Files
cuetools.net/CUETools.Codecs.FLACCL/flac.cl

1051 lines
34 KiB
Common Lisp
Raw Normal View History

2010-09-20 05:32:05 +00:00
/**
* CUETools.FLACCL: FLAC audio encoder using OpenCL
* Copyright (c) 2009 Gregory S. Chudov
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _FLACCL_KERNEL_H_
#define _FLACCL_KERNEL_H_
2010-10-23 18:29:06 +00:00
#ifdef DEBUG
#pragma OPENCL EXTENSION cl_amd_printf : enable
#endif
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
2010-10-10 23:28:38 +00:00
//#pragma OPENCL EXTENSION cl_amd_fp64 : enable
2010-09-20 05:32:05 +00:00
typedef enum
{
Constant = 0,
Verbatim = 1,
Fixed = 8,
LPC = 32
} SubframeType;
typedef struct
{
int residualOrder; // <= 32
int samplesOffs;
int shift;
int cbits;
int size;
int type;
int obits;
int blocksize;
int best_index;
int channel;
int residualOffs;
int wbits;
int abits;
int porder;
int reserved[2];
} FLACCLSubframeData;
typedef struct
{
FLACCLSubframeData data;
2010-09-25 19:53:48 +00:00
int coefs[32]; // fixme: should be short?
2010-09-20 05:32:05 +00:00
} FLACCLSubframeTask;
2010-10-23 18:29:06 +00:00
__kernel void clStereoDecorr(
2010-09-20 05:32:05 +00:00
__global int *samples,
__global short2 *src,
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
samples[2 * offset + pos] = (s.x + s.y) >> 1;
samples[3 * offset + pos] = s.x - s.y;
}
}
2010-10-23 18:29:06 +00:00
__kernel void clChannelDecorr2(
2010-09-20 05:32:05 +00:00
__global int *samples,
__global short2 *src,
int offset
)
{
int pos = get_global_id(0);
if (pos < offset)
{
short2 s = src[pos];
samples[pos] = s.x;
samples[1 * offset + pos] = s.y;
}
}
2010-10-23 18:29:06 +00:00
//__kernel void clChannelDecorr(
2010-09-20 05:32:05 +00:00
// int *samples,
// short *src,
// int offset
//)
//{
// int pos = get_global_id(0);
// if (pos < offset)
// samples[get_group_id(1) * offset + pos] = src[pos * get_num_groups(1) + get_group_id(1)];
//}
#define __ffs(a) (32 - clz(a & (-a)))
//#define __ffs(a) (33 - clz(~a & (a - 1)))
2010-09-25 19:53:48 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-10-23 18:29:06 +00:00
void clFindWastedBits(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks,
__global int *samples,
int tasksPerChannel
)
{
2010-09-25 19:53:48 +00:00
__local int abits[GROUP_SIZE];
__local int wbits[GROUP_SIZE];
2010-09-20 05:32:05 +00:00
__local FLACCLSubframeData task;
int tid = get_local_id(0);
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0) * tasksPerChannel].data))[tid];
2010-10-23 18:29:06 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-20 05:32:05 +00:00
int w = 0, a = 0;
2010-10-23 18:29:06 +00:00
for (int pos = tid; pos + tid < task.blocksize; pos += GROUP_SIZE)
2010-09-20 05:32:05 +00:00
{
2010-10-23 18:29:06 +00:00
int smp = samples[task.samplesOffs + pos];
2010-09-20 05:32:05 +00:00
w |= smp;
a |= smp ^ (smp >> 31);
}
wbits[tid] = w;
abits[tid] = a;
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-10 23:28:38 +00:00
for (int s = GROUP_SIZE / 2; s > 0; s >>= 1)
2010-09-20 05:32:05 +00:00
{
if (tid < s)
{
wbits[tid] |= wbits[tid + s];
abits[tid] |= abits[tid + s];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
2010-09-25 19:53:48 +00:00
w = max(0,__ffs(wbits[0]) - 1);
a = 32 - clz(abits[0]) - w;
2010-09-20 05:32:05 +00:00
if (tid < tasksPerChannel)
2010-09-25 19:53:48 +00:00
tasks[get_group_id(0) * tasksPerChannel + tid].data.wbits = w;
2010-09-20 05:32:05 +00:00
if (tid < tasksPerChannel)
2010-09-25 19:53:48 +00:00
tasks[get_group_id(0) * tasksPerChannel + tid].data.abits = a;
2010-09-20 05:32:05 +00:00
}
2010-10-23 18:29:06 +00:00
// get_num_groups(0) == number of tasks
// get_num_groups(1) == number of windows
2010-09-25 19:53:48 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-10-23 18:29:06 +00:00
void clComputeAutocor(
2010-09-20 05:32:05 +00:00
__global float *output,
__global const int *samples,
__global const float *window,
__global FLACCLSubframeTask *tasks,
const int taskCount // tasks per block
)
{
2010-09-25 19:53:48 +00:00
__local float data[GROUP_SIZE * 2];
2010-10-23 18:29:06 +00:00
__local float product[(MAX_ORDER / 4 + 1) * GROUP_SIZE];
2010-09-25 19:53:48 +00:00
__local FLACCLSubframeData task;
const int tid = get_local_id(0);
2010-09-20 05:32:05 +00:00
// fetch task data
2010-09-25 19:53:48 +00:00
if (tid < sizeof(task) / sizeof(int))
2010-10-23 18:29:06 +00:00
((__local int*)&task)[tid] = ((__global int*)(tasks + taskCount * get_group_id(0)))[tid];
for (int ord4 = 0; ord4 < (MAX_ORDER / 4 + 1); ord4 ++)
product[ord4 * GROUP_SIZE + tid] = 0.0f;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
int bs = task.blocksize;
2010-10-23 18:29:06 +00:00
int windowOffs = get_group_id(1) * bs;
2010-09-20 05:32:05 +00:00
2010-09-25 19:53:48 +00:00
data[tid] = tid < bs ? samples[task.samplesOffs + tid] * window[windowOffs + tid] : 0.0f;
2010-09-20 05:32:05 +00:00
2010-09-25 19:53:48 +00:00
int tid0 = tid % (GROUP_SIZE >> 2);
int tid1 = tid / (GROUP_SIZE >> 2);
__local float4 * dptr = ((__local float4 *)&data[0]) + tid0;
2010-10-23 18:29:06 +00:00
__local float4 * dptr1 = ((__local float4 *)&data[tid1]) + tid0;
2010-09-25 19:53:48 +00:00
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
2010-09-20 05:32:05 +00:00
{
2010-09-25 19:53:48 +00:00
// fetch samples
float nextData = pos + tid + GROUP_SIZE < bs ? samples[task.samplesOffs + pos + tid + GROUP_SIZE] * window[windowOffs + pos + tid + GROUP_SIZE] : 0.0f;
data[tid + GROUP_SIZE] = nextData;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
2010-10-23 18:29:06 +00:00
for (int ord4 = 0; ord4 < (MAX_ORDER / 4 + 1); ord4 ++)
product[ord4 * GROUP_SIZE + tid] += dot(dptr[0], dptr1[ord4]);
2010-09-25 19:53:48 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
data[tid] = nextData;
}
2010-10-23 18:29:06 +00:00
for (int ord4 = 0; ord4 < (MAX_ORDER / 4 + 1); ord4 ++)
for (int l = (GROUP_SIZE >> 3); l > 0; l >>= 1)
{
if (tid0 < l)
product[ord4 * GROUP_SIZE + tid] += product[ord4 * GROUP_SIZE + tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid <= MAX_ORDER)
output[(get_group_id(0) * get_num_groups(1) + get_group_id(1)) * (MAX_ORDER + 1) + tid] = product[tid * (GROUP_SIZE >> 2)];
2010-09-20 05:32:05 +00:00
}
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
2010-10-23 18:29:06 +00:00
void clComputeLPC(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks,
2010-09-25 19:53:48 +00:00
__global float *autoc,
2010-09-20 05:32:05 +00:00
__global float *lpcs,
2010-09-25 19:53:48 +00:00
int taskCount, // tasks per block
int windowCount
2010-09-20 05:32:05 +00:00
)
{
__local struct {
FLACCLSubframeData task;
volatile float ldr[32];
volatile float gen1[32];
volatile float error[32];
volatile float autoc[33];
volatile int lpcOffs;
volatile int autocOffs;
} shared;
const int tid = get_local_id(0);// + get_local_id(1) * 32;
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
2010-09-25 19:53:48 +00:00
((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1)))[tid];
2010-09-20 05:32:05 +00:00
if (tid == 0)
{
2010-09-25 19:53:48 +00:00
shared.lpcOffs = (get_group_id(0) + get_group_id(1) * windowCount) * (MAX_ORDER + 1) * 32;
shared.autocOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1);
2010-09-20 05:32:05 +00:00
}
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
if (get_local_id(0) <= MAX_ORDER)
shared.autoc[get_local_id(0)] = autoc[shared.autocOffs + get_local_id(0)];
if (get_local_id(0) + get_local_size(0) <= MAX_ORDER)
shared.autoc[get_local_id(0) + get_local_size(0)] = autoc[shared.autocOffs + get_local_id(0) + get_local_size(0)];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// Compute LPC using Schur and Levinson-Durbin recursion
float gen0 = shared.gen1[get_local_id(0)] = shared.autoc[get_local_id(0)+1];
shared.ldr[get_local_id(0)] = 0.0f;
float error = shared.autoc[0];
2010-10-10 23:28:38 +00:00
2010-10-23 18:29:06 +00:00
#ifdef DEBUGPRINT1
2010-10-10 23:28:38 +00:00
int magic = shared.autoc[0] == 177286873088.0f;
if (magic && get_local_id(0) <= MAX_ORDER)
printf("autoc[%d] == %f\n", get_local_id(0), shared.autoc[get_local_id(0)]);
#endif
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
for (int order = 0; order < MAX_ORDER; order++)
2010-09-20 05:32:05 +00:00
{
// Schur recursion
float reff = -shared.gen1[0] / error;
2010-10-23 18:29:06 +00:00
//error += shared.gen1[0] * reff; // Equivalent to error *= (1 - reff * reff);
error *= (1 - reff * reff);
2010-09-20 05:32:05 +00:00
float gen1;
2010-09-25 19:53:48 +00:00
if (get_local_id(0) < MAX_ORDER - 1 - order)
2010-09-20 05:32:05 +00:00
{
gen1 = shared.gen1[get_local_id(0) + 1] + reff * gen0;
gen0 += shared.gen1[get_local_id(0) + 1] * reff;
}
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
if (get_local_id(0) < MAX_ORDER - 1 - order)
2010-09-20 05:32:05 +00:00
shared.gen1[get_local_id(0)] = gen1;
2010-10-23 18:29:06 +00:00
#ifdef DEBUGPRINT1
2010-10-10 23:28:38 +00:00
if (magic && get_local_id(0) == 0)
printf("order == %d, reff == %f, error = %f\n", order, reff, error);
if (magic && get_local_id(0) <= MAX_ORDER)
printf("gen[%d] == %f, %f\n", get_local_id(0), gen0, gen1);
#endif
2010-09-20 05:32:05 +00:00
// Store prediction error
if (get_local_id(0) == 0)
shared.error[order] = error;
// Levinson-Durbin recursion
float ldr =
select(0.0f, reff * shared.ldr[order - 1 - get_local_id(0)], get_local_id(0) < order) +
select(0.0f, reff, get_local_id(0) == order);
barrier(CLK_LOCAL_MEM_FENCE);
shared.ldr[get_local_id(0)] += ldr;
barrier(CLK_LOCAL_MEM_FENCE);
// Output coeffs
if (get_local_id(0) <= order)
lpcs[shared.lpcOffs + order * 32 + get_local_id(0)] = -shared.ldr[order - get_local_id(0)];
2010-10-10 23:28:38 +00:00
//if (get_local_id(0) <= order + 1 && fabs(-shared.ldr[0]) > 3000)
// printf("coef[%d] == %f, autoc == %f, error == %f\n", get_local_id(0), -shared.ldr[order - get_local_id(0)], shared.autoc[get_local_id(0)], shared.error[get_local_id(0)]);
2010-09-20 05:32:05 +00:00
}
barrier(CLK_LOCAL_MEM_FENCE);
// Output prediction error estimates
2010-09-25 19:53:48 +00:00
if (get_local_id(0) < MAX_ORDER)
lpcs[shared.lpcOffs + MAX_ORDER * 32 + get_local_id(0)] = shared.error[get_local_id(0)];
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
2010-10-23 18:29:06 +00:00
void clQuantizeLPC(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks,
2010-09-25 19:53:48 +00:00
__global float*lpcs,
2010-09-20 05:32:05 +00:00
int taskCount, // tasks per block
int taskCountLPC, // tasks per set of coeffs (<= 32)
int minprecision,
int precisions
)
{
__local struct {
FLACCLSubframeData task;
2010-10-06 11:16:41 +00:00
volatile int tmpi[32];
2010-09-20 05:32:05 +00:00
volatile int index[64];
volatile float error[64];
volatile int lpcOffs;
} shared;
2010-10-06 11:16:41 +00:00
const int tid = get_local_id(0);
2010-09-20 05:32:05 +00:00
// fetch task data
if (tid < sizeof(shared.task) / sizeof(int))
((__local int*)&shared.task)[tid] = ((__global int*)(tasks + get_group_id(1) * taskCount))[tid];
if (tid == 0)
2010-09-25 19:53:48 +00:00
shared.lpcOffs = (get_group_id(0) + get_group_id(1) * get_num_groups(0)) * (MAX_ORDER + 1) * 32;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
// Select best orders based on Akaike's Criteria
2010-10-06 11:16:41 +00:00
shared.index[tid] = min(MAX_ORDER - 1, tid);
shared.error[tid] = shared.task.blocksize * 64 + tid;
2010-10-10 23:28:38 +00:00
shared.index[32 + tid] = MAX_ORDER - 1;
shared.error[32 + tid] = shared.task.blocksize * 64 + tid + 32;
2010-10-06 11:16:41 +00:00
// Load prediction error estimates
if (tid < MAX_ORDER)
2010-10-10 23:28:38 +00:00
shared.error[tid] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + tid]) + tid * 4.12f * log(shared.task.blocksize);
2010-10-06 11:16:41 +00:00
//shared.error[get_local_id(0)] = shared.task.blocksize * log(lpcs[shared.lpcOffs + MAX_ORDER * 32 + get_local_id(0)]) + get_local_id(0) * 0.30f * (shared.task.abits + 1) * log(shared.task.blocksize);
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// Sort using bitonic sort
for(int size = 2; size < 64; size <<= 1){
//Bitonic merge
2010-09-25 19:53:48 +00:00
int ddd = (tid & (size / 2)) == 0;
2010-09-20 05:32:05 +00:00
for(int stride = size / 2; stride > 0; stride >>= 1){
2010-09-25 19:53:48 +00:00
int pos = 2 * tid - (tid & (stride - 1));
2010-10-06 11:16:41 +00:00
float e0 = shared.error[pos];
float e1 = shared.error[pos + stride];
int i0 = shared.index[pos];
int i1 = shared.index[pos + stride];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-06 11:16:41 +00:00
if ((e0 >= e1) == ddd)
2010-09-20 05:32:05 +00:00
{
shared.error[pos] = e1;
shared.error[pos + stride] = e0;
shared.index[pos] = i1;
shared.index[pos + stride] = i0;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
//ddd == dir for the last bitonic merge step
{
for(int stride = 32; stride > 0; stride >>= 1){
//barrier(CLK_LOCAL_MEM_FENCE);
2010-09-25 19:53:48 +00:00
int pos = 2 * tid - (tid & (stride - 1));
2010-10-06 11:16:41 +00:00
float e0 = shared.error[pos];
float e1 = shared.error[pos + stride];
int i0 = shared.index[pos];
int i1 = shared.index[pos + stride];
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-06 11:16:41 +00:00
if (e0 >= e1)
2010-09-20 05:32:05 +00:00
{
shared.error[pos] = e1;
shared.error[pos + stride] = e0;
shared.index[pos] = i1;
shared.index[pos + stride] = i0;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
2010-10-10 23:28:38 +00:00
//shared.index[tid] = MAX_ORDER - 1;
//barrier(CLK_LOCAL_MEM_FENCE);
2010-09-20 05:32:05 +00:00
// Quantization
2010-10-06 11:16:41 +00:00
for (int i = 0; i < taskCountLPC; i ++)
2010-09-20 05:32:05 +00:00
{
int order = shared.index[i >> precisions];
2010-10-06 11:16:41 +00:00
float lpc = tid <= order ? lpcs[shared.lpcOffs + order * 32 + tid] : 0.0f;
2010-09-20 05:32:05 +00:00
// get 15 bits of each coeff
int coef = convert_int_rte(lpc * (1 << 15));
// remove sign bits
shared.tmpi[tid] = coef ^ (coef >> 31);
barrier(CLK_LOCAL_MEM_FENCE);
// OR reduction
for (int l = get_local_size(0) / 2; l > 1; l >>= 1)
{
2010-10-06 11:16:41 +00:00
if (tid < l)
2010-09-20 05:32:05 +00:00
shared.tmpi[tid] |= shared.tmpi[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
//SUM32(shared.tmpi,tid,|=);
// choose precision
//int cbits = max(3, min(10, 5 + (shared.task.abits >> 1))); // - convert_int_rte(shared.PE[order - 1])
int cbits = max(3, min(min(13 - minprecision + (i - ((i >> precisions) << precisions)) - (shared.task.blocksize <= 2304) - (shared.task.blocksize <= 1152) - (shared.task.blocksize <= 576), shared.task.abits), clz(order) + 1 - shared.task.abits));
// calculate shift based on precision and number of leading zeroes in coeffs
2010-10-06 11:16:41 +00:00
int shift = max(0,min(15, clz(shared.tmpi[0] | shared.tmpi[1]) - 18 + cbits));
2010-09-20 05:32:05 +00:00
//cbits = 13;
//shift = 15;
//if (shared.task.abits + 32 - clz(order) < shift
2010-10-06 11:16:41 +00:00
//int shift = max(0,min(15, (shared.task.abits >> 2) - 14 + clz(shared.tmpi[tid & ~31]) + ((32 - clz(order))>>1)));
2010-09-20 05:32:05 +00:00
// quantize coeffs with given shift
coef = convert_int_rte(clamp(lpc * (1 << shift), -1 << (cbits - 1), 1 << (cbits - 1)));
// error correction
2010-10-06 11:16:41 +00:00
//shared.tmp[tid] = (tid != 0) * (shared.arp[tid - 1]*(1 << shared.task.shift) - shared.task.coefs[tid - 1]);
//shared.task.coefs[tid] = max(-(1 << (shared.task.cbits - 1)), min((1 << (shared.task.cbits - 1))-1, convert_int_rte((shared.arp[tid]) * (1 << shared.task.shift) + shared.tmp[tid])));
2010-09-20 05:32:05 +00:00
// remove sign bits
shared.tmpi[tid] = coef ^ (coef >> 31);
barrier(CLK_LOCAL_MEM_FENCE);
// OR reduction
for (int l = get_local_size(0) / 2; l > 1; l >>= 1)
{
2010-10-06 11:16:41 +00:00
if (tid < l)
2010-09-20 05:32:05 +00:00
shared.tmpi[tid] |= shared.tmpi[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
//SUM32(shared.tmpi,tid,|=);
// calculate actual number of bits (+1 for sign)
2010-10-06 11:16:41 +00:00
cbits = 1 + 32 - clz(shared.tmpi[0] | shared.tmpi[1]);
2010-09-20 05:32:05 +00:00
// output shift, cbits and output coeffs
2010-10-10 23:28:38 +00:00
int taskNo = get_group_id(1) * taskCount + get_group_id(0) * taskCountLPC + i;
if (tid == 0)
tasks[taskNo].data.shift = shift;
if (tid == 0)
tasks[taskNo].data.cbits = cbits;
if (tid == 0)
tasks[taskNo].data.residualOrder = order + 1;
if (tid <= order)
tasks[taskNo].coefs[tid] = coef;
2010-09-20 05:32:05 +00:00
}
}
2010-10-23 18:29:06 +00:00
#ifndef PARTORDER
#define PARTORDER 4
#endif
2010-09-25 19:53:48 +00:00
__kernel /*__attribute__(( vec_type_hint (int4)))*/ __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-10-23 18:29:06 +00:00
void clEstimateResidual(
2010-09-20 05:32:05 +00:00
__global int*output,
__global int*samples,
__global FLACCLSubframeTask *tasks
)
{
2010-10-10 23:28:38 +00:00
__local int data[GROUP_SIZE * 2];
2010-09-20 05:32:05 +00:00
__local FLACCLSubframeTask task;
2010-10-10 23:28:38 +00:00
__local int residual[GROUP_SIZE];
2010-10-23 18:29:06 +00:00
__local int len[GROUP_SIZE >> PARTORDER];
2010-09-20 05:32:05 +00:00
const int tid = get_local_id(0);
if (tid < sizeof(task)/sizeof(int))
2010-09-25 19:53:48 +00:00
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid];
2010-09-20 05:32:05 +00:00
barrier(CLK_GLOBAL_MEM_FENCE);
int ro = task.data.residualOrder;
int bs = task.data.blocksize;
2010-10-10 23:28:38 +00:00
if (tid < 32 && tid >= ro)
task.coefs[tid] = 0;
2010-10-23 18:29:06 +00:00
if (tid < (GROUP_SIZE >> PARTORDER))
2010-10-10 23:28:38 +00:00
len[tid] = 0;
2010-10-15 19:56:36 +00:00
data[tid] = 0;
barrier(CLK_LOCAL_MEM_FENCE);
__local int4 * cptr = (__local int4 *)&task.coefs[0];
int4 cptr0 = cptr[0];
#if MAX_ORDER > 4
int4 cptr1 = cptr[1];
#if MAX_ORDER > 8
int4 cptr2 = cptr[2];
#endif
2010-10-10 23:28:38 +00:00
#endif
2010-10-17 05:35:11 +00:00
2010-09-25 19:53:48 +00:00
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
2010-09-20 05:32:05 +00:00
{
// fetch samples
2010-10-15 19:56:36 +00:00
int offs = pos + tid;
int nextData = offs < bs ? samples[task.data.samplesOffs + offs] >> task.data.wbits : 0;
2010-09-25 19:53:48 +00:00
data[tid + GROUP_SIZE] = nextData;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
// compute residual
2010-10-15 19:56:36 +00:00
__local int4 * dptr = (__local int4 *)&data[tid + GROUP_SIZE - ro];
int4 sum = dptr[0] * cptr0
2010-10-10 23:28:38 +00:00
#if MAX_ORDER > 4
2010-10-15 19:56:36 +00:00
+ dptr[1] * cptr1
2010-09-20 05:32:05 +00:00
#if MAX_ORDER > 8
2010-10-15 19:56:36 +00:00
+ dptr[2] * cptr2
2010-09-20 05:32:05 +00:00
#if MAX_ORDER > 12
2010-10-10 23:28:38 +00:00
+ dptr[3] * cptr[3]
2010-09-20 05:32:05 +00:00
#if MAX_ORDER > 16
2010-10-10 23:28:38 +00:00
+ dptr[4] * cptr[4]
+ dptr[5] * cptr[5]
+ dptr[6] * cptr[6]
+ dptr[7] * cptr[7]
#endif
2010-09-20 05:32:05 +00:00
#endif
#endif
#endif
2010-10-10 23:28:38 +00:00
;
2010-10-17 05:35:11 +00:00
2010-10-23 18:29:06 +00:00
int t = nextData - ((sum.x + sum.y + sum.z + sum.w) >> task.data.shift);
2010-10-17 05:35:11 +00:00
// ensure we're within frame bounds
t = select(0, t, offs >= ro && offs < bs);
// overflow protection
2010-10-15 19:56:36 +00:00
t = clamp(t, -0x7fffff, 0x7fffff);
2010-10-17 05:35:11 +00:00
// convert to unsigned
2010-10-15 19:56:36 +00:00
residual[tid] = (t << 1) ^ (t >> 31);
2010-10-23 18:29:06 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
data[tid] = nextData;
2010-09-20 05:32:05 +00:00
2010-10-17 05:35:11 +00:00
// calculate rice partition bit length for every 16 samples
2010-10-23 18:29:06 +00:00
if (tid < (GROUP_SIZE >> PARTORDER))
2010-10-10 23:28:38 +00:00
{
2010-10-23 18:29:06 +00:00
//__local int4 * chunk = (__local int4 *)&residual[tid << PARTORDER];
__local int4 * chunk = ((__local int4 *)residual) + (tid << (PARTORDER - 2));
#if PARTORDER == 3
int4 sum = chunk[0] + chunk[1];
#elif PARTORDER == 4
int4 sum = chunk[0] + chunk[1] + chunk[2] + chunk[3]; // [0 .. (1 << (PARTORDER - 2)) - 1]
#elif PARTORDER == 5
int4 sum = chunk[0] + chunk[1] + chunk[2] + chunk[3] + chunk[4] + chunk[5] + chunk[6] + chunk[7];
#else
#error Invalid PARTORDER
#endif
2010-10-10 23:28:38 +00:00
int res = sum.x + sum.y + sum.z + sum.w;
2010-10-23 18:29:06 +00:00
int k = clamp(clz(1 << PARTORDER) - clz(res), 0, 14); // 27 - clz(res) == clz(16) - clz(res) == log2(res / 16)
2010-10-17 05:35:11 +00:00
#ifdef EXTRAMODE
2010-10-23 18:29:06 +00:00
#if PARTORDER == 3
sum = (chunk[0] >> k) + (chunk[1] >> k);
#elif PARTORDER == 4
2010-10-17 05:35:11 +00:00
sum = (chunk[0] >> k) + (chunk[1] >> k) + (chunk[2] >> k) + (chunk[3] >> k);
#else
2010-10-23 18:29:06 +00:00
#error Invalid PARTORDER
#endif
len[tid] += (k << PARTORDER) + sum.x + sum.y + sum.z + sum.w;
#else
len[tid] += (k << PARTORDER) + (res >> k);
2010-10-10 23:28:38 +00:00
#endif
2010-10-17 05:35:11 +00:00
}
2010-09-20 05:32:05 +00:00
}
2010-10-10 23:28:38 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-23 18:29:06 +00:00
for (int l = GROUP_SIZE >> (PARTORDER + 1); l > 0; l >>= 1)
2010-10-10 23:28:38 +00:00
{
if (tid < l)
len[tid] += len[tid + l];
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0)
output[get_group_id(0)] = len[0] + (bs - ro);
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(32, 1, 1)))
2010-10-23 18:29:06 +00:00
void clChooseBestMethod(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks,
__global int *residual,
int taskCount
)
{
__local struct {
2010-10-06 11:16:41 +00:00
volatile int index[32];
volatile int length[32];
2010-09-20 05:32:05 +00:00
} shared;
2010-10-06 11:16:41 +00:00
__local FLACCLSubframeData task;
const int tid = get_local_id(0);
2010-09-20 05:32:05 +00:00
shared.length[tid] = 0x7fffffff;
shared.index[tid] = tid;
2010-10-06 11:16:41 +00:00
for (int taskNo = 0; taskNo < taskCount; taskNo++)
{
// fetch task data
if (tid < sizeof(task) / sizeof(int))
2010-10-17 05:35:11 +00:00
((__local int*)&task)[tid] = ((__global int*)(&tasks[taskNo + taskCount * get_group_id(0)].data))[tid];
2010-09-20 05:32:05 +00:00
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-09-20 05:32:05 +00:00
2010-10-06 11:16:41 +00:00
if (tid == 0)
{
// fetch part sum
2010-10-17 05:35:11 +00:00
int partLen = residual[taskNo + taskCount * get_group_id(0)];
2010-10-06 11:16:41 +00:00
//// calculate part size
//int residualLen = task[get_local_id(1)].data.blocksize - task[get_local_id(1)].data.residualOrder;
//residualLen = residualLen * (task[get_local_id(1)].data.type != Constant || psum != 0);
//// calculate rice parameter
//int k = max(0, min(14, convert_int_rtz(log2((psum + 0.000001f) / (residualLen + 0.000001f) + 0.5f))));
//// calculate part bit length
//int partLen = residualLen * (k + 1) + (psum >> k);
int obits = task.obits - task.wbits;
shared.length[taskNo] =
min(obits * task.blocksize,
task.type == Fixed ? task.residualOrder * obits + 6 + (4 * 1/2) + partLen :
task.type == LPC ? task.residualOrder * obits + 4 + 5 + task.residualOrder * task.cbits + 6 + (4 * 1/2)/* << porder */ + partLen :
2010-10-15 19:56:36 +00:00
task.type == Constant ? obits * select(1, task.blocksize, partLen != task.blocksize - task.residualOrder) :
2010-10-06 11:16:41 +00:00
obits * task.blocksize);
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
}
2010-09-20 05:32:05 +00:00
//shared.index[get_local_id(0)] = get_local_id(0);
2010-10-17 05:35:11 +00:00
//shared.length[get_local_id(0)] = (get_local_id(0) < taskCount) ? tasks[get_local_id(0) + taskCount * get_group_id(0)].size : 0x7fffffff;
2010-09-20 05:32:05 +00:00
if (tid < taskCount)
2010-10-17 05:35:11 +00:00
tasks[tid + taskCount * get_group_id(0)].data.size = shared.length[tid];
2010-09-20 05:32:05 +00:00
int l1 = shared.length[tid];
2010-10-11 08:46:36 +00:00
for (int l = 16; l > 0; l >>= 1)
2010-09-20 05:32:05 +00:00
{
2010-10-11 08:46:36 +00:00
if (tid < l)
2010-09-20 05:32:05 +00:00
{
2010-10-11 08:46:36 +00:00
int l2 = shared.length[tid + l];
shared.index[tid] = shared.index[tid + select(0, l, l2 < l1)];
2010-09-20 05:32:05 +00:00
shared.length[tid] = l1 = min(l1, l2);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0)
2010-10-17 05:35:11 +00:00
tasks[taskCount * get_group_id(0)].data.best_index = taskCount * get_group_id(0) + shared.index[0];
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
2010-10-23 18:29:06 +00:00
void clCopyBestMethod(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
)
{
__local int best_index;
if (get_local_id(0) == 0)
2010-10-17 05:35:11 +00:00
best_index = tasks[count * get_group_id(0)].data.best_index;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
2010-10-17 05:35:11 +00:00
((__global int*)(tasks_out + get_group_id(0)))[get_local_id(0)] = ((__global int*)(tasks + best_index))[get_local_id(0)];
2010-09-20 05:32:05 +00:00
}
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(64, 1, 1)))
2010-10-23 18:29:06 +00:00
void clCopyBestMethodStereo(
2010-09-20 05:32:05 +00:00
__global FLACCLSubframeTask *tasks_out,
__global FLACCLSubframeTask *tasks,
int count
)
{
__local struct {
int best_index[4];
int best_size[4];
int lr_index[2];
} shared;
if (get_local_id(0) < 4)
2010-10-17 05:35:11 +00:00
shared.best_index[get_local_id(0)] = tasks[count * (get_group_id(0) * 4 + get_local_id(0))].data.best_index;
2010-09-20 05:32:05 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < 4)
shared.best_size[get_local_id(0)] = tasks[shared.best_index[get_local_id(0)]].data.size;
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) == 0)
{
int bitsBest = shared.best_size[2] + shared.best_size[3]; // MidSide
shared.lr_index[0] = shared.best_index[2];
shared.lr_index[1] = shared.best_index[3];
if (bitsBest > shared.best_size[3] + shared.best_size[1]) // RightSide
{
bitsBest = shared.best_size[3] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[3];
shared.lr_index[1] = shared.best_index[1];
}
if (bitsBest > shared.best_size[0] + shared.best_size[3]) // LeftSide
{
bitsBest = shared.best_size[0] + shared.best_size[3];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[3];
}
if (bitsBest > shared.best_size[0] + shared.best_size[1]) // LeftRight
{
bitsBest = shared.best_size[0] + shared.best_size[1];
shared.lr_index[0] = shared.best_index[0];
shared.lr_index[1] = shared.best_index[1];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
2010-10-17 05:35:11 +00:00
((__global int*)(tasks_out + 2 * get_group_id(0)))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[0]))[get_local_id(0)];
2010-09-20 05:32:05 +00:00
if (get_local_id(0) == 0)
2010-10-17 05:35:11 +00:00
tasks_out[2 * get_group_id(0)].data.residualOffs = tasks[shared.best_index[0]].data.residualOffs;
2010-09-20 05:32:05 +00:00
if (get_local_id(0) < sizeof(FLACCLSubframeTask)/sizeof(int))
2010-10-17 05:35:11 +00:00
((__global int*)(tasks_out + 2 * get_group_id(0) + 1))[get_local_id(0)] = ((__global int*)(tasks + shared.lr_index[1]))[get_local_id(0)];
2010-09-20 05:32:05 +00:00
if (get_local_id(0) == 0)
2010-10-17 05:35:11 +00:00
tasks_out[2 * get_group_id(0) + 1].data.residualOffs = tasks[shared.best_index[1]].data.residualOffs;
2010-09-20 05:32:05 +00:00
}
2010-10-10 23:28:38 +00:00
// get_group_id(0) == task index
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-10-23 18:29:06 +00:00
void clEncodeResidual(
2010-10-06 11:16:41 +00:00
__global int *output,
__global int *samples,
__global FLACCLSubframeTask *tasks
)
{
__local FLACCLSubframeTask task;
__local int data[GROUP_SIZE * 2];
const int tid = get_local_id(0);
if (get_local_id(0) < sizeof(task) / sizeof(int))
2010-10-10 23:28:38 +00:00
((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)];
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
2010-10-15 19:56:36 +00:00
if (tid < 32 && tid >= ro)
task.coefs[tid] = 0;
barrier(CLK_LOCAL_MEM_FENCE);
__local int4 * cptr = (__local int4 *)&task.coefs[0];
int4 cptr0 = cptr[0];
#if MAX_ORDER > 4
int4 cptr1 = cptr[1];
#if MAX_ORDER > 8
int4 cptr2 = cptr[2];
#endif
#endif
data[tid] = 0;
2010-10-06 11:16:41 +00:00
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
{
// fetch samples
2010-10-15 19:56:36 +00:00
int off = pos + tid;
int nextData = off < bs ? samples[task.data.samplesOffs + off] >> task.data.wbits : 0;
2010-10-06 11:16:41 +00:00
data[tid + GROUP_SIZE] = nextData;
barrier(CLK_LOCAL_MEM_FENCE);
// compute residual
2010-10-15 19:56:36 +00:00
__local int4 * dptr = (__local int4 *)&data[tid + GROUP_SIZE - ro];
int4 sum = dptr[0] * cptr0
#if MAX_ORDER > 4
+ dptr[1] * cptr1
#if MAX_ORDER > 8
+ dptr[2] * cptr2
#if MAX_ORDER > 12
+ dptr[3] * cptr[3]
#if MAX_ORDER > 16
+ dptr[4] * cptr[4]
+ dptr[5] * cptr[5]
+ dptr[6] * cptr[6]
+ dptr[7] * cptr[7]
#endif
#endif
#endif
#endif
;
if (off >= ro && off < bs)
output[task.data.residualOffs + off] = data[tid + GROUP_SIZE] - ((sum.x + sum.y + sum.z + sum.w) >> task.data.shift);
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
data[tid] = nextData;
}
}
2010-10-23 18:29:06 +00:00
// get_group_id(0) == partition index / (GROUP_SIZE / 16)
2010-10-10 23:28:38 +00:00
// get_group_id(1) == task index
2010-10-06 11:16:41 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-10-23 18:29:06 +00:00
void clCalcPartition(
2010-10-06 11:16:41 +00:00
__global int *partition_lengths,
__global int *residual,
__global FLACCLSubframeTask *tasks,
int max_porder, // <= 8
int psize // == task.blocksize >> max_porder?
)
{
2010-10-23 18:29:06 +00:00
__local int pl[(GROUP_SIZE / 16)][15];
2010-10-06 11:16:41 +00:00
__local FLACCLSubframeData task;
const int tid = get_local_id(0);
if (tid < sizeof(task) / sizeof(int))
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(1)]))[tid];
2010-10-23 18:29:06 +00:00
if (tid < (GROUP_SIZE / 16))
{
for (int k = 0; k <= 14; k++)
pl[tid][k] = 0;
}
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-23 18:29:06 +00:00
int start = get_group_id(0) * psize * (GROUP_SIZE / 16);
int end = min(start + psize * (GROUP_SIZE / 16), task.blocksize);
for (int offs = start + tid; offs < end; offs += GROUP_SIZE)
2010-10-06 11:16:41 +00:00
{
// fetch residual
2010-10-23 18:29:06 +00:00
int s = (offs >= task.residualOrder && offs < end) ? residual[task.residualOffs + offs] : 0;
2010-10-06 11:16:41 +00:00
// convert to unsigned
2010-10-23 18:29:06 +00:00
s = clamp(s, -0x7fffff, 0x7fffff);
s = (s << 1) ^ (s >> 31);
2010-10-06 11:16:41 +00:00
// calc number of unary bits for each residual sample with each rice paramater
2010-10-23 18:29:06 +00:00
int part = (offs - start) / psize;
for (int k = 0; k <= 14; k++)
atom_add(&pl[part][k], s >> k);
//pl[part][k] += s >> k;
}
2010-10-06 11:16:41 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-23 18:29:06 +00:00
int part = get_group_id(0) * (GROUP_SIZE / 16) + tid;
if (tid < (GROUP_SIZE / 16) && part < (1 << max_porder))
2010-10-06 11:16:41 +00:00
{
2010-10-23 18:29:06 +00:00
for (int k = 0; k <= 14; k++)
{
// output length
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (k << (max_porder + 1));
partition_lengths[pos + part] = min(0x7fffff, pl[tid][k]) + select(psize, psize - task.residualOrder, part == 0) * (k + 1);
// if (get_group_id(1) == 0)
//printf("pl[%d][%d] == %d\n", k, part, min(0x7fffff, pl[k][tid]) + (psize - task.residualOrder * (part == 0)) * (k + 1));
}
2010-10-06 11:16:41 +00:00
}
}
2010-10-17 05:35:11 +00:00
// get_group_id(0) == task index
2010-10-15 19:56:36 +00:00
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-10-23 18:29:06 +00:00
void clCalcPartition16(
2010-10-15 19:56:36 +00:00
__global int *partition_lengths,
__global int *residual,
__global int *samples,
__global FLACCLSubframeTask *tasks,
int max_porder // <= 8
)
{
__local FLACCLSubframeTask task;
__local int data[GROUP_SIZE * 2];
__local int res[GROUP_SIZE];
const int tid = get_local_id(0);
if (tid < sizeof(task) / sizeof(int))
2010-10-17 05:35:11 +00:00
((__local int*)&task)[tid] = ((__global int*)(&tasks[get_group_id(0)]))[tid];
2010-10-15 19:56:36 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
int bs = task.data.blocksize;
int ro = task.data.residualOrder;
if (tid >= ro && tid < 32)
task.coefs[tid] = 0;
int k = tid % 16;
int x = tid / 16;
barrier(CLK_LOCAL_MEM_FENCE);
__local int4 * cptr = (__local int4 *)&task.coefs[0];
int4 cptr0 = cptr[0];
#if MAX_ORDER > 4
int4 cptr1 = cptr[1];
#if MAX_ORDER > 8
int4 cptr2 = cptr[2];
#endif
#endif
data[tid] = 0;
for (int pos = 0; pos < bs; pos += GROUP_SIZE)
{
int offs = pos + tid;
// fetch samples
int nextData = offs < bs ? samples[task.data.samplesOffs + offs] >> task.data.wbits : 0;
data[tid + GROUP_SIZE] = nextData;
barrier(CLK_LOCAL_MEM_FENCE);
// compute residual
__local int4 * dptr = (__local int4 *)&data[tid + GROUP_SIZE - ro];
int4 sum = dptr[0] * cptr0
#if MAX_ORDER > 4
+ dptr[1] * cptr1
#if MAX_ORDER > 8
+ dptr[2] * cptr2
#if MAX_ORDER > 12
+ dptr[3] * cptr[3]
#if MAX_ORDER > 16
+ dptr[4] * cptr[4]
+ dptr[5] * cptr[5]
+ dptr[6] * cptr[6]
+ dptr[7] * cptr[7]
#endif
#endif
#endif
#endif
;
int s = select(0, nextData - ((sum.x + sum.y + sum.z + sum.w) >> task.data.shift), offs >= ro && offs < bs);
// output residual
if (offs < bs)
residual[task.data.residualOffs + offs] = s;
//int s = select(0, residual[task.data.residualOffs + offs], offs >= ro && offs < bs);
s = clamp(s, -0x7fffff, 0x7fffff);
// convert to unsigned
res[tid] = (s << 1) ^ (s >> 31);
2010-10-23 18:29:06 +00:00
// for (int k = 0; k < 15; k++) atom_add(&pl[x][k], s >> k);
2010-10-15 19:56:36 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
data[tid] = nextData;
// calc number of unary bits for each residual sample with each rice paramater
__local int4 * chunk = (__local int4 *)&res[x << 4];
sum = (chunk[0] >> k) + (chunk[1] >> k) + (chunk[2] >> k) + (chunk[3] >> k);
s = sum.x + sum.y + sum.z + sum.w;
2010-10-17 05:35:11 +00:00
const int lpos = (15 << (max_porder + 1)) * get_group_id(0) + (k << (max_porder + 1)) + offs / 16;
2010-10-15 19:56:36 +00:00
if (k <= 14)
partition_lengths[lpos] = min(0x7fffff, s) + (16 - select(0, ro, offs < 16)) * (k + 1);
}
}
2010-10-10 23:28:38 +00:00
// Sums partition lengths for a certain k == get_group_id(0)
// Requires 128 threads
// get_group_id(0) == k
// get_group_id(1) == task index
__kernel __attribute__((reqd_work_group_size(128, 1, 1)))
2010-10-23 18:29:06 +00:00
void clSumPartition(
2010-10-10 23:28:38 +00:00
__global int* partition_lengths,
int max_porder
)
{
2010-10-23 18:29:06 +00:00
__local int data[256]; // max_porder <= 8, data length <= 1 << 9.
2010-10-10 23:28:38 +00:00
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + (get_group_id(0) << (max_porder + 1));
// fetch partition lengths
2010-10-23 18:29:06 +00:00
int2 pl = get_local_id(0) * 2 < (1 << max_porder) ? *(__global int2*)&partition_lengths[pos + get_local_id(0) * 2] : 0;
data[get_local_id(0)] = pl.x + pl.y;
2010-10-10 23:28:38 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
int in_pos = (get_local_id(0) << 1);
2010-10-23 18:29:06 +00:00
int out_pos = (1 << (max_porder - 1)) + get_local_id(0);
for (int bs = 1 << (max_porder - 2); bs > 0; bs >>= 1)
2010-10-10 23:28:38 +00:00
{
if (get_local_id(0) < bs) data[out_pos] = data[in_pos] + data[in_pos + 1];
in_pos += bs << 1;
out_pos += bs;
barrier(CLK_LOCAL_MEM_FENCE);
}
if (get_local_id(0) < (1 << max_porder))
2010-10-23 18:29:06 +00:00
partition_lengths[pos + (1 << max_porder) + get_local_id(0)] = data[get_local_id(0)];
2010-10-10 23:28:38 +00:00
if (get_local_size(0) + get_local_id(0) < (1 << max_porder))
2010-10-23 18:29:06 +00:00
partition_lengths[pos + (1 << max_porder) + get_local_size(0) + get_local_id(0)] = data[get_local_size(0) + get_local_id(0)];
2010-10-10 23:28:38 +00:00
}
// Finds optimal rice parameter for several partitions at a time.
2010-10-23 18:29:06 +00:00
// get_group_id(0) == chunk index (chunk size is GROUP_SIZE, total task size is (2 << max_porder))
2010-10-10 23:28:38 +00:00
// get_group_id(1) == task index
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-10-23 18:29:06 +00:00
void clFindRiceParameter(
2010-10-10 23:28:38 +00:00
__global int* rice_parameters,
__global int* partition_lengths,
int max_porder
)
{
const int tid = get_local_id(0);
2010-10-23 18:29:06 +00:00
const int parts = min(GROUP_SIZE, 2 << max_porder);
const int pos = (15 << (max_porder + 1)) * get_group_id(1) + get_group_id(0) * GROUP_SIZE + tid;
2010-10-10 23:28:38 +00:00
if (tid < parts)
{
2010-10-23 18:29:06 +00:00
int best_l = partition_lengths[pos];
int best_k = 0;
for (int k = 1; k <= 14; k++)
{
int l = partition_lengths[pos + (k << (max_porder + 1))];
best_k = select(best_k, k, l < best_l);
best_l = min(best_l, l);
}
2010-10-10 23:28:38 +00:00
// output rice parameter
2010-10-23 18:29:06 +00:00
rice_parameters[(get_group_id(1) << (max_porder + 2)) + get_group_id(0) * GROUP_SIZE + tid] = best_k;
2010-10-10 23:28:38 +00:00
// output length
2010-10-23 18:29:06 +00:00
rice_parameters[(get_group_id(1) << (max_porder + 2)) + (1 << (max_porder + 1)) + get_group_id(0) * GROUP_SIZE + tid] = best_l;
2010-10-10 23:28:38 +00:00
}
}
// get_group_id(0) == task index
__kernel __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
2010-10-23 18:29:06 +00:00
void clFindPartitionOrder(
2010-10-10 23:28:38 +00:00
__global int* best_rice_parameters,
__global FLACCLSubframeTask *tasks,
__global int* rice_parameters,
int max_porder
)
{
2010-10-23 18:29:06 +00:00
__local int partlen[9];
2010-10-10 23:28:38 +00:00
__local FLACCLSubframeData task;
const int pos = (get_group_id(0) << (max_porder + 2)) + (2 << max_porder);
if (get_local_id(0) < sizeof(task) / sizeof(int))
((__local int*)&task)[get_local_id(0)] = ((__global int*)(&tasks[get_group_id(0)]))[get_local_id(0)];
2010-10-23 18:29:06 +00:00
if (get_local_id(0) < 9)
partlen[get_local_id(0)] = 0;
2010-10-10 23:28:38 +00:00
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-23 18:29:06 +00:00
// fetch partition lengths
for (int offs = 0; offs < (2 << max_porder); offs += GROUP_SIZE)
2010-10-10 23:28:38 +00:00
{
2010-10-23 18:29:06 +00:00
if (offs + get_local_id(0) < (2 << max_porder) - 1)
2010-10-10 23:28:38 +00:00
{
2010-10-23 18:29:06 +00:00
int len = rice_parameters[pos + offs + get_local_id(0)];
int porder = 31 - clz((2 << max_porder) - 1 - offs - get_local_id(0));
atom_add(&partlen[porder], len);
2010-10-10 23:28:38 +00:00
}
}
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-23 18:29:06 +00:00
int best_length = partlen[0] + 4;
int best_porder = 0;
for (int porder = 1; porder <= max_porder; porder++)
2010-10-10 23:28:38 +00:00
{
2010-10-23 18:29:06 +00:00
int length = (4 << porder) + partlen[porder];
best_porder = select(best_porder, porder, length < best_length);
best_length = min(best_length, length);
2010-10-10 23:28:38 +00:00
}
2010-10-23 18:29:06 +00:00
2010-10-10 23:28:38 +00:00
if (get_local_id(0) == 0)
{
2010-10-23 18:29:06 +00:00
tasks[get_group_id(0)].data.porder = best_porder;
2010-10-10 23:28:38 +00:00
int obits = task.obits - task.wbits;
tasks[get_group_id(0)].data.size =
2010-10-23 18:29:06 +00:00
task.type == Fixed ? task.residualOrder * obits + 6 + best_length :
task.type == LPC ? task.residualOrder * obits + 6 + best_length + 4 + 5 + task.residualOrder * task.cbits :
2010-10-10 23:28:38 +00:00
task.type == Constant ? obits : obits * task.blocksize;
}
barrier(CLK_LOCAL_MEM_FENCE);
2010-10-23 18:29:06 +00:00
for (int offs = 0; offs < (1 << best_porder); offs += GROUP_SIZE)
if (offs + get_local_id(0) < (1 << best_porder))
best_rice_parameters[(get_group_id(0) << max_porder) + offs + get_local_id(0)] = rice_parameters[pos - (2 << best_porder) + offs + get_local_id(0)];
2010-10-10 23:28:38 +00:00
// FIXME: should be bytes?
}
2010-09-20 05:32:05 +00:00
#endif