, idx);
pdTable[wav][idx] = calculatePulldown(distancetable, cfg.topbit, cfg.pulsestrength, cfg.threshold, idx);
}
}
#ifdef HAVE_CXX11
return &(PULLDOWN_CACHE.emplace_hint(lb, cw_cache_t::value_type(cfgArray, pdTable))->second);
#else
return &(PULLDOWN_CACHE.insert(lb, cw_cache_t::value_type(cfgArray, pdTable))->second);
#endif
}
} // namespace reSIDfp

View File

@@ -22,46 +22,33 @@
#ifndef WAVEFORMCALCULATOR_h
#define WAVEFORMCALCULATOR_h
#include <map>
#include "array.h"
#include "sidcxx11.h"
#include "siddefs-fp.h"
namespace reSIDfp
{
/**
* Combined waveform model parameters.
*/
typedef struct
{
float threshold;
float pulsestrength;
float distance1;
float distance2;
} CombinedWaveformConfig;
/**
* Combined waveform calculator for WaveformGenerator.
* By combining waveforms, the bits of each waveform are effectively short
* circuited. A zero bit in one waveform will result in a zero output bit
* (thus the infamous claim that the waveforms are AND'ed).
* circuited, a zero bit in one waveform will result in a zero output bit,
* thus the claim that the waveforms are AND'ed.
* However, a zero bit in one waveform may also affect the neighboring bits
* in the output.
*
* Example:
*
*
* 1 1
* Bit # 1 0 9 8 7 6 5 4 3 2 1 0
* -----------------------
* Sawtooth 0 0 0 1 1 1 1 1 1 0 0 0
*
*
* Triangle 0 0 1 1 1 1 1 1 0 0 0 0
*
*
* AND 0 0 0 1 1 1 1 1 0 0 0 0
*
*
* Output 0 0 0 0 1 1 1 0 0 0 0 0
*
*
@@ -98,14 +85,9 @@ typedef struct
*/
class WaveformCalculator
{
private:
typedef std::map<const CombinedWaveformConfig*, matrix_t> cw_cache_t;
private:
matrix_t wftable;
cw_cache_t PULLDOWN_CACHE;
private:
WaveformCalculator();
@@ -126,9 +108,10 @@ public:
* Build pulldown table for use by WaveformGenerator.
*
* @param model Chip model to use
* @param cws strength of combined waveforms
* @return Pulldown table
*/
matrix_t* buildPulldownTable(ChipModel model);
matrix_t* buildPulldownTable(ChipModel model, CombinedWaveforms cws);
};
} // namespace reSIDfp

View File

@@ -40,13 +40,13 @@ namespace reSIDfp
* and [VICE Bug #1128](http://sourceforge.net/p/vice-emu/bugs/1128/)
*/
// ~95ms
const unsigned int FLOATING_OUTPUT_TTL_6581R3 = 54000;
const unsigned int FLOATING_OUTPUT_FADE_6581R3 = 1400;
constexpr unsigned int FLOATING_OUTPUT_TTL_6581R3 = 54000;
constexpr unsigned int FLOATING_OUTPUT_FADE_6581R3 = 1400;
// ~1s
//const unsigned int FLOATING_OUTPUT_TTL_6581R4 = 1000000;
constexpr unsigned int FLOATING_OUTPUT_TTL_6581R4 = 1000000;
// ~1s
const unsigned int FLOATING_OUTPUT_TTL_8580R5 = 800000;
const unsigned int FLOATING_OUTPUT_FADE_8580R5 = 50000;
constexpr unsigned int FLOATING_OUTPUT_TTL_8580R5 = 800000;
constexpr unsigned int FLOATING_OUTPUT_FADE_8580R5 = 50000;
/**
* Number of cycles after which the shift register is reset
@@ -58,15 +58,15 @@ const unsigned int FLOATING_OUTPUT_FADE_8580R5 = 50000;
* only the big difference between the old and new models.
*/
// ~210ms
const unsigned int SHIFT_REGISTER_RESET_6581R3 = 50000;
const unsigned int SHIFT_REGISTER_FADE_6581R3 = 15000;
constexpr unsigned int SHIFT_REGISTER_RESET_6581R3 = 50000;
constexpr unsigned int SHIFT_REGISTER_FADE_6581R3 = 15000;
// ~2.15s
//const unsigned int SHIFT_REGISTER_RESET_6581R4 = 2150000;
constexpr unsigned int SHIFT_REGISTER_RESET_6581R4 = 2150000;
// ~2.8s
const unsigned int SHIFT_REGISTER_RESET_8580R5 = 986000;
const unsigned int SHIFT_REGISTER_FADE_8580R5 = 314300;
constexpr unsigned int SHIFT_REGISTER_RESET_8580R5 = 986000;
constexpr unsigned int SHIFT_REGISTER_FADE_8580R5 = 314300;
const unsigned int shift_mask =
constexpr unsigned int shift_mask =
~(
(1u << 2) | // Bit 20
(1u << 4) | // Bit 18
@@ -107,15 +107,100 @@ const unsigned int shift_mask =
* -----+-------+--------------+--------------
* phi1 | 1 | X --> X | A --> A <- shift phase 2
* phi2 | 1 | X <-> X | A <-> A
*
*
* Normal cycles
* -------------
* Normally, when noise is selected along with another waveform,
* c1 and c2 are closed and the output bits pull down the corresponding
* shift register bits.
*
* noi_out_x noi_out_x+1
* ^ ^
* | |
* +-------------+ +-------------+
* | | | |
* +---o<|---+ | +---o<|---+ |
* | | | | | |
* c2 | c1 | | c2 | c1 | |
* | | | | | |
* >---/---+---|>o---+ +---/---+---|>o---+ +---/--->
* LC LC LC
*
*
* Shift phase 1
* -------------
* During shift phase 1 c1 and c2 are open, the SR bits are floating
* and will be driven by the output of combined waveforms,
* or slowly turn high.
*
* noi_out_x noi_out_x+1
* ^ ^
* | |
* +-------------+ +-------------+
* | | | |
* +---o<|---+ | +---o<|---+ |
* | | | | | |
* c2 / c1 / | c2 / c1 / |
* | | | | | |
* >-------+---|>o---+ +-------+---|>o---+ +------->
* LC LC LC
*
*
* Shift phase 2 (phi1)
* --------------------
* During the first half cycle of shift phase 2 c1 is closed
* so the value from of noi_out_x-1 enters the bit.
*
* noi_out_x noi_out_x+1
* ^ ^
* | |
* +-------------+ +-------------+
* | | | |
* +---o<|---+ | +---o<|---+ |
* | | | | | |
* c2 / c1 | | c2 / c1 | |
* | | | | | |
* >---/---+---|>o---+ +---/---+---|>o---+ +---/--->
* LC LC LC
*
*
* Shift phase 2 (phi2)
* --------------------
* On the second half of shift phase 2 c2 closes and
* we're back to normal cycles.
*/
inline bool do_writeback(unsigned int waveform_old, unsigned int waveform_new, bool is6581)
{
// no writeback without combined waveforms
if (waveform_new <= 8)
return false;
if (waveform_old <= 8)
return false; // fixes SID/noisewriteback/noise_writeback_test2-{old,new}
// fixes SID/noisewriteback/noise_writeback_test2-{old,new}
return false;
if (waveform_new < 8)
return false;
if ((waveform_new == 8)
// breaks noise_writeback_check_F_to_8_old
// but fixes simple and scan
&& (waveform_old != 0xf))
{
// fixes
// noise_writeback_check_9_to_8_old
// noise_writeback_check_A_to_8_old
// noise_writeback_check_B_to_8_old
// noise_writeback_check_D_to_8_old
// noise_writeback_check_E_to_8_old
// noise_writeback_check_F_to_8_old
// noise_writeback_check_9_to_8_new
// noise_writeback_check_A_to_8_new
// noise_writeback_check_D_to_8_new
// noise_writeback_check_E_to_8_new
// noise_writeback_test1-{old,new}
return false;
}
// What's happening here?
if (is6581 &&
@@ -190,8 +275,16 @@ void WaveformGenerator::write_shift_register()
{
if (unlikely(waveform > 0x8))
{
#if 0
// FIXME this breaks SID/wf12nsr/wf12nsr
if (waveform == 0xc)
return; // breaks SID/wf12nsr/wf12nsr
// fixes
// noise_writeback_check_8_to_C_old
// noise_writeback_check_9_to_C_old
// noise_writeback_check_A_to_C_old
// noise_writeback_check_C_to_C_old
return;
#endif
// Write changes to the shift register output caused by combined waveforms
// back into the shift register.

View File

@@ -93,64 +93,64 @@ namespace reSIDfp
class WaveformGenerator
{
private:
matrix_t* model_wave;
matrix_t* model_pulldown;
matrix_t* model_wave = nullptr;
matrix_t* model_pulldown = nullptr;
short* wave;
short* pulldown;
short* wave = nullptr;
short* pulldown = nullptr;
// PWout = (PWn/40.95)%
unsigned int pw;
unsigned int pw = 0;
unsigned int shift_register;
unsigned int shift_register = 0;
/// Shift register is latched when transitioning to shift phase 1.
unsigned int shift_latch;
unsigned int shift_latch = 0;
/// Emulation of pipeline causing bit 19 to clock the shift register.
int shift_pipeline;
int shift_pipeline = 0;
unsigned int ring_msb_mask;
unsigned int no_noise;
unsigned int noise_output;
unsigned int no_noise_or_noise_output;
unsigned int no_pulse;
unsigned int pulse_output;
unsigned int ring_msb_mask = 0;
unsigned int no_noise = 0;
unsigned int noise_output = 0;
unsigned int no_noise_or_noise_output = 0;
unsigned int no_pulse = 0;
unsigned int pulse_output = 0;
/// The control register right-shifted 4 bits; used for output function table lookup.
unsigned int waveform;
unsigned int waveform = 0;
unsigned int waveform_output;
unsigned int waveform_output = 0;
/// Current accumulator value.
unsigned int accumulator;
unsigned int accumulator = 0x555555; // Accumulator's even bits are high on powerup
// Fout = (Fn*Fclk/16777216)Hz
unsigned int freq;
unsigned int freq = 0;
/// 8580 tri/saw pipeline
unsigned int tri_saw_pipeline;
unsigned int tri_saw_pipeline = 0x555;
/// The OSC3 value
unsigned int osc3;
unsigned int osc3 = 0;
/// Remaining time to fully reset shift register.
unsigned int shift_register_reset;
unsigned int shift_register_reset = 0;
// The wave signal TTL when no waveform is selected.
unsigned int floating_output_ttl;
unsigned int floating_output_ttl = 0;
/// The control register bits. Gate is handled by EnvelopeGenerator.
//@{
bool test;
bool sync;
bool test = false;
bool sync = false;
//@}
/// Test bit is latched at phi2 for the noise XOR.
bool test_or_reset;
/// Tell whether the accumulator MSB was set high on this cycle.
bool msb_rising;
bool msb_rising = false;
bool is6581; //-V730_NOINIT this is initialized in the SID constructor
@@ -160,7 +160,7 @@ private:
void write_shift_register();
void set_noise_output();
void set_no_noise_or_noise_output();
void waveBitfade();
@@ -194,35 +194,6 @@ public:
*/
void synchronize(WaveformGenerator* syncDest, const WaveformGenerator* syncSource) const;
/**
* Constructor.
*/
WaveformGenerator() :
model_wave(nullptr),
model_pulldown(nullptr),
wave(nullptr),
pulldown(nullptr),
pw(0),
shift_register(0),
shift_pipeline(0),
ring_msb_mask(0),
no_noise(0),
noise_output(0),
no_noise_or_noise_output(0),
no_pulse(0),
pulse_output(0),
waveform(0),
waveform_output(0),
accumulator(0x555555), // Accumulator's even bits are high on powerup
freq(0),
tri_saw_pipeline(0x555),
osc3(0),
shift_register_reset(0),
floating_output_ttl(0),
test(false),
sync(false),
msb_rising(false) {}
/**
* Write FREQ LO register.
*
@@ -397,13 +368,13 @@ unsigned int WaveformGenerator::output(const WaveformGenerator* ringModulator)
{
osc3 = waveform_output;
}
// In the 6581 the top bit of the accumulator may be driven low by combined waveforms
// when the sawtooth is selected
if (is6581
&& (waveform & 0x2)
&& ((waveform_output & 0x800) == 0))
if (is6581 && (waveform & 0x2) && ((waveform_output & 0x800) == 0))
{
msb_rising = 0;
accumulator &= 0x7fffff;
}
write_shift_register();
}

View File

@@ -26,9 +26,7 @@
# include "config.h"
#endif
#ifdef HAVE_CXX11
# include <atomic>
#endif
#include <atomic>
/**
* Counter.
@@ -36,11 +34,7 @@
class counter
{
private:
#ifndef HAVE_CXX11
volatile unsigned int c;
#else
std::atomic<unsigned int> c;
#endif
public:
counter() : c(1) {}
@@ -81,6 +75,6 @@ public:
T const* operator[](unsigned int a) const { return &data[a * y]; }
};
typedef matrix<short> matrix_t;
using matrix_t = matrix<short>;
#endif

View File

@@ -1 +1 @@
#define HAVE_CXX14
#define HAVE_CXX17

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2020 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
*
* This program is free software; you can redistribute it and/or modify
@@ -23,6 +23,7 @@
#define RESAMPLER_H
#include <cmath>
#include <cassert>
#include "../sidcxx11.h"
@@ -37,28 +38,45 @@ namespace reSIDfp
*/
class Resampler
{
protected:
inline short softClip(int x) const
private:
template<int m>
static inline int clipper(int x)
{
assert(x >= 0);
constexpr int threshold = 28000;
if (likely(x < threshold))
return x;
constexpr double t = threshold / 32768.;
constexpr double max_val = static_cast<double>(m);
constexpr double t = threshold / max_val;
constexpr double a = 1. - t;
constexpr double b = 1. / a;
double value = static_cast<double>(x - threshold) / 32768.;
value = t + a * tanh(b * value);
return static_cast<short>(value * 32768.);
double value = static_cast<double>(x - threshold) / max_val;
value = t + a * std::tanh(b * value);
return static_cast<int>(value * max_val);
}
/*
* Soft Clipping implementation, splitted for test.
*/
static inline int softClipImpl(int x)
{
return x < 0 ? -clipper<32768>(-x) : clipper<32767>(x);
}
protected:
/*
* Soft Clipping into 16 bit range [-32768,32767]
*/
static inline short softClip(int x) { return static_cast<short>(softClipImpl(x)); }
virtual int output() const = 0;
Resampler() {}
public:
virtual ~Resampler() {}
virtual ~Resampler() = default;
/**
* Input a sample into resampler. Output "true" when resampler is ready with new sample.
@@ -73,9 +91,10 @@ public:
*
* @return resampled sample
*/
short getOutput() const
inline short getOutput(int scaleFactor) const
{
return softClip(output());
const int out = (scaleFactor * output()) / 2;
return softClip(out);
}
virtual void reset() = 0;

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2020 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004 Dag Lem <resid@nimrod.no>
*
@@ -22,11 +22,16 @@
#include "SincResampler.h"
#ifdef HAVE_CXX20
# include <numbers>
#endif
#include <algorithm>
#include <iterator>
#include <cassert>
#include <cstring>
#include <cmath>
#include <iostream>
#include <sstream>
#include <cstdint>
#include "../siddefs-fp.h"
@@ -34,10 +39,8 @@
# include "config.h"
#endif
#ifdef HAVE_EMMINTRIN_H
# include <emmintrin.h>
#elif defined HAVE_MMINTRIN_H
# include <mmintrin.h>
#ifdef HAVE_SMMINTRIN_H
# include <smmintrin.h>
#elif defined(HAVE_ARM_NEON_H)
# include <arm_neon.h>
#endif
@@ -45,15 +48,10 @@
namespace reSIDfp
{
typedef std::map<std::string, matrix_t> fir_cache_t;
/// Cache for the expensive FIR table computation results.
fir_cache_t FIR_CACHE;
/// Maximum error acceptable in I0 is 1e-6, or ~96 dB.
const double I0E = 1e-6;
constexpr double I0E = 1e-6;
const int BITS = 16;
constexpr int BITS = 16;
/**
* Compute the 0th order modified Bessel function of the first kind.
@@ -90,7 +88,7 @@ double I0(double x)
* @param bLength length of the sinc buffer
* @return convolved result
*/
int convolve(const short* a, const short* b, int bLength)
int convolve(const int* a, const short* b, int bLength)
{
#ifdef HAVE_EMMINTRIN_H
int out = 0;
@@ -102,7 +100,7 @@ int convolve(const short* a, const short* b, int bLength)
{
if (offset)
{
const int l = (0x10 - offset)/2;
const int l = (0x10 - offset) / 2;
for (int i = 0; i < l; i++)
{
@@ -208,9 +206,9 @@ int convolve(const short* a, const short* b, int bLength)
bLength &= 3;
#else
int32x4_t acc = vdupq_n_s32(0);
const int n = bLength / 4;
for (int i = 0; i < n; i++)
{
const int16x4_t h_vec = vld1_s16(a);
@@ -219,12 +217,12 @@ int convolve(const short* a, const short* b, int bLength)
a += 4;
b += 4;
}
int out = vgetq_lane_s32(acc, 0) +
vgetq_lane_s32(acc, 1) +
vgetq_lane_s32(acc, 2) +
vgetq_lane_s32(acc, 3);
bLength &= 3;
#endif
#else
@@ -233,7 +231,7 @@ int convolve(const short* a, const short* b, int bLength)
for (int i = 0; i < bLength; i++)
{
out += *a++ * *b++;
out += a[i] * static_cast<int>(b[i]);
}
return (out + (1 << 14)) >> 15;
@@ -265,17 +263,27 @@ int SincResampler::fir(int subcycle)
return v1 + (firTableOffset * (v2 - v1) >> 10);
}
SincResampler::SincResampler(double clockFrequency, double samplingFrequency, double highestAccurateFrequency) :
sampleIndex(0),
cyclesPerSample(static_cast<int>(clockFrequency / samplingFrequency * 1024.)),
sampleOffset(0),
outputValue(0)
SincResampler::SincResampler(
double clockFrequency,
double samplingFrequency,
double highestAccurateFrequency) :
cyclesPerSample(static_cast<int>(clockFrequency / samplingFrequency * 1024.))
{
#if defined(HAVE_CXX20) && defined(__cpp_lib_constexpr_cmath)
constexpr double PI = std::numbers::pi;
#else
# ifdef M_PI
constexpr double PI = M_PI;
#else
constexpr double PI = 3.14159265358979323846;
# endif
#endif
// 16 bits -> -96dB stopband attenuation.
const double A = -20. * log10(1.0 / (1 << BITS));
const double A = -20. * std::log10(1.0 / (1 << BITS));
// A fraction of the bandwidth is allocated to the transition band, which we double
// because we design the filter to transition halfway at nyquist.
const double dw = (1. - 2.*highestAccurateFrequency / samplingFrequency) * M_PI * 2.;
const double dw = (1. - 2.*highestAccurateFrequency / samplingFrequency) * PI * 2.;
// For calculation of beta and N see the reference for the kaiserord
// function in the MATLAB Signal Processing Toolbox:
@@ -283,6 +291,7 @@ SincResampler::SincResampler(double clockFrequency, double samplingFrequency, do
const double beta = 0.1102 * (A - 8.7);
const double I0beta = I0(beta);
const double cyclesPerSampleD = clockFrequency / samplingFrequency;
const double inv_cyclesPerSampleD = samplingFrequency / clockFrequency;
{
// The filter order will maximally be 124 with the current constraints.
@@ -302,40 +311,22 @@ SincResampler::SincResampler(double clockFrequency, double samplingFrequency, do
assert(firN < RINGSIZE);
// Error is bounded by err < 1.234 / L^2, so L = sqrt(1.234 / (2^-16)) = sqrt(1.234 * 2^16).
firRES = static_cast<int>(ceil(sqrt(1.234 * (1 << BITS)) / cyclesPerSampleD));
firRES = static_cast<int>(std::ceil(std::sqrt(1.234 * (1 << BITS)) * inv_cyclesPerSampleD));
// firN*firRES represent the total resolution of the sinc sampling. JOS
// recommends a length of 2^BITS, but we don't quite use that good a filter.
// The filter test program indicates that the filter performs well, though.
}
// Create the map key
std::ostringstream o;
o << firN << "," << firRES << "," << cyclesPerSampleD;
const std::string firKey = o.str();
fir_cache_t::iterator lb = FIR_CACHE.lower_bound(firKey);
// The FIR computation is expensive and we set sampling parameters often, but
// from a very small set of choices. Thus, caching is used to speed initialization.
if (lb != FIR_CACHE.end() && !(FIR_CACHE.key_comp()(firKey, lb->first)))
{
firTable = &(lb->second);
}
else
{
// Allocate memory for FIR tables.
matrix_t tempTable(firRES, firN);
#ifdef HAVE_CXX11
firTable = &(FIR_CACHE.emplace_hint(lb, fir_cache_t::value_type(firKey, tempTable))->second);
#else
firTable = &(FIR_CACHE.insert(lb, fir_cache_t::value_type(firKey, tempTable))->second);
#endif
firTable = new matrix_t(firRES, firN);
// The cutoff frequency is midway through the transition band, in effect the same as nyquist.
const double wc = M_PI;
const double wc = PI;
// Calculate the sinc tables.
const double scale = 32768.0 * wc / cyclesPerSampleD / M_PI;
const double scale = 32768.0 * wc * inv_cyclesPerSampleD / PI;
// we're not interested in the fractional part
// so use int division before converting to double
@@ -351,10 +342,10 @@ SincResampler::SincResampler(double clockFrequency, double samplingFrequency, do
const double x = j - jPhase;
const double xt = x / firN_2;
const double kaiserXt = fabs(xt) < 1. ? I0(beta * sqrt(1. - xt * xt)) / I0beta : 0.;
const double kaiserXt = std::fabs(xt) < 1. ? I0(beta * std::sqrt(1. - xt * xt)) / I0beta : 0.;
const double wt = wc * x / cyclesPerSampleD;
const double sincWt = fabs(wt) >= 1e-8 ? sin(wt) / wt : 1.;
const double wt = wc * x * inv_cyclesPerSampleD;
const double sincWt = std::fabs(wt) >= 1e-8 ? std::sin(wt) / wt : 1.;
(*firTable)[i][j] = static_cast<short>(scale * sincWt * kaiserXt);
}
@@ -362,18 +353,16 @@ SincResampler::SincResampler(double clockFrequency, double samplingFrequency, do
}
}
SincResampler::~SincResampler()
{
delete firTable;
}
bool SincResampler::input(int input)
{
bool ready = false;
/*
* Clip the input as it may overflow the 16 bit range.
*
* Approximate measured input ranges:
* 6581: [-24262,+25080] (Kawasaki_Synthesizer_Demo)
* 8580: [-21514,+35232] (64_Forever, Drum_Fool)
*/
sample[sampleIndex] = sample[sampleIndex + RINGSIZE] = softClip(input);
sample[sampleIndex] = sample[sampleIndex + RINGSIZE] = input;
sampleIndex = (sampleIndex + 1) & (RINGSIZE - 1);
if (sampleOffset < 1024)
@@ -390,7 +379,7 @@ bool SincResampler::input(int input)
void SincResampler::reset()
{
memset(sample, 0, sizeof(sample));
std::fill(std::begin(sample), std::end(sample), 0);
sampleOffset = 0;
}

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2013 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004 Dag Lem <resid@nimrod.no>
*
@@ -25,13 +25,8 @@
#include "Resampler.h"
#include <string>
#include <map>
#include "../array.h"
#include "../sidcxx11.h"
namespace reSIDfp
{
@@ -54,13 +49,13 @@ class SincResampler final : public Resampler
{
private:
/// Size of the ring buffer, must be a power of 2
static const int RINGSIZE = 2048;
static constexpr int RINGSIZE = 2048;
private:
/// Table of the fir filter coefficients
matrix_t* firTable;
int sampleIndex;
int sampleIndex = 0;
/// Filter resolution
int firRES;
@@ -70,11 +65,11 @@ private:
const int cyclesPerSample;
int sampleOffset;
int sampleOffset = 0;
int outputValue;
int outputValue = 0;
short sample[RINGSIZE * 2];
int sample[RINGSIZE * 2];
private:
int fir(int subcycle);
@@ -82,25 +77,25 @@ private:
public:
/**
* Use a clock freqency of 985248Hz for PAL C64, 1022730Hz for NTSC C64.
* The default end of passband frequency is pass_freq = 0.9*sample_freq/2
* for sample frequencies up to ~ 44.1kHz, and 20kHz for higher sample frequencies.
*
* For resampling, the ratio between the clock frequency and the sample frequency
* is limited as follows: 125*clock_freq/sample_freq < 16384
* For resampling, the ratio between the clock frequency
* and the sample frequency is limited as follows:
* 125*clock_freq/sample_freq < 16384
*
* E.g. provided a clock frequency of ~ 1MHz, the sample frequency
* can not be set lower than ~ 8kHz.
* A lower sample frequency would make the resampling code overfill its 16k sample ring buffer.
*
* The end of passband frequency is also limited: pass_freq <= 0.9*sample_freq/2
*
* E.g. for a 44.1kHz sampling rate the end of passband frequency is limited
* to slightly below 20kHz. This constraint ensures that the FIR table is not overfilled.
* A lower sample frequency would make the resampling code overfill
* its 16k sample ring buffer.
*
* @param clockFrequency System clock frequency at Hz
* @param samplingFrequency Desired output sampling rate
* @param highestAccurateFrequency
* @param highestAccurateFrequency passband frequency limit
*/
SincResampler(double clockFrequency, double samplingFrequency, double highestAccurateFrequency);
SincResampler(
double clockFrequency,
double samplingFrequency,
double highestAccurateFrequency);
~SincResampler() override;
bool input(int input) override;

View File

@@ -51,14 +51,25 @@ private:
public:
// Named constructor
static TwoPassSincResampler* create(double clockFrequency, double samplingFrequency, double highestAccurateFrequency)
static TwoPassSincResampler* create(double clockFrequency, double samplingFrequency)
{
// Calculation according to Laurent Ganier. It evaluates to about 120 kHz at typical settings.
// Set the passband frequency slightly below half sampling frequency
// pass_freq <= 0.9*sample_freq/2
//
// This constraint ensures that the FIR table is not overfilled.
// For higher sampling frequencies we're fine with 20KHz
const double halfFreq = (samplingFrequency > 44000.)
? 20000. : samplingFrequency * 0.45;
// Calculation according to Laurent Ganier.
// It evaluates to about 120 kHz at typical settings.
// Some testing around the chosen value seems to confirm that this does work.
double const intermediateFrequency = 2. * highestAccurateFrequency
+ sqrt(2. * highestAccurateFrequency * clockFrequency
* (samplingFrequency - 2. * highestAccurateFrequency) / samplingFrequency);
return new TwoPassSincResampler(clockFrequency, samplingFrequency, highestAccurateFrequency, intermediateFrequency);
double const intermediateFrequency = 2. * halfFreq
+ std::sqrt(2. * halfFreq * clockFrequency
* (samplingFrequency - 2. * halfFreq) / samplingFrequency);
return new TwoPassSincResampler(
clockFrequency, samplingFrequency, halfFreq, intermediateFrequency);
}
bool input(int sample) override

View File

@@ -35,6 +35,10 @@
# define unique_ptr auto_ptr
#endif
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
/**
* Simple sin waveform in, power output measurement function.
* It would be far better to use FFT.
@@ -57,7 +61,7 @@ int main(int, const char*[])
for (int j = 0; j < RINGSIZE; j ++)
{
int signal = static_cast<int>(32768.0 * sin(k++ * omega) * sqrt(2));
int signal = static_cast<int>(32768.0 * std::sin(k++ * omega) * sqrt(2));
r->input(signal);
}
@@ -67,7 +71,7 @@ int main(int, const char*[])
/* Now, during measurement stage, put 100 cycles of waveform through filter. */
for (int j = 0; j < 100000; j ++)
{
int signal = static_cast<int>(32768.0 * sin(k++ * omega) * sqrt(2));
int signal = static_cast<int>(32768.0 * std::sin(k++ * omega) * std::sqrt(2));
if (r->input(signal))
{
@@ -77,7 +81,7 @@ int main(int, const char*[])
}
}
results.insert(std::make_pair(freq, 10 * log10(pwr / n)));
results.insert(std::make_pair(freq, 10 * std::log10(pwr / n)));
}
clock_t end = clock();

View File

@@ -1,7 +1,7 @@
/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2011-2016 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2011-2024 Leandro Nini <drfiemost@users.sourceforge.net>
* Copyright 2007-2010 Antti Lankila
* Copyright 2004 Dag Lem <resid@nimrod.no>
*
@@ -26,6 +26,9 @@
#include <memory>
#include "siddefs-fp.h"
#include "ExternalFilter.h"
#include "Potentiometer.h"
#include "Voice.h"
#include "sidcxx11.h"
@@ -35,9 +38,6 @@ namespace reSIDfp
class Filter;
class Filter6581;
class Filter8580;
class ExternalFilter;
class Potentiometer;
class Voice;
class Resampler;
/**
@@ -64,28 +64,31 @@ private:
Filter* filter;
/// Filter used, if model is set to 6581
std::unique_ptr<Filter6581> const filter6581;
Filter6581* const filter6581;
/// Filter used, if model is set to 8580
std::unique_ptr<Filter8580> const filter8580;
Filter8580* const filter8580;
/// Resampler used by audio generation code.
std::unique_ptr<Resampler> resampler;
/**
* External filter that provides high-pass and low-pass filtering
* to adjust sound tone slightly.
*/
std::unique_ptr<ExternalFilter> const externalFilter;
/// Resampler used by audio generation code.
std::unique_ptr<Resampler> resampler;
ExternalFilter externalFilter;
/// Paddle X register support
std::unique_ptr<Potentiometer> const potX;
Potentiometer potX;
/// Paddle Y register support
std::unique_ptr<Potentiometer> const potY;
Potentiometer potY;
/// SID voices
std::unique_ptr<Voice> voice[3];
Voice voice[3];
/// Used to amplify the output by x/2 to get an adequate playback volume
int scaleFactor;
/// Time to live for the last written value
int busValueTtl;
@@ -99,12 +102,12 @@ private:
/// Currently active chip model.
ChipModel model;
/// Currently selected combined waveforms strength.
CombinedWaveforms cws;
/// Last written value
unsigned char busValue;
/// Flags for muted channels
bool muted[3];
/**
* Emulated nonlinearity of the envelope DAC.
*
@@ -132,7 +135,7 @@ private:
*
* @return the output sample
*/
int output() const;
int output();
/**
* Calculate the numebr of cycles according to current parameters
@@ -159,6 +162,14 @@ public:
*/
ChipModel getChipModel() const { return model; }
/**
* Set combined waveforms strength.
*
* @param cws strength of combined waveforms
* @throw SIDError
*/
void setCombinedWaveforms(CombinedWaveforms cws);
/**
* SID reset.
*/
@@ -204,14 +215,6 @@ public:
*/
void write(int offset, unsigned char value);
/**
* SID voice muting.
*
* @param channel channel to modify
* @param enable is muted?
*/
void mute(int channel, bool enable) { muted[channel] = enable; }
/**
* Setting of SID sampling parameters.
*
@@ -237,7 +240,11 @@ public:
* @param highestAccurateFrequency
* @throw SIDError
*/
void setSamplingParameters(double clockFrequency, SamplingMethod method, double samplingFrequency, double highestAccurateFrequency);
void setSamplingParameters(
double clockFrequency,
SamplingMethod method,
double samplingFrequency
);
/**
* Clock SID forward using chosen output sampling algorithm.
@@ -267,6 +274,13 @@ public:
*/
void setFilter6581Curve(double filterCurve);
/**
* Set filter range parameter for 6581 model
*
* @see Filter6581::setFilterRange(double)
*/
void setFilter6581Range ( double adjustment );
/**
* Set filter curve parameter for 8580 model.
*
@@ -312,13 +326,22 @@ void SID::ageBusValue(unsigned int n)
}
RESID_INLINE
int SID::output() const
int SID::output()
{
const int v1 = voice[0]->output(voice[2]->wave());
const int v2 = voice[1]->output(voice[0]->wave());
const int v3 = voice[2]->output(voice[1]->wave());
const float o1 = voice[0].output(voice[2].wave());
const float o2 = voice[1].output(voice[0].wave());
const float o3 = voice[2].output(voice[1].wave());
return externalFilter->clock(filter->clock(v1, v2, v3));
const unsigned int env1 = voice[0].envelope()->output();
const unsigned int env2 = voice[1].envelope()->output();
const unsigned int env3 = voice[2].envelope()->output();
const int v1 = filter->getNormalizedVoice(o1, env1);
const int v2 = filter->getNormalizedVoice(o2, env2);
const int v3 = filter->getNormalizedVoice(o3, env3);
const int input = static_cast<int>(filter->clock(v1, v2, v3));
return externalFilter.clock(input);
}
@@ -337,18 +360,18 @@ int SID::clock(unsigned int cycles, short* buf)
for (unsigned int i = 0; i < delta_t; i++)
{
// clock waveform generators
voice[0]->wave()->clock();
voice[1]->wave()->clock();
voice[2]->wave()->clock();
voice[0].wave()->clock();
voice[1].wave()->clock();
voice[2].wave()->clock();
// clock envelope generators
voice[0]->envelope()->clock();
voice[1]->envelope()->clock();
voice[2]->envelope()->clock();
voice[0].envelope()->clock();
voice[1].envelope()->clock();
voice[2].envelope()->clock();
if (unlikely(resampler->input(output())))
{
buf[s++] = resampler->getOutput();
buf[s++] = resampler->getOutput(scaleFactor);
}
}

View File

@@ -26,10 +26,6 @@
// Compiler specifics.
#define HAVE_BUILTIN_EXPECT true
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
// Branch prediction macros, lifted off the Linux kernel.
#if RESID_BRANCH_HINTS && HAVE_BUILTIN_EXPECT
# define likely(x) __builtin_expect(!!(x), 1)
@@ -43,6 +39,8 @@ namespace reSIDfp {
typedef enum { MOS6581=1, MOS8580 } ChipModel;
typedef enum { AVERAGE=1, WEAK, STRONG } CombinedWaveforms;
typedef enum { DECIMATE=1, RESAMPLE } SamplingMethod;
}

View File

@@ -26,10 +26,6 @@
// Compiler specifics.
#define HAVE_BUILTIN_EXPECT @HAVE_BUILTIN_EXPECT@
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
// Branch prediction macros, lifted off the Linux kernel.
#if RESID_BRANCH_HINTS && HAVE_BUILTIN_EXPECT
# define likely(x) __builtin_expect(!!(x), 1)
@@ -43,6 +39,8 @@ namespace reSIDfp {
typedef enum { MOS6581=1, MOS8580 } ChipModel;
typedef enum { AVERAGE=1, WEAK, STRONG } CombinedWaveforms;
typedef enum { DECIMATE=1, RESAMPLE } SamplingMethod;
}

View File

@@ -25,7 +25,7 @@ sid_init(void)
#if 0
psid_t *psid;
#endif
reSIDfp::SamplingMethod method = reSIDfp::DECIMATE;
reSIDfp::SamplingMethod method = reSIDfp::RESAMPLE;
float cycles_per_sec = 14318180.0 / 16.0;
psid = new psid_t;
@@ -34,8 +34,7 @@ sid_init(void)
#endif
psid->sid = new SID;
psid->sid->setChipModel(reSIDfp::MOS8580);
psid->sid->enableFilter(true);
psid->sid->setChipModel(reSIDfp::MOS6581);
psid->sid->reset();
@@ -43,14 +42,13 @@ sid_init(void)
psid->sid->write(c, 0);
try {
psid->sid->setSamplingParameters(cycles_per_sec, method, (float) RESID_FREQ, 0.9 * (float) RESID_FREQ / 2.0);
psid->sid->setSamplingParameters(cycles_per_sec, method, (float) RESID_FREQ);
} catch (reSIDfp::SIDError) {
#if 0
printf("reSID failed!\n");
#endif
}
psid->sid->setChipModel(reSIDfp::MOS6581);
psid->sid->input(0);
return (void *) psid;

View File

@@ -125,8 +125,7 @@ static const device_config_t ssi2001_config[] = {
// clang-format off
};
const device_t ssi2001_device =
{
const device_t ssi2001_device = {
.name = "Innovation SSI-2001",
.internal_name = "ssi2001",
.flags = DEVICE_ISA,