Files
libaaruformat/src/close.c

816 lines
36 KiB
C
Raw Normal View History

2022-05-28 12:57:21 +01:00
/*
* This file is part of the Aaru Data Preservation Suite.
2025-08-01 21:19:45 +01:00
* Copyright (c) 2019-2025 Natalia Portillo.
2022-05-28 12:57:21 +01:00
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <errno.h>
2019-03-31 20:52:06 +01:00
#include <stdio.h>
2022-10-03 18:15:13 +01:00
#include <stdlib.h>
#ifdef __linux__
#include <sys/mman.h>
#endif
2022-05-28 12:10:04 +01:00
#include <aaruformat.h>
#include "internal.h"
#include "log.h"
/**
* @brief Closes an AaruFormat image context and frees resources.
*
* Closes the image file, frees memory, and releases all resources associated with the context.
* For images opened in write mode, this function performs critical finalization operations
* including writing cached DDT tables, updating the index, writing the final image header,
* and ensuring all data structures are properly persisted. It handles both single-level
* and multi-level DDT structures and performs comprehensive cleanup of all allocated resources.
*
* @param context Pointer to the aaruformat context to close.
*
* @return Returns one of the following status codes:
* @retval 0 Successfully closed the context and freed all resources. This is returned when:
* - The context is valid and properly initialized
* - For write mode: All cached data is successfully written to the image file
* - DDT tables (single-level or multi-level) are successfully written and indexed
* - The image index is successfully written with proper CRC validation
* - The final image header is updated with correct index offset and written
* - All memory resources are successfully freed
* - The image stream is closed without errors
*
* @retval -1 Context validation failed. This occurs when:
* - The context parameter is NULL
* - The context magic number doesn't match AARU_MAGIC (invalid context type)
* - The errno is set to EINVAL to indicate invalid argument
*
* @retval AARUF_ERROR_CANNOT_WRITE_HEADER (-16) Write operations failed. This occurs when:
* - Cannot write the initial image header at position 0 (for write mode)
* - Cannot write cached secondary DDT header or data to the image file
* - Cannot write primary DDT header or table data to the image file
* - Cannot write single-level DDT header or table data to the image file
* - Cannot write index header to the image file
* - Cannot write all index entries to the image file
* - Cannot update the final image header with the correct index offset
* - Any file I/O operation fails during the finalization process
*
* @retval Error codes from aaruf_close_current_block() may be propagated when:
* - The current writing buffer cannot be properly closed and written
* - Block finalization fails during the close operation
* - Compression or writing of the final block encounters errors
*
* @note Write Mode Finalization Process:
* - Writes the image header at the beginning of the file
* - Closes any open writing buffer (current block being written)
* - Writes cached secondary DDT tables and updates primary DDT references
* - Writes primary DDT tables (single-level or multi-level) with CRC validation
* - Writes the complete index with all block references at the end of the file
* - Updates the image header with the final index offset
*
* @note DDT Finalization:
* - For multi-level DDTs: Writes cached secondary tables and updates primary table pointers
* - For single-level DDTs: Writes the complete table directly to the designated position
* - Calculates and validates CRC64 checksums for all DDT data
* - Updates index entries to reference newly written DDT blocks
*
* @note Index Writing:
* - Creates IndexHeader3 structure with entry count and CRC validation
* - Writes all IndexEntry structures sequentially after the header
* - Aligns index position to block boundaries for optimal access
* - Updates the main image header with the final index file offset
*
* @note Memory Cleanup:
* - Frees all allocated DDT tables (userDataDdtMini, userDataDdtBig, cached secondary tables)
* - Frees sector metadata arrays (sectorPrefix, sectorSuffix, sectorSubchannel, etc.)
* - Frees media tag hash table and all associated tag data
* - Frees track entries, metadata blocks, and hardware information
* - Closes LRU caches for block headers and data
* - Unmaps memory-mapped DDT structures (Linux-specific)
*
* @note Platform-Specific Operations:
* - Linux: Unmaps memory-mapped DDT structures using munmap() if not loaded in memory
* - Other platforms: Standard memory deallocation only
*
* @note Error Handling Strategy:
* - Critical write failures return immediately with error codes
* - Memory cleanup continues even if some write operations fail
* - All allocated resources are freed regardless of write success/failure
* - File stream is always closed, even on error conditions
*
* @warning This function must be called to properly finalize write-mode images.
* Failing to call aaruf_close() on write-mode contexts will result in
* incomplete or corrupted image files.
*
* @warning After calling this function, the context pointer becomes invalid and
* should not be used. All operations on the context will result in
* undefined behavior.
*
* @warning For write-mode contexts, this function performs extensive file I/O.
* Ensure sufficient disk space and proper file permissions before calling.
*
* @warning The function sets errno to EINVAL for context validation failures
* but uses library-specific error codes for write operation failures.
*/
2024-04-30 15:51:32 +01:00
int aaruf_close(void *context)
{
TRACE("Entering aaruf_close(%p)", context);
mediaTagEntry *media_tag = NULL;
mediaTagEntry *tmp_media_tag = NULL;
2019-08-03 02:11:36 +01:00
if(context == NULL)
{
FATAL("Invalid context");
errno = EINVAL;
return -1;
}
2024-04-30 15:51:32 +01:00
aaruformatContext *ctx = context;
2020-03-01 19:51:13 +00:00
// Not a libaaruformat context
2020-03-01 19:58:09 +00:00
if(ctx->magic != AARU_MAGIC)
{
FATAL("Invalid context");
errno = EINVAL;
return -1;
}
if(ctx->isWriting)
{
TRACE("File is writing");
TRACE("Seeking to start of image");
// Write the header at the beginning of the file
fseek(ctx->imageStream, 0, SEEK_SET);
TRACE("Writing header at position 0");
if(fwrite(&ctx->header, sizeof(AaruHeaderV2), 1, ctx->imageStream) != 1)
{
fclose(ctx->imageStream);
ctx->imageStream = NULL;
errno = AARUF_ERROR_CANNOT_WRITE_HEADER;
return -1;
}
// Close current block first
TRACE("Closing current block if any");
if(ctx->writingBuffer != NULL)
{
int error = aaruf_close_current_block(ctx);
if(error != AARUF_STATUS_OK) return error;
}
// Write cached secondary table to file end and update primary table entry with its position
// Check if we have a cached table that needs to be written (either it has an offset or exists in memory)
bool has_cached_secondary_ddt =
ctx->userDataDdtHeader.tableShift > 0 &&
(ctx->cachedDdtOffset != 0 || ctx->cachedSecondaryDdtSmall != NULL || ctx->cachedSecondaryDdtBig != NULL);
if(has_cached_secondary_ddt)
{
TRACE("Writing cached secondary DDT table to file");
fseek(ctx->imageStream, 0, SEEK_END);
long end_of_file = ftell(ctx->imageStream);
// Align the position according to block alignment shift
uint64_t alignment_mask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(end_of_file & alignment_mask)
{
// Calculate the next aligned position
uint64_t aligned_position = end_of_file + alignment_mask & ~alignment_mask;
// Seek to the aligned position and pad with zeros if necessary
fseek(ctx->imageStream, aligned_position, SEEK_SET);
end_of_file = aligned_position;
TRACE("Aligned DDT write position from %ld to %" PRIu64 " (alignment shift: %d)",
ftell(ctx->imageStream) - (aligned_position - end_of_file), aligned_position,
ctx->userDataDdtHeader.blockAlignmentShift);
}
// Prepare DDT header for the cached table
DdtHeader2 ddt_header = {0};
ddt_header.identifier = DeDuplicationTable2;
ddt_header.type = UserData;
ddt_header.compression = None;
ddt_header.levels = ctx->userDataDdtHeader.levels;
ddt_header.tableLevel = ctx->userDataDdtHeader.tableLevel + 1;
ddt_header.previousLevelOffset = ctx->primaryDdtOffset;
ddt_header.negative = ctx->userDataDdtHeader.negative;
ddt_header.overflow = ctx->userDataDdtHeader.overflow;
ddt_header.blockAlignmentShift = ctx->userDataDdtHeader.blockAlignmentShift;
ddt_header.dataShift = ctx->userDataDdtHeader.dataShift;
ddt_header.tableShift = 0; // Secondary tables are single level
ddt_header.sizeType = ctx->userDataDdtHeader.sizeType;
uint64_t items_per_ddt_entry = 1 << ctx->userDataDdtHeader.tableShift;
ddt_header.blocks = items_per_ddt_entry;
ddt_header.entries = items_per_ddt_entry;
ddt_header.start = ctx->cachedDdtPosition * items_per_ddt_entry;
// Calculate data size
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
ddt_header.length = items_per_ddt_entry * sizeof(uint16_t);
else
ddt_header.length = items_per_ddt_entry * sizeof(uint32_t);
ddt_header.cmpLength = ddt_header.length;
// Calculate CRC64 of the data
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtSmall, ddt_header.length);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtBig, ddt_header.length);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
ddt_header.crc64 = crc64;
ddt_header.cmpCrc64 = crc64;
}
// Write header
if(fwrite(&ddt_header, sizeof(DdtHeader2), 1, ctx->imageStream) == 1)
{
// Write data
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
written_bytes = fwrite(ctx->cachedSecondaryDdtSmall, ddt_header.length, 1, ctx->imageStream);
else
written_bytes = fwrite(ctx->cachedSecondaryDdtBig, ddt_header.length, 1, ctx->imageStream);
if(written_bytes == 1)
{
// Update primary table entry to point to new location
uint64_t new_secondary_table_block_offset =
end_of_file >> ctx->userDataDdtHeader.blockAlignmentShift;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
ctx->userDataDdtMini[ctx->cachedDdtPosition] = (uint16_t)new_secondary_table_block_offset;
else
ctx->userDataDdtBig[ctx->cachedDdtPosition] = (uint32_t)new_secondary_table_block_offset;
// Update index: remove old entry for cached DDT and add new one
TRACE("Updating index for cached secondary DDT");
// Remove old index entry for the cached DDT
if(ctx->cachedDdtOffset != 0)
{
TRACE("Removing old index entry for DDT at offset %" PRIu64, ctx->cachedDdtOffset);
IndexEntry *entry = NULL;
// Find and remove the old index entry
for(unsigned int k = 0; k < utarray_len(ctx->indexEntries); k++)
{
entry = (IndexEntry *)utarray_eltptr(ctx->indexEntries, k);
if(entry && entry->offset == ctx->cachedDdtOffset &&
entry->blockType == DeDuplicationTable2)
{
TRACE("Found old DDT index entry at position %u, removing", k);
utarray_erase(ctx->indexEntries, k, 1);
break;
}
}
}
// Add new index entry for the newly written secondary DDT
IndexEntry new_ddt_entry;
new_ddt_entry.blockType = DeDuplicationTable2;
new_ddt_entry.dataType = UserData;
new_ddt_entry.offset = end_of_file;
utarray_push_back(ctx->indexEntries, &new_ddt_entry);
TRACE("Added new DDT index entry at offset %" PRIu64, end_of_file);
// Write the updated primary table back to its original position in the file
long saved_pos = ftell(ctx->imageStream);
fseek(ctx->imageStream, ctx->primaryDdtOffset + sizeof(DdtHeader2), SEEK_SET);
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
size_t primary_written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
primary_written_bytes = fwrite(ctx->userDataDdtMini, primary_table_size, 1, ctx->imageStream);
else
primary_written_bytes = fwrite(ctx->userDataDdtBig, primary_table_size, 1, ctx->imageStream);
if(primary_written_bytes != 1)
{
TRACE("Could not flush primary DDT table to file.");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
fseek(ctx->imageStream, saved_pos, SEEK_SET);
}
else
TRACE("Failed to write cached secondary DDT data");
}
else
TRACE("Failed to write cached secondary DDT header");
// Free the cached table
if(ctx->cachedSecondaryDdtSmall != NULL)
{
free(ctx->cachedSecondaryDdtSmall);
ctx->cachedSecondaryDdtSmall = NULL;
}
if(ctx->cachedSecondaryDdtBig != NULL)
{
free(ctx->cachedSecondaryDdtBig);
ctx->cachedSecondaryDdtBig = NULL;
}
ctx->cachedDdtOffset = 0;
// Set position
fseek(ctx->imageStream, 0, SEEK_END);
}
// Write the cached primary DDT table back to its position in the file
if(ctx->userDataDdtHeader.tableShift > 0 && (ctx->userDataDdtMini != NULL || ctx->userDataDdtBig != NULL))
{
TRACE("Writing cached primary DDT table back to file");
// Calculate CRC64 of the primary DDT table data first
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primary_table_size);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primary_table_size);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
// Properly populate all header fields for multi-level DDT primary table
ctx->userDataDdtHeader.identifier = DeDuplicationTable2;
ctx->userDataDdtHeader.type = UserData;
ctx->userDataDdtHeader.compression = None;
// levels, tableLevel, previousLevelOffset, negative, overflow, blockAlignmentShift,
// dataShift, tableShift, sizeType, entries, blocks, start are already set during creation
ctx->userDataDdtHeader.crc64 = crc64;
ctx->userDataDdtHeader.cmpCrc64 = crc64;
ctx->userDataDdtHeader.length = primary_table_size;
ctx->userDataDdtHeader.cmpLength = primary_table_size;
TRACE("Calculated CRC64 for primary DDT: 0x%16lX", crc64);
}
// First write the DDT header
fseek(ctx->imageStream, ctx->primaryDdtOffset, SEEK_SET);
size_t headerWritten = fwrite(&ctx->userDataDdtHeader, sizeof(DdtHeader2), 1, ctx->imageStream);
if(headerWritten != 1)
{
TRACE("Failed to write primary DDT header to file");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
// Then write the table data (position is already after the header)
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
// Write the primary table data
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
written_bytes = fwrite(ctx->userDataDdtMini, primary_table_size, 1, ctx->imageStream);
else
written_bytes = fwrite(ctx->userDataDdtBig, primary_table_size, 1, ctx->imageStream);
if(written_bytes == 1)
{
TRACE("Successfully wrote primary DDT header and table to file (%" PRIu64 " entries, %zu bytes)",
ctx->userDataDdtHeader.entries, primary_table_size);
// Add primary DDT to index
TRACE("Adding primary DDT to index");
IndexEntry primary_ddt_entry;
primary_ddt_entry.blockType = DeDuplicationTable2;
primary_ddt_entry.dataType = UserData;
primary_ddt_entry.offset = ctx->primaryDdtOffset;
utarray_push_back(ctx->indexEntries, &primary_ddt_entry);
TRACE("Added primary DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset);
}
else
TRACE("Failed to write primary DDT table to file");
}
// Write the single level DDT table block aligned just after the header
if(ctx->userDataDdtHeader.tableShift == 0 && (ctx->userDataDdtMini != NULL || ctx->userDataDdtBig != NULL))
{
TRACE("Writing single-level DDT table to file");
// Calculate CRC64 of the primary DDT table data
crc64_ctx *crc64_context = aaruf_crc64_init();
if(crc64_context != NULL)
{
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primary_table_size);
else
aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primary_table_size);
uint64_t crc64;
aaruf_crc64_final(crc64_context, &crc64);
// Properly populate all header fields
ctx->userDataDdtHeader.identifier = DeDuplicationTable2;
ctx->userDataDdtHeader.type = UserData;
ctx->userDataDdtHeader.compression = None;
ctx->userDataDdtHeader.levels = 1; // Single level
ctx->userDataDdtHeader.tableLevel = 0; // Top level
ctx->userDataDdtHeader.previousLevelOffset = 0; // No previous level for single-level DDT
// negative and overflow are already set during creation
// blockAlignmentShift, dataShift, tableShift, sizeType, entries, blocks, start are already set
ctx->userDataDdtHeader.crc64 = crc64;
ctx->userDataDdtHeader.cmpCrc64 = crc64;
ctx->userDataDdtHeader.length = primary_table_size;
ctx->userDataDdtHeader.cmpLength = primary_table_size;
TRACE("Calculated CRC64 for single-level DDT: 0x%16lX", crc64);
}
// Write the DDT header first
fseek(ctx->imageStream, ctx->primaryDdtOffset, SEEK_SET);
size_t header_written = fwrite(&ctx->userDataDdtHeader, sizeof(DdtHeader2), 1, ctx->imageStream);
if(header_written != 1)
{
TRACE("Failed to write single-level DDT header to file");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
// Then write the table data (position is already after the header)
size_t primary_table_size = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType
? ctx->userDataDdtHeader.entries * sizeof(uint16_t)
: ctx->userDataDdtHeader.entries * sizeof(uint32_t);
// Write the primary table data
size_t written_bytes = 0;
if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType)
written_bytes = fwrite(ctx->userDataDdtMini, primary_table_size, 1, ctx->imageStream);
else
written_bytes = fwrite(ctx->userDataDdtBig, primary_table_size, 1, ctx->imageStream);
if(written_bytes == 1)
{
TRACE("Successfully wrote single-level DDT header and table to file (%" PRIu64 " entries, %zu bytes)",
ctx->userDataDdtHeader.entries, primary_table_size);
// Add single-level DDT to index
TRACE("Adding single-level DDT to index");
IndexEntry single_ddt_entry;
single_ddt_entry.blockType = DeDuplicationTable2;
single_ddt_entry.dataType = UserData;
single_ddt_entry.offset = ctx->primaryDdtOffset;
utarray_push_back(ctx->indexEntries, &single_ddt_entry);
TRACE("Added single-level DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset);
}
else
TRACE("Failed to write single-level DDT table data to file");
}
uint64_t alignment_mask;
uint64_t aligned_position;
// Finalize pending checksums
if(ctx->calculating_md5)
{
ctx->checksums.hasMd5 = true;
aaruf_md5_final(&ctx->md5_context, ctx->checksums.md5);
}
2025-10-03 01:49:44 +01:00
if(ctx->calculating_sha1)
{
ctx->checksums.hasSha1 = true;
aaruf_sha1_final(&ctx->sha1_context, ctx->checksums.sha1);
}
if(ctx->calculating_sha256)
{
ctx->checksums.hasSha256 = true;
aaruf_sha256_final(&ctx->sha256_context, ctx->checksums.sha256);
}
if(ctx->calculating_spamsum)
{
ctx->checksums.hasSpamSum = true;
ctx->checksums.spamsum = calloc(1, FUZZY_MAX_RESULT);
aaruf_spamsum_final(ctx->spamsum_context, ctx->checksums.spamsum);
aaruf_spamsum_free(ctx->spamsum_context);
}
// Write the checksums block
bool has_checksums =
ctx->checksums.hasMd5 || ctx->checksums.hasSha1 || ctx->checksums.hasSha256 || ctx->checksums.hasSpamSum;
if(has_checksums)
{
ChecksumHeader checksum_header = {0};
checksum_header.identifier = ChecksumBlock;
fseek(ctx->imageStream, 0, SEEK_END);
long checksum_position = ftell(ctx->imageStream);
// Align index position to block boundary if needed
alignment_mask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(checksum_position & alignment_mask)
{
aligned_position = checksum_position + alignment_mask & ~alignment_mask;
fseek(ctx->imageStream, aligned_position, SEEK_SET);
checksum_position = aligned_position;
}
// Skip checksum_header
fseek(ctx->imageStream, sizeof(checksum_header), SEEK_CUR);
if(ctx->checksums.hasMd5)
{
TRACE("Writing MD5 checksum entry");
ChecksumEntry md5_entry = {0};
md5_entry.length = MD5_DIGEST_LENGTH;
md5_entry.type = Md5;
fwrite(&md5_entry, sizeof(ChecksumEntry), 1, ctx->imageStream);
fwrite(&ctx->checksums.md5, MD5_DIGEST_LENGTH, 1, ctx->imageStream);
checksum_header.length += sizeof(ChecksumEntry) + MD5_DIGEST_LENGTH;
checksum_header.entries++;
}
if(ctx->checksums.hasSha1)
{
TRACE("Writing SHA1 checksum entry");
ChecksumEntry sha1_entry = {0};
sha1_entry.length = SHA1_DIGEST_LENGTH;
sha1_entry.type = Sha1;
fwrite(&sha1_entry, sizeof(ChecksumEntry), 1, ctx->imageStream);
fwrite(&ctx->checksums.sha1, SHA1_DIGEST_LENGTH, 1, ctx->imageStream);
checksum_header.length += sizeof(ChecksumEntry) + SHA1_DIGEST_LENGTH;
checksum_header.entries++;
}
if(ctx->checksums.hasSha256)
{
TRACE("Writing SHA256 checksum entry");
ChecksumEntry sha256_entry = {0};
sha256_entry.length = SHA256_DIGEST_LENGTH;
sha256_entry.type = Sha256;
fwrite(&sha256_entry, sizeof(ChecksumEntry), 1, ctx->imageStream);
fwrite(&ctx->checksums.sha256, SHA256_DIGEST_LENGTH, 1, ctx->imageStream);
2025-10-03 01:49:44 +01:00
checksum_header.length += sizeof(ChecksumEntry) + SHA256_DIGEST_LENGTH;
checksum_header.entries++;
}
if(ctx->checksums.hasSpamSum)
{
TRACE("Writing SpamSum checksum entry");
ChecksumEntry spamsum_entry = {0};
spamsum_entry.length = strlen((const char *)ctx->checksums.spamsum);
spamsum_entry.type = SpamSum;
fwrite(&spamsum_entry, sizeof(ChecksumEntry), 1, ctx->imageStream);
fwrite(&ctx->checksums.spamsum, spamsum_entry.length, 1, ctx->imageStream);
checksum_header.length += sizeof(ChecksumEntry) + spamsum_entry.length;
checksum_header.entries++;
}
fseek(ctx->imageStream, checksum_position, SEEK_SET);
TRACE("Writing checksum header");
fwrite(&checksum_header, sizeof(ChecksumHeader), 1, ctx->imageStream);
// Add checksum block to index
TRACE("Adding checksum block to index");
IndexEntry checksum_index_entry;
checksum_index_entry.blockType = ChecksumBlock;
checksum_index_entry.dataType = 0;
checksum_index_entry.offset = checksum_position;
utarray_push_back(ctx->indexEntries, &checksum_index_entry);
TRACE("Added checksum block index entry at offset %" PRIu64, checksum_position);
}
// Write the complete index at the end of the file
TRACE("Writing index at the end of the file");
fseek(ctx->imageStream, 0, SEEK_END);
long index_position = ftell(ctx->imageStream);
// Align index position to block boundary if needed
alignment_mask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1;
if(index_position & alignment_mask)
{
aligned_position = index_position + alignment_mask & ~alignment_mask;
fseek(ctx->imageStream, aligned_position, SEEK_SET);
index_position = aligned_position;
TRACE("Aligned index position to %" PRIu64, aligned_position);
}
// Prepare index header
IndexHeader3 index_header;
index_header.identifier = IndexBlock3;
index_header.entries = utarray_len(ctx->indexEntries);
index_header.previous = 0; // No previous index for now
TRACE("Writing index with %" PRIu64 " entries at position %ld", index_header.entries, index_position);
// Calculate CRC64 of index entries
crc64_ctx *index_crc64_context = aaruf_crc64_init();
if(index_crc64_context != NULL && index_header.entries > 0)
{
size_t index_data_size = index_header.entries * sizeof(IndexEntry);
aaruf_crc64_update(index_crc64_context, (uint8_t *)utarray_front(ctx->indexEntries), index_data_size);
aaruf_crc64_final(index_crc64_context, &index_header.crc64);
TRACE("Calculated index CRC64: 0x%16lX", index_header.crc64);
}
else { index_header.crc64 = 0; }
// Write index header
if(fwrite(&index_header, sizeof(IndexHeader3), 1, ctx->imageStream) == 1)
{
TRACE("Successfully wrote index header");
// Write index entries
if(index_header.entries > 0)
{
size_t entries_written = 0;
IndexEntry *entry = NULL;
for(entry = (IndexEntry *)utarray_front(ctx->indexEntries); entry != NULL;
entry = (IndexEntry *)utarray_next(ctx->indexEntries, entry))
{
if(fwrite(entry, sizeof(IndexEntry), 1, ctx->imageStream) == 1)
{
entries_written++;
TRACE("Wrote index entry: blockType=0x%08X dataType=%u offset=%" PRIu64, entry->blockType,
entry->dataType, entry->offset);
}
else
{
TRACE("Failed to write index entry %zu", entries_written);
break;
}
}
if(entries_written == index_header.entries)
{
TRACE("Successfully wrote all %zu index entries", entries_written);
// Update header with index offset and rewrite it
ctx->header.indexOffset = index_position;
TRACE("Updating header with index offset: %" PRIu64, ctx->header.indexOffset);
// Seek back to beginning and rewrite header
fseek(ctx->imageStream, 0, SEEK_SET);
if(fwrite(&ctx->header, sizeof(AaruHeaderV2), 1, ctx->imageStream) == 1)
{
TRACE("Successfully updated header with index offset");
}
else
{
TRACE("Failed to update header with index offset");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
}
else
{
TRACE("Failed to write all index entries (wrote %zu of %" PRIu64 ")", entries_written,
index_header.entries);
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
}
}
else
{
TRACE("Failed to write index header");
return AARUF_ERROR_CANNOT_WRITE_HEADER;
}
if(ctx->deduplicate && ctx->sectorHashMap != NULL)
{
TRACE("Clearing sector hash map");
// Clear sector hash map
free_map(ctx->sectorHashMap);
ctx->sectorHashMap = NULL;
}
}
TRACE("Freeing memory pointers");
// This may do nothing if imageStream is NULL, but as the behaviour is undefined, better sure than sorry
if(ctx->imageStream != NULL)
{
fclose(ctx->imageStream);
ctx->imageStream = NULL;
}
// Free index entries array
if(ctx->indexEntries != NULL)
{
utarray_free(ctx->indexEntries);
ctx->indexEntries = NULL;
}
free(ctx->sectorPrefix);
ctx->sectorPrefix = NULL;
free(ctx->sectorPrefixCorrected);
ctx->sectorPrefixCorrected = NULL;
free(ctx->sectorSuffix);
ctx->sectorSuffix = NULL;
free(ctx->sectorSuffixCorrected);
ctx->sectorSuffixCorrected = NULL;
free(ctx->sectorSubchannel);
ctx->sectorSubchannel = NULL;
free(ctx->mode2Subheaders);
ctx->mode2Subheaders = NULL;
TRACE("Freeing media tags");
if(ctx->mediaTags != NULL) HASH_ITER(hh, ctx->mediaTags, media_tag, tmp_media_tag)
2019-03-17 23:01:54 +00:00
{
HASH_DEL(ctx->mediaTags, media_tag);
free(media_tag->data);
free(media_tag);
2019-03-17 23:01:54 +00:00
}
2024-04-30 15:51:32 +01:00
#ifdef __linux__ // TODO: Implement
TRACE("Unmapping user data DDT if it is not in memory");
if(!ctx->inMemoryDdt)
{
munmap(ctx->userDataDdt, ctx->mappedMemoryDdtSize);
ctx->userDataDdt = NULL;
}
#endif
2019-03-17 23:25:45 +00:00
free(ctx->sectorPrefixDdt);
ctx->sectorPrefixDdt = NULL;
2019-03-17 23:25:45 +00:00
free(ctx->sectorSuffixDdt);
ctx->sectorSuffixDdt = NULL;
2019-03-17 23:25:45 +00:00
2019-03-17 23:41:07 +00:00
free(ctx->metadataBlock);
ctx->metadataBlock = NULL;
2019-03-18 00:10:24 +00:00
free(ctx->trackEntries);
ctx->trackEntries = NULL;
2019-03-18 22:06:10 +00:00
free(ctx->cicmBlock);
ctx->cicmBlock = NULL;
2019-03-17 23:41:07 +00:00
2019-03-20 00:23:30 +00:00
if(ctx->dumpHardwareEntriesWithData != NULL)
{
for(int i = 0; i < ctx->dumpHardwareHeader.entries; i++)
2019-03-20 00:23:30 +00:00
{
free(ctx->dumpHardwareEntriesWithData[i].extents);
ctx->dumpHardwareEntriesWithData[i].extents = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].manufacturer);
ctx->dumpHardwareEntriesWithData[i].manufacturer = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].model);
ctx->dumpHardwareEntriesWithData[i].model = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].revision);
ctx->dumpHardwareEntriesWithData[i].revision = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].firmware);
ctx->dumpHardwareEntriesWithData[i].firmware = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].serial);
ctx->dumpHardwareEntriesWithData[i].serial = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].softwareName);
ctx->dumpHardwareEntriesWithData[i].softwareName = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].softwareVersion);
ctx->dumpHardwareEntriesWithData[i].softwareVersion = NULL;
2019-03-20 00:23:30 +00:00
free(ctx->dumpHardwareEntriesWithData[i].softwareOperatingSystem);
ctx->dumpHardwareEntriesWithData[i].softwareOperatingSystem = NULL;
2019-03-20 00:23:30 +00:00
}
ctx->dumpHardwareEntriesWithData = NULL;
2019-03-20 00:23:30 +00:00
}
2019-03-31 14:56:03 +01:00
free(ctx->readableSectorTags);
ctx->readableSectorTags = NULL;
2022-10-03 19:32:25 +01:00
free(ctx->eccCdContext);
ctx->eccCdContext = NULL;
2022-10-04 19:44:34 +01:00
free(ctx->checksums.spamsum);
ctx->checksums.spamsum = NULL;
// TODO: Free caches
2019-03-31 14:56:03 +01:00
free(context);
TRACE("Exiting aaruf_close() = 0");
return 0;
}