Files
cuetools.net/CUETools.FlaCuda/flacuda.cu

808 lines
32 KiB
Plaintext
Raw Normal View History

2009-09-09 09:46:13 +00:00
/**
* CUETools.FlaCuda: FLAC audio encoder using CUDA
* Copyright (c) 2009 Gregory S. Chudov
2009-09-07 12:39:31 +00:00
*
2009-09-09 09:46:13 +00:00
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
2009-09-07 12:39:31 +00:00
*
2009-09-09 09:46:13 +00:00
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
2009-09-07 12:39:31 +00:00
*
2009-09-09 09:46:13 +00:00
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
2009-09-07 12:39:31 +00:00
*/
#ifndef _FLACUDA_KERNEL_H_
#define _FLACUDA_KERNEL_H_
2009-09-09 09:46:13 +00:00
typedef struct
{
int samplesOffs;
int windowOffs;
2009-09-13 16:08:21 +00:00
int residualOffs;
int blocksize;
2009-09-24 21:34:34 +00:00
int reserved[12];
2009-09-09 09:46:13 +00:00
} computeAutocorTaskStruct;
2009-09-16 17:11:36 +00:00
typedef enum
{
Constant = 0,
Verbatim = 1,
Fixed = 8,
LPC = 32
} SubframeType;
2009-09-10 00:00:46 +00:00
typedef struct
{
int residualOrder; // <= 32
int samplesOffs;
int shift;
int cbits;
int size;
2009-09-16 17:11:36 +00:00
int type;
int obits;
int blocksize;
2009-09-17 14:37:25 +00:00
int best_index;
int channel;
int residualOffs;
2009-09-17 22:15:11 +00:00
int wbits;
2009-09-28 06:27:28 +00:00
int abits;
int reserved[3];
2009-09-10 00:00:46 +00:00
int coefs[32];
} encodeResidualTaskStruct;
2009-09-28 06:27:28 +00:00
#define SUM32(buf,tid,op) buf[tid] op buf[tid + 16]; buf[tid] op buf[tid + 8]; buf[tid] op buf[tid + 4]; buf[tid] op buf[tid + 2]; buf[tid] op buf[tid + 1];
#define SUM64(buf,tid,op) if (tid < 32) buf[tid] op buf[tid + 32]; __syncthreads(); if (tid < 32) { SUM32(buf,tid,op) }
#define SUM128(buf,tid,op) if (tid < 64) buf[tid] op buf[tid + 64]; __syncthreads(); SUM64(buf,tid,op)
#define SUM256(buf,tid,op) if (tid < 128) buf[tid] op buf[tid + 128]; __syncthreads(); SUM128(buf,tid,op)
#define SUM512(buf,tid,op) if (tid < 256) buf[tid] op buf[tid + 256]; __syncthreads(); SUM256(buf,tid,op)
#define FSQR(s) ((s)*(s))
2009-09-17 22:15:11 +00:00
extern "C" __global__ void cudaStereoDecorr(
int *samples,
2009-09-25 20:11:39 +00:00
short2 *src,
2009-09-17 22:15:11 +00:00
int offset
)
{
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
if (pos < offset)
{
2009-09-25 20:11:39 +00:00
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
samples[2 * offset + pos] = (s.x + s.y) >> 1;
samples[3 * offset + pos] = s.x - s.y;
2009-09-17 22:15:11 +00:00
}
}
2009-09-25 20:11:39 +00:00
extern "C" __global__ void cudaChannelDecorr2(
int *samples,
short2 *src,
int offset
)
{
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
if (pos < offset)
{
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
}
}
extern "C" __global__ void cudaChannelDecorr(
int *samples,
short *src,
int offset
)
{
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
if (pos < offset)
samples[blockIdx.y * offset + pos] = src[pos * gridDim.y + blockIdx.y];
}
2009-09-17 22:15:11 +00:00
extern "C" __global__ void cudaFindWastedBits(
encodeResidualTaskStruct *tasks,
int *samples,
int tasksPerChannel,
int blocksize
)
{
__shared__ struct {
volatile int wbits[256];
2009-09-28 06:27:28 +00:00
volatile int abits[256];
2009-09-17 22:15:11 +00:00
encodeResidualTaskStruct task;
} shared;
if (threadIdx.x < 16)
((int*)&shared.task)[threadIdx.x] = ((int*)(&tasks[blockIdx.x * tasksPerChannel]))[threadIdx.x];
shared.wbits[threadIdx.x] = 0;
2009-09-28 06:27:28 +00:00
shared.abits[threadIdx.x] = 0;
2009-09-17 22:15:11 +00:00
__syncthreads();
for (int pos = 0; pos < blocksize; pos += blockDim.x)
2009-09-28 06:27:28 +00:00
{
int smp = pos + threadIdx.x < blocksize ? samples[shared.task.samplesOffs + pos + threadIdx.x] : 0;
shared.wbits[threadIdx.x] |= smp;
shared.abits[threadIdx.x] |= smp ^ (smp >> 31);
}
__syncthreads();
SUM256(shared.wbits, threadIdx.x, |=);
SUM256(shared.abits, threadIdx.x, |=);
if (threadIdx.x == 0)
shared.task.wbits = max(0,__ffs(shared.wbits[0]) - 1);
if (threadIdx.x == 0)
shared.task.abits = 32 - __clz(shared.abits[0]) - shared.task.wbits;
2009-09-17 22:15:11 +00:00
__syncthreads();
if (threadIdx.x < tasksPerChannel)
2009-09-28 06:27:28 +00:00
tasks[blockIdx.x * tasksPerChannel + threadIdx.x].wbits = shared.task.wbits;
if (threadIdx.x < tasksPerChannel)
tasks[blockIdx.x * tasksPerChannel + threadIdx.x].abits = shared.task.abits;
2009-09-17 22:15:11 +00:00
}
2009-09-08 04:56:34 +00:00
extern "C" __global__ void cudaComputeAutocor(
float *output,
const int *samples,
const float *window,
2009-09-09 09:46:13 +00:00
computeAutocorTaskStruct *tasks,
int max_order, // should be <= 32
2009-09-08 04:56:34 +00:00
int frameSize,
2009-09-09 14:40:34 +00:00
int partSize // should be <= 2*blockDim - max_order
2009-09-09 09:46:13 +00:00
)
2009-09-07 12:39:31 +00:00
{
2009-09-08 04:56:34 +00:00
__shared__ struct {
2009-09-09 14:40:34 +00:00
float data[512];
2009-09-14 10:09:54 +00:00
volatile float product[256];
2009-09-09 09:46:13 +00:00
computeAutocorTaskStruct task;
2009-09-08 04:56:34 +00:00
} shared;
2009-09-24 21:34:34 +00:00
const int tid = threadIdx.x + (threadIdx.y * 32);
2009-09-09 09:46:13 +00:00
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
2009-09-07 12:39:31 +00:00
__syncthreads();
2009-09-09 09:46:13 +00:00
// fetch samples
2009-09-24 21:34:34 +00:00
{
const int pos = blockIdx.x * partSize;
const int dataLen = min(frameSize - pos, partSize + max_order);
shared.data[tid] = tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] * window[shared.task.windowOffs + pos + tid]: 0.0f;
shared.data[tid + 256] = tid + 256 < dataLen ? samples[shared.task.samplesOffs + pos + tid + 256] * window[shared.task.windowOffs + pos + tid + 256]: 0.0f;
}
2009-09-07 12:39:31 +00:00
__syncthreads();
2009-09-24 21:34:34 +00:00
for (int lag = threadIdx.y; lag <= max_order; lag += 8)
2009-09-07 12:39:31 +00:00
{
2009-09-24 21:34:34 +00:00
const int productLen = min(frameSize - blockIdx.x * partSize - lag, partSize);
shared.product[tid] = 0.0;
for (int ptr = threadIdx.x; ptr < productLen + threadIdx.x; ptr += 128)
shared.product[tid] += ((ptr < productLen) * shared.data[ptr] * shared.data[ptr + lag]
+ (ptr + 32 < productLen) * shared.data[ptr + 32] * shared.data[ptr + 32 + lag])
+ ((ptr + 64 < productLen) * shared.data[ptr + 64] * shared.data[ptr + 64 + lag]
+ (ptr + 96 < productLen) * shared.data[ptr + 96] * shared.data[ptr + 96 + lag]);
2009-09-09 09:46:13 +00:00
// product sum: reduction in shared mem
2009-09-24 21:34:34 +00:00
//shared.product[tid] += shared.product[tid + 16];
shared.product[tid] = (shared.product[tid] + shared.product[tid + 16]) + (shared.product[tid + 8] + shared.product[tid + 24]);
shared.product[tid] = (shared.product[tid] + shared.product[tid + 4]) + (shared.product[tid + 2] + shared.product[tid + 6]);
// return results
if (threadIdx.x == 0)
output[(blockIdx.x + blockIdx.y * gridDim.x) * (max_order + 1) + lag] = shared.product[tid] + shared.product[tid + 1];
2009-09-07 12:39:31 +00:00
}
}
2009-09-09 14:40:34 +00:00
extern "C" __global__ void cudaComputeLPC(
2009-09-10 00:00:46 +00:00
encodeResidualTaskStruct *output,
2009-09-09 14:40:34 +00:00
float*autoc,
computeAutocorTaskStruct *tasks,
int max_order, // should be <= 32
2009-09-10 00:00:46 +00:00
int partCount // should be <= blockDim?
2009-09-09 14:40:34 +00:00
)
{
__shared__ struct {
computeAutocorTaskStruct task;
2009-09-28 06:27:28 +00:00
encodeResidualTaskStruct task2;
2009-09-14 08:39:28 +00:00
volatile float ldr[32];
volatile int bits[32];
volatile float autoc[33];
volatile float gen0[32];
volatile float gen1[32];
2009-09-14 09:19:22 +00:00
volatile float parts[128];
2009-09-14 08:39:28 +00:00
//volatile float reff[32];
2009-09-26 21:51:42 +00:00
//int cbits;
2009-09-09 14:40:34 +00:00
} shared;
const int tid = threadIdx.x;
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((int*)&shared.task)[tid] = ((int*)(tasks + blockIdx.y))[tid];
2009-09-28 06:27:28 +00:00
__syncthreads();
if (tid < sizeof(shared.task2) / sizeof(int))
((int*)&shared.task2)[tid] = ((int*)(output + shared.task.residualOffs))[tid];
__syncthreads();
2009-09-09 14:40:34 +00:00
// add up parts
2009-09-14 09:19:22 +00:00
for (int order = 0; order <= max_order; order++)
{
shared.parts[tid] = tid < partCount ? autoc[(blockIdx.y * partCount + tid) * (max_order + 1) + order] : 0;
__syncthreads();
if (tid < 64 && blockDim.x > 64) shared.parts[tid] += shared.parts[tid + 64];
__syncthreads();
if (tid < 32)
{
if (blockDim.x > 32) shared.parts[tid] += shared.parts[tid + 32];
shared.parts[tid] += shared.parts[tid + 16];
shared.parts[tid] += shared.parts[tid + 8];
shared.parts[tid] += shared.parts[tid + 4];
shared.parts[tid] += shared.parts[tid + 2];
shared.parts[tid] += shared.parts[tid + 1];
if (tid == 0)
shared.autoc[order] = shared.parts[0];
}
}
2009-09-10 00:00:46 +00:00
if (tid < 32)
2009-09-14 08:24:01 +00:00
{
shared.gen0[tid] = shared.autoc[tid+1];
shared.gen1[tid] = shared.autoc[tid+1];
shared.ldr[tid] = 0.0f;
2009-09-09 14:40:34 +00:00
2009-09-14 08:24:01 +00:00
float error = shared.autoc[0];
for (int order = 0; order < max_order; order++)
2009-09-10 00:00:46 +00:00
{
2009-09-14 08:24:01 +00:00
// Schur recursion
float reff = -shared.gen1[0] / error;
2009-09-14 08:39:28 +00:00
//if (tid == 0) shared.reff[order] = reff;
2009-09-14 10:09:54 +00:00
error += __fmul_rz(shared.gen1[0], reff);
2009-09-14 08:39:28 +00:00
if (tid < max_order - 1 - order)
2009-09-14 08:24:01 +00:00
{
2009-09-14 10:09:54 +00:00
float g1 = shared.gen1[tid + 1] + __fmul_rz(reff, shared.gen0[tid]);
float g0 = __fmul_rz(shared.gen1[tid + 1], reff) + shared.gen0[tid];
2009-09-14 08:24:01 +00:00
shared.gen1[tid] = g1;
shared.gen0[tid] = g0;
}
// Levinson-Durbin recursion
2009-09-16 17:11:36 +00:00
shared.ldr[tid] += (tid < order) * __fmul_rz(reff, shared.ldr[order - 1 - tid]) + (tid == order) * reff;
// Quantization
2009-09-28 06:27:28 +00:00
//int precision = 13 - (shared.task.blocksize <= 2304) - (shared.task.blocksize <= 1152) - (shared.task.blocksize <= 576);
int precision = max(3, min(13 - (shared.task.blocksize <= 2304) - (shared.task.blocksize <= 1152) - (shared.task.blocksize <= 576), shared.task2.abits));
2009-09-16 17:11:36 +00:00
int taskNo = shared.task.residualOffs + order;
2009-09-14 08:24:01 +00:00
shared.bits[tid] = __mul24((33 - __clz(__float2int_rn(fabs(shared.ldr[tid]) * (1 << 15))) - precision), tid <= order);
2009-09-10 00:00:46 +00:00
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 16]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 8]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 4]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 2]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 1]);
int sh = max(0,min(15, 15 - shared.bits[0]));
2009-09-14 08:24:01 +00:00
2009-09-13 10:28:07 +00:00
// reverse coefs
2009-09-14 08:24:01 +00:00
int coef = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(-shared.ldr[order - tid] * (1 << sh))));
2009-09-10 00:00:46 +00:00
if (tid <= order)
2009-09-11 11:16:45 +00:00
output[taskNo].coefs[tid] = coef;
2009-09-10 00:00:46 +00:00
if (tid == 0)
2009-09-11 11:16:45 +00:00
output[taskNo].shift = sh;
2009-09-28 06:27:28 +00:00
shared.bits[tid] = __mul24(33 - __clz(coef ^ (coef >> 31)), tid <= order);
2009-09-10 00:00:46 +00:00
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 16]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 8]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 4]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 2]);
shared.bits[tid] = max(shared.bits[tid], shared.bits[tid + 1]);
int cbits = shared.bits[0];
if (tid == 0)
2009-09-11 11:16:45 +00:00
output[taskNo].cbits = cbits;
2009-09-16 17:11:36 +00:00
}
}
2009-09-09 14:40:34 +00:00
}
2009-09-26 21:51:42 +00:00
extern "C" __global__ void cudaComputeLPCLattice(
encodeResidualTaskStruct *tasks,
const int taskCount, // tasks per block
const int *samples,
2009-09-28 06:27:28 +00:00
const int precisions,
const int max_order // should be <= 12
2009-09-26 21:51:42 +00:00
)
{
__shared__ struct {
2009-09-28 06:27:28 +00:00
volatile encodeResidualTaskStruct task;
volatile float F[512];
volatile float lpc[12][32];
2009-09-28 00:20:46 +00:00
union {
2009-09-28 06:27:28 +00:00
volatile float tmp[256];
volatile int tmpi[256];
2009-09-28 00:20:46 +00:00
};
2009-09-26 21:51:42 +00:00
} shared;
// fetch task data
if (threadIdx.x < sizeof(shared.task) / sizeof(int))
2009-09-28 06:27:28 +00:00
((int*)&shared.task)[threadIdx.x] = ((int*)(tasks + taskCount * blockIdx.y))[threadIdx.x];
2009-09-26 21:51:42 +00:00
__syncthreads();
2009-09-26 22:10:43 +00:00
// F = samples; B = samples
2009-09-28 06:27:28 +00:00
//int frameSize = shared.task.blocksize;
int s1 = threadIdx.x < shared.task.blocksize ? samples[shared.task.samplesOffs + threadIdx.x] : 0;
int s2 = threadIdx.x + 256 < shared.task.blocksize ? samples[shared.task.samplesOffs + threadIdx.x + 256] : 0;
shared.tmpi[threadIdx.x] = s1|s2;
2009-09-26 21:51:42 +00:00
__syncthreads();
2009-09-28 06:27:28 +00:00
SUM256(shared.tmpi,threadIdx.x,|=);
2009-09-28 00:20:46 +00:00
if (threadIdx.x == 0)
shared.task.wbits = max(0,__ffs(shared.tmpi[0]) - 1);
2009-09-26 21:51:42 +00:00
__syncthreads();
2009-09-28 06:27:28 +00:00
if (threadIdx.x < taskCount)
tasks[blockIdx.y * taskCount + threadIdx.x].wbits = shared.task.wbits;
shared.tmpi[threadIdx.x] = (s1 ^ (s1 >> 31)) | (s2 ^ (s2 >> 31));
__syncthreads();
SUM256(shared.tmpi,threadIdx.x,|=);
2009-09-26 21:51:42 +00:00
if (threadIdx.x == 0)
2009-09-28 06:27:28 +00:00
shared.task.abits = 32 - __clz(shared.tmpi[0]) - shared.task.wbits;
2009-09-28 00:20:46 +00:00
__syncthreads();
2009-09-28 06:27:28 +00:00
s1 >>= shared.task.wbits;
s2 >>= shared.task.wbits;
shared.F[threadIdx.x] = s1;
shared.F[threadIdx.x + 256] = s2;
2009-09-26 21:51:42 +00:00
__syncthreads();
for (int order = 1; order <= max_order; order++)
{
2009-09-26 22:10:43 +00:00
// reff = F(order+1:frameSize) * B(1:frameSize-order)' / DEN
2009-09-28 06:27:28 +00:00
float f1 = (threadIdx.x + order < shared.task.blocksize) * shared.F[threadIdx.x + order];
float f2 = (threadIdx.x + 256 + order < shared.task.blocksize) * shared.F[threadIdx.x + 256 + order];
s1 *= (threadIdx.x + order < shared.task.blocksize);
s2 *= (threadIdx.x + 256 + order < shared.task.blocksize);
2009-09-28 00:20:46 +00:00
// DEN = F(order+1:frameSize) * F(order+1:frameSize)' + B(1:frameSize-order) * B(1:frameSize-order)' (BURG)
2009-09-28 06:27:28 +00:00
shared.tmp[threadIdx.x] = FSQR(f1) + FSQR(f2) + FSQR(s1) + FSQR(s2);
2009-09-28 00:20:46 +00:00
__syncthreads();
SUM256(shared.tmp, threadIdx.x, +=);
2009-09-28 06:27:28 +00:00
__syncthreads();
float DEN = shared.tmp[0] / 2;
//shared.PE[order-1] = shared.tmp[0] / 2 / (frameSize - order + 1);
2009-09-28 00:20:46 +00:00
__syncthreads();
2009-09-28 06:27:28 +00:00
shared.tmp[threadIdx.x] = f1 * s1 + f2 * s2;
2009-09-26 21:51:42 +00:00
__syncthreads();
2009-09-28 00:20:46 +00:00
SUM256(shared.tmp, threadIdx.x, +=);
2009-09-28 06:27:28 +00:00
__syncthreads();
float reff = shared.tmp[0] / DEN;
2009-09-26 21:51:42 +00:00
__syncthreads();
2009-09-26 22:10:43 +00:00
// arp(order) = rc(order) = reff
2009-09-26 21:51:42 +00:00
if (threadIdx.x == 0)
2009-09-28 06:27:28 +00:00
shared.lpc[order - 1][order - 1] = reff;
//shared.rc[order - 1] = shared.lpc[order - 1][order - 1] = reff;
2009-09-26 21:51:42 +00:00
// Levinson-Durbin recursion
2009-09-26 22:10:43 +00:00
// arp(1:order-1) = arp(1:order-1) - reff * arp(order-1:-1:1)
2009-09-28 00:20:46 +00:00
if (threadIdx.x < order - 1)
2009-09-28 06:27:28 +00:00
shared.lpc[order - 1][threadIdx.x] = shared.lpc[order - 2][threadIdx.x] - reff * shared.lpc[order - 2][order - 2 - threadIdx.x];
2009-09-26 21:51:42 +00:00
2009-09-26 22:10:43 +00:00
// F1 = F(order+1:frameSize) - reff * B(1:frameSize-order)
// B(1:frameSize-order) = B(1:frameSize-order) - reff * F(order+1:frameSize)
// F(order+1:frameSize) = F1
2009-09-28 06:27:28 +00:00
if (threadIdx.x < shared.task.blocksize - order)
shared.F[order + threadIdx.x] -= reff * s1;
if (threadIdx.x + 256 < shared.task.blocksize - order)
shared.F[order + threadIdx.x + 256] -= reff * s2;
s1 -= reff * f1;
s2 -= reff * f2;
2009-09-26 21:51:42 +00:00
__syncthreads();
}
2009-09-28 06:27:28 +00:00
// Quantization
for (int order = (threadIdx.x >> 5); order < max_order; order += 8)
for (int precision = 0; precision < precisions; precision++)
2009-09-27 01:21:26 +00:00
{
int cn = threadIdx.x & 31;
2009-09-28 06:27:28 +00:00
// get 15 bits of each coeff
int coef = cn <= order ? __float2int_rn(shared.lpc[order][cn] * (1 << 15)) : 0;
// remove sign bits
shared.tmpi[threadIdx.x] = coef ^ (coef >> 31);
// OR reduction
SUM32(shared.tmpi,threadIdx.x,|=);
// choose precision
//int cbits = max(3, min(10, 5 + (shared.task.abits >> 1))); // - __float2int_rn(shared.PE[order - 1])
int cbits = max(3, min(10, shared.task.abits)) - precision;// + precision); // - __float2int_rn(shared.PE[order - 1])
// calculate shift based on precision and number of leading zeroes in coeffs
int shift = max(0,min(15, __clz(shared.tmpi[threadIdx.x & ~31]) - 18 + cbits));
//if (shared.task.abits + 32 - __clz(order) < shift
//int shift = max(0,min(15, (shared.task.abits >> 2) - 14 + __clz(shared.tmpi[threadIdx.x & ~31]) + ((32 - __clz(order))>>1)));
// quantize coeffs with given shift
coef = cn <= order ? max(-(1 << (cbits - 1)), min((1 << (cbits - 1)) -1, __float2int_rn(shared.lpc[order][order - cn] * (1 << shift)))) : 0;
// error correction
//shared.tmp[threadIdx.x] = (threadIdx.x != 0) * (shared.arp[threadIdx.x - 1]*(1 << shared.task.shift) - shared.task.coefs[threadIdx.x - 1]);
//shared.task.coefs[threadIdx.x] = max(-(1 << (shared.task.cbits - 1)), min((1 << (shared.task.cbits - 1))-1, __float2int_rn((shared.arp[threadIdx.x]) * (1 << shared.task.shift) + shared.tmp[threadIdx.x])));
// remove sign bits
shared.tmpi[threadIdx.x] = coef ^ (coef >> 31);
// OR reduction
SUM32(shared.tmpi,threadIdx.x,|=);
// calculate actual number of bits (+1 for sign)
cbits = 1 + 32 - __clz(shared.tmpi[threadIdx.x & ~31]);
// output shift, cbits and output coeffs
int taskNo = taskCount * blockIdx.y + order + precision * max_order;
2009-09-27 01:21:26 +00:00
if (cn == 0)
2009-09-28 06:27:28 +00:00
tasks[taskNo].shift = shift;
2009-09-27 01:21:26 +00:00
if (cn == 0)
tasks[taskNo].cbits = cbits;
2009-09-28 06:27:28 +00:00
if (cn <= order)
tasks[taskNo].coefs[cn] = coef;
2009-09-27 01:21:26 +00:00
}
}
2009-09-28 06:27:28 +00:00
//extern "C" __global__ void cudaComputeLPCLattice512(
// encodeResidualTaskStruct *tasks,
// const int taskCount, // tasks per block
// const int *samples,
// const int frameSize, // <= 512
// const int max_order // should be <= 32
//)
//{
// __shared__ struct {
// encodeResidualTaskStruct task;
// float F[512];
// float B[512];
// float lpc[32][32];
// volatile float tmp[512];
// volatile float arp[32];
// volatile float rc[32];
// volatile int bits[512];
// volatile float f, b;
// } shared;
//
// // fetch task data
// if (threadIdx.x < sizeof(shared.task) / sizeof(int))
// ((int*)&shared.task)[threadIdx.x] = ((int*)(tasks + taskCount * blockIdx.y))[threadIdx.x];
// __syncthreads();
//
// // F = samples; B = samples
// shared.F[threadIdx.x] = threadIdx.x < frameSize ? samples[shared.task.samplesOffs + threadIdx.x] >> shared.task.wbits : 0.0f;
// shared.B[threadIdx.x] = shared.F[threadIdx.x];
// __syncthreads();
//
// // DEN = F*F'
// shared.tmp[threadIdx.x] = FSQR(shared.F[threadIdx.x]);
// __syncthreads();
// SUM512(shared.tmp,threadIdx.x,+=);
// __syncthreads();
// if (threadIdx.x == 0)
// shared.f = shared.b = shared.tmp[0];
// // if (threadIdx.x == 0)
// //shared.PE[0] = DEN / frameSize;
// __syncthreads();
//
// for (int order = 1; order <= max_order; order++)
// {
// // reff = F(order+1:frameSize) * B(1:frameSize-order)' / DEN
// shared.tmp[threadIdx.x] = (threadIdx.x + order < frameSize) * shared.F[threadIdx.x + order] * shared.B[threadIdx.x];
// __syncthreads();
// SUM512(shared.tmp, threadIdx.x,+=);
// __syncthreads();
//
// //float reff = shared.tmp[0] * rsqrtf(shared.b * shared.f); // Geometric lattice
// float reff = shared.tmp[0] * 2 / (shared.b + shared.f); // Burg method
// __syncthreads();
//
// // Levinson-Durbin recursion
// // arp(order) = rc(order) = reff
// // arp(1:order-1) = arp(1:order-1) - reff * arp(order-1:-1:1)
// if (threadIdx.x == 32)
// shared.arp[order - 1] = shared.rc[order - 1] = reff;
// if (threadIdx.x < 32)
// shared.arp[threadIdx.x] -= (threadIdx.x < order - 1) * __fmul_rz(reff, shared.arp[order - 2 - threadIdx.x]);
//
// // F1 = F(order+1:frameSize) - reff * B(1:frameSize-order)
// // B(1:frameSize-order) = B(1:frameSize-order) - reff * F(order+1:frameSize)
// // F(order+1:frameSize) = F1
// if (threadIdx.x < frameSize - order)
// {
// float f;// = shared.F[threadIdx.x + order];
// shared.F[threadIdx.x + order] = (f = shared.F[threadIdx.x + order]) - reff * shared.B[threadIdx.x];
// shared.B[threadIdx.x] -= reff * f;
// }
// __syncthreads();
//
// // f = F(order+1:frameSize) * F(order+1:frameSize)'
// // b = B(1:frameSize-order) * B(1:frameSize-order)'
// shared.tmp[threadIdx.x] = (threadIdx.x < frameSize - order) * FSQR(shared.F[threadIdx.x + order]);
// __syncthreads();
// SUM512(shared.tmp, threadIdx.x,+=);
// __syncthreads();
// if (threadIdx.x == 0)
// shared.f = shared.tmp[0];
// __syncthreads();
//
// shared.tmp[threadIdx.x] = (threadIdx.x < frameSize - order) * FSQR(shared.B[threadIdx.x]);
// __syncthreads();
// SUM512(shared.tmp, threadIdx.x,+=);
// __syncthreads();
// if (threadIdx.x == 0)
// shared.b = shared.tmp[0];
// __syncthreads();
//
// if (threadIdx.x < 32)
// shared.lpc[order - 1][threadIdx.x] = shared.arp[threadIdx.x];
//
// //if (threadIdx.x == 0)
// // shared.PE[order] = (shared.b + shared.f) / 2 / (frameSize - order);
// __syncthreads();
// }
// for (int order = 1 + (threadIdx.x >> 5); order <= max_order; order += 16)
// {
// // Quantization
// int cn = threadIdx.x & 31;
// int precision = 10 - (order > 8) - min(2, shared.task.wbits);
// int taskNo = taskCount * blockIdx.y + order - 1;
// shared.bits[threadIdx.x] = __mul24((33 - __clz(__float2int_rn(fabs(shared.lpc[order - 1][cn]) * (1 << 15))) - precision), cn < order);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 16]);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 8]);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 4]);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 2]);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 1]);
// int sh = max(0,min(15, 15 - shared.bits[threadIdx.x - cn]));
//
// // reverse coefs
// int coef = max(-(1 << precision),min((1 << precision)-1,__float2int_rn(shared.lpc[order - 1][order - 1 - cn] * (1 << sh))));
// if (cn < order)
// tasks[taskNo].coefs[cn] = coef;
// if (cn == 0)
// tasks[taskNo].shift = sh;
// shared.bits[threadIdx.x] = __mul24(33 - max(__clz(coef),__clz(-1 ^ coef)), cn < order);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 16]);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 8]);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 4]);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 2]);
// shared.bits[threadIdx.x] = max(shared.bits[threadIdx.x], shared.bits[threadIdx.x + 1]);
// int cbits = shared.bits[threadIdx.x - cn];
// if (cn == 0)
// tasks[taskNo].cbits = cbits;
// }
//}
2009-09-11 11:16:45 +00:00
// blockDim.x == 32
// blockDim.y == 8
2009-09-10 00:00:46 +00:00
extern "C" __global__ void cudaEstimateResidual(
int*output,
int*samples,
encodeResidualTaskStruct *tasks,
2009-09-11 11:16:45 +00:00
int max_order,
2009-09-10 00:00:46 +00:00
int frameSize,
2009-09-16 17:11:36 +00:00
int partSize // should be blockDim.x * blockDim.y == 256
2009-09-10 00:00:46 +00:00
)
2009-09-08 16:26:53 +00:00
{
2009-09-10 00:00:46 +00:00
__shared__ struct {
2009-09-16 17:11:36 +00:00
int data[32*9];
2009-09-14 09:19:22 +00:00
volatile int residual[32*8];
2009-09-11 11:16:45 +00:00
encodeResidualTaskStruct task[8];
2009-09-10 00:00:46 +00:00
} shared;
2009-09-11 11:16:45 +00:00
const int tid = threadIdx.x + threadIdx.y * blockDim.x;
2009-09-13 10:28:07 +00:00
if (threadIdx.x < 16)
((int*)&shared.task[threadIdx.y])[threadIdx.x] = ((int*)(&tasks[blockIdx.y * blockDim.y + threadIdx.y]))[threadIdx.x];
2009-09-10 00:00:46 +00:00
__syncthreads();
2009-09-13 10:28:07 +00:00
const int pos = blockIdx.x * partSize;
2009-09-11 13:44:29 +00:00
const int dataLen = min(frameSize - pos, partSize + max_order);
2009-09-10 00:00:46 +00:00
// fetch samples
2009-09-17 22:15:11 +00:00
shared.data[tid] = tid < dataLen ? samples[shared.task[0].samplesOffs + pos + tid] >> shared.task[0].wbits : 0;
if (tid < 32) shared.data[tid + partSize] = tid + partSize < dataLen ? samples[shared.task[0].samplesOffs + pos + tid + partSize] >> shared.task[0].wbits : 0;
2009-09-16 17:11:36 +00:00
const int residualLen = max(0,min(frameSize - pos - shared.task[threadIdx.y].residualOrder, partSize));
2009-09-11 13:44:29 +00:00
__syncthreads();
2009-09-14 09:19:22 +00:00
shared.residual[tid] = 0;
2009-09-13 10:28:07 +00:00
shared.task[threadIdx.y].coefs[threadIdx.x] = threadIdx.x < max_order ? tasks[blockIdx.y * blockDim.y + threadIdx.y].coefs[threadIdx.x] : 0;
2009-09-11 11:16:45 +00:00
2009-09-16 17:11:36 +00:00
for (int i = blockDim.y * (shared.task[threadIdx.y].type == Verbatim); i < blockDim.y; i++) // += 32
2009-09-11 11:16:45 +00:00
{
2009-09-16 17:11:36 +00:00
int ptr = threadIdx.x + (i<<5);
2009-09-11 11:16:45 +00:00
// compute residual
2009-09-13 10:28:07 +00:00
int sum = 0;
int c = 0;
for (c = 0; c < shared.task[threadIdx.y].residualOrder; c++)
2009-09-16 17:11:36 +00:00
sum += __mul24(shared.data[ptr + c], shared.task[threadIdx.y].coefs[c]);
sum = shared.data[ptr + c] - (sum >> shared.task[threadIdx.y].shift);
2009-09-17 14:37:25 +00:00
shared.residual[tid] += __mul24(ptr < residualLen, min(0x7fffff,(sum << 1) ^ (sum >> 31)));
2009-09-11 11:16:45 +00:00
}
2009-09-13 10:28:07 +00:00
// enable this line when using blockDim.x == 64
//__syncthreads(); if (threadIdx.x < 32) shared.residual[tid] += shared.residual[tid + 32]; __syncthreads();
shared.residual[tid] += shared.residual[tid + 16];
shared.residual[tid] += shared.residual[tid + 8];
shared.residual[tid] += shared.residual[tid + 4];
shared.residual[tid] += shared.residual[tid + 2];
shared.residual[tid] += shared.residual[tid + 1];
2009-09-11 11:16:45 +00:00
// rice parameter search
2009-09-17 14:37:25 +00:00
shared.residual[tid] = (shared.task[threadIdx.y].type != Constant || shared.residual[threadIdx.y * blockDim.x] != 0) *
(__mul24(threadIdx.x >= 15, 0x7fffff) + residualLen * (threadIdx.x + 1) + ((shared.residual[threadIdx.y * blockDim.x] - (residualLen >> 1)) >> threadIdx.x));
2009-09-13 10:28:07 +00:00
shared.residual[tid] = min(shared.residual[tid], shared.residual[tid + 8]);
shared.residual[tid] = min(shared.residual[tid], shared.residual[tid + 4]);
shared.residual[tid] = min(shared.residual[tid], shared.residual[tid + 2]);
shared.residual[tid] = min(shared.residual[tid], shared.residual[tid + 1]);
2009-09-16 17:11:36 +00:00
if (threadIdx.x == 0)
2009-09-17 14:37:25 +00:00
output[(blockIdx.y * blockDim.y + threadIdx.y) * 64 + blockIdx.x] = shared.residual[tid];
2009-09-11 11:16:45 +00:00
}
2009-09-16 17:11:36 +00:00
#define BEST_INDEX(a,b) ((a) + ((b) - (a)) * (shared.length[b] < shared.length[a]))
2009-09-17 14:37:25 +00:00
extern "C" __global__ void cudaChooseBestMethod(
2009-09-16 17:11:36 +00:00
encodeResidualTaskStruct *tasks,
2009-09-17 14:37:25 +00:00
int *residual,
int partCount, // <= blockDim.y (256)
int taskCount
2009-09-16 17:11:36 +00:00
)
{
__shared__ struct {
volatile int index[128];
2009-09-17 14:37:25 +00:00
volatile int partLen[512];
2009-09-16 17:11:36 +00:00
int length[256];
2009-09-17 14:37:25 +00:00
volatile encodeResidualTaskStruct task[16];
2009-09-16 17:11:36 +00:00
} shared;
2009-09-17 14:37:25 +00:00
const int tid = threadIdx.x + threadIdx.y * 32;
2009-09-16 17:11:36 +00:00
2009-09-17 14:37:25 +00:00
if (tid < 256) shared.length[tid] = 0x7fffffff;
for (int task = 0; task < taskCount; task += blockDim.y)
if (task + threadIdx.y < taskCount)
{
// fetch task data
((int*)&shared.task[threadIdx.y])[threadIdx.x] = ((int*)(tasks + task + threadIdx.y + taskCount * blockIdx.y))[threadIdx.x];
int sum = 0;
for (int pos = 0; pos < partCount; pos += blockDim.x)
sum += (pos + threadIdx.x < partCount ? residual[pos + threadIdx.x + 64 * (task + threadIdx.y + taskCount * blockIdx.y)] : 0);
shared.partLen[tid] = sum;
// length sum: reduction in shared mem
shared.partLen[tid] += shared.partLen[tid + 16];
shared.partLen[tid] += shared.partLen[tid + 8];
shared.partLen[tid] += shared.partLen[tid + 4];
shared.partLen[tid] += shared.partLen[tid + 2];
shared.partLen[tid] += shared.partLen[tid + 1];
// return sum
if (threadIdx.x == 0)
{
2009-09-17 22:15:11 +00:00
int obits = shared.task[threadIdx.y].obits - shared.task[threadIdx.y].wbits;
2009-09-17 14:37:25 +00:00
shared.length[task + threadIdx.y] =
2009-09-17 22:15:11 +00:00
min(obits * shared.task[threadIdx.y].blocksize,
shared.task[threadIdx.y].type == Fixed ? shared.task[threadIdx.y].residualOrder * obits + 6 + shared.partLen[threadIdx.y * 32] :
shared.task[threadIdx.y].type == LPC ? shared.task[threadIdx.y].residualOrder * obits + 4 + 5 + shared.task[threadIdx.y].residualOrder * shared.task[threadIdx.y].cbits + 6 + (4 * partCount/2)/* << porder */ + shared.partLen[threadIdx.y * 32] :
shared.task[threadIdx.y].type == Constant ? obits * (1 + shared.task[threadIdx.y].blocksize * (shared.partLen[threadIdx.y * 32] != 0)) :
obits * shared.task[threadIdx.y].blocksize);
2009-09-17 14:37:25 +00:00
}
}
2009-09-16 17:11:36 +00:00
//shared.index[threadIdx.x] = threadIdx.x;
2009-09-17 14:37:25 +00:00
//shared.length[threadIdx.x] = (threadIdx.x < taskCount) ? tasks[threadIdx.x + taskCount * blockIdx.y].size : 0x7fffffff;
__syncthreads();
2009-09-16 17:11:36 +00:00
2009-09-17 14:37:25 +00:00
//if (tid < 128) shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 128]); __syncthreads();
if (tid < 128) shared.index[tid] = BEST_INDEX(tid, tid + 128); __syncthreads();
if (tid < 64) shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 64]); __syncthreads();
if (tid < 32)
{
shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 32]);
shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 16]);
shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 8]);
shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 4]);
shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 2]);
shared.index[tid] = BEST_INDEX(shared.index[tid], shared.index[tid + 1]);
}
__syncthreads();
// if (threadIdx.x < sizeof(encodeResidualTaskStruct)/sizeof(int))
//((int*)(tasks_out + blockIdx.y))[threadIdx.x] = ((int*)(tasks + taskCount * blockIdx.y + shared.index[0]))[threadIdx.x];
if (tid == 0)
tasks[taskCount * blockIdx.y].best_index = taskCount * blockIdx.y + shared.index[0];
if (tid < taskCount)
tasks[tid + taskCount * blockIdx.y].size = shared.length[tid];
}
extern "C" __global__ void cudaCopyBestMethod(
encodeResidualTaskStruct *tasks_out,
encodeResidualTaskStruct *tasks,
int count
)
{
__shared__ struct {
int best_index;
} shared;
if (threadIdx.x == 0)
shared.best_index = tasks[count * blockIdx.y].best_index;
2009-09-16 17:11:36 +00:00
__syncthreads();
2009-09-17 14:37:25 +00:00
if (threadIdx.x < sizeof(encodeResidualTaskStruct)/sizeof(int))
((int*)(tasks_out + blockIdx.y))[threadIdx.x] = ((int*)(tasks + shared.best_index))[threadIdx.x];
}
2009-09-16 17:11:36 +00:00
2009-09-17 14:37:25 +00:00
extern "C" __global__ void cudaCopyBestMethodStereo(
encodeResidualTaskStruct *tasks_out,
encodeResidualTaskStruct *tasks,
int count
)
{
__shared__ struct {
int best_index[4];
int best_size[4];
int lr_index[2];
} shared;
if (threadIdx.x < 4)
shared.best_index[threadIdx.x] = tasks[count * (blockIdx.y * 4 + threadIdx.x)].best_index;
if (threadIdx.x < 4)
shared.best_size[threadIdx.x] = tasks[shared.best_index[threadIdx.x]].size;
__syncthreads();
if (threadIdx.x == 0)
2009-09-16 17:11:36 +00:00
{
2009-09-17 14:37:25 +00:00
int bitsBest = 0x7fffffff;
if (bitsBest > shared.best_size[2] + shared.best_size[3]) // MidSide
{
bitsBest = shared.best_size[2] + shared.best_size[3];
shared.lr_index[0] = shared.best_index[2];
shared.lr_index[1] = shared.best_index[3];
}
if (bitsBest > shared.best_size[3] + shared.best_size[1]) // RightSide
{
bitsBest = shared.best_size[3] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[3];
shared.lr_index[1] = shared.best_index[1];
}
if (bitsBest > shared.best_size[0] + shared.best_size[3]) // LeftSide
{
bitsBest = shared.best_size[0] + shared.best_size[3];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[3];
}
if (bitsBest > shared.best_size[0] + shared.best_size[1]) // LeftRight
{
bitsBest = shared.best_size[0] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[1];
}
2009-09-16 17:11:36 +00:00
}
__syncthreads();
if (threadIdx.x < sizeof(encodeResidualTaskStruct)/sizeof(int))
2009-09-17 14:37:25 +00:00
((int*)(tasks_out + 2 * blockIdx.y))[threadIdx.x] = ((int*)(tasks + shared.lr_index[0]))[threadIdx.x];
if (threadIdx.x == 0)
tasks_out[2 * blockIdx.y].residualOffs = tasks[shared.best_index[0]].residualOffs;
if (threadIdx.x < sizeof(encodeResidualTaskStruct)/sizeof(int))
((int*)(tasks_out + 2 * blockIdx.y + 1))[threadIdx.x] = ((int*)(tasks + shared.lr_index[1]))[threadIdx.x];
if (threadIdx.x == 0)
tasks_out[2 * blockIdx.y + 1].residualOffs = tasks[shared.best_index[1]].residualOffs;
2009-09-10 00:00:46 +00:00
}
2009-09-08 16:26:53 +00:00
2009-09-07 12:39:31 +00:00
extern "C" __global__ void cudaEncodeResidual(
int*output,
int*samples,
2009-09-16 17:11:36 +00:00
encodeResidualTaskStruct *tasks
2009-09-08 16:26:53 +00:00
)
2009-09-07 12:39:31 +00:00
{
2009-09-16 17:11:36 +00:00
__shared__ struct {
int data[256 + 32];
encodeResidualTaskStruct task;
} shared;
const int tid = threadIdx.x;
2009-09-25 20:11:39 +00:00
if (threadIdx.x < sizeof(shared.task) / sizeof(int))
2009-09-16 17:11:36 +00:00
((int*)&shared.task)[threadIdx.x] = ((int*)(&tasks[blockIdx.y]))[threadIdx.x];
__syncthreads();
const int partSize = blockDim.x;
const int pos = blockIdx.x * partSize;
const int dataLen = min(shared.task.blocksize - pos, partSize + shared.task.residualOrder);
// fetch samples
2009-09-17 22:15:11 +00:00
shared.data[tid] = tid < dataLen ? samples[shared.task.samplesOffs + pos + tid] >> shared.task.wbits : 0;
if (tid < 32) shared.data[tid + partSize] = tid + partSize < dataLen ? samples[shared.task.samplesOffs + pos + tid + partSize] >> shared.task.wbits : 0;
2009-09-16 17:11:36 +00:00
const int residualLen = max(0,min(shared.task.blocksize - pos - shared.task.residualOrder, partSize));
2009-09-08 16:26:53 +00:00
__syncthreads();
2009-09-16 17:11:36 +00:00
// compute residual
int sum = 0;
for (int c = 0; c < shared.task.residualOrder; c++)
sum += __mul24(shared.data[tid + c], shared.task.coefs[c]);
if (tid < residualLen)
2009-09-17 14:37:25 +00:00
output[shared.task.residualOffs + pos + tid] = shared.data[tid + shared.task.residualOrder] - (sum >> shared.task.shift);
2009-09-07 12:39:31 +00:00
}
#endif